-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposter.tex
264 lines (214 loc) · 11.4 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
\documentclass[10pt, sans, mathserif]{beamer}
\usepackage{graphics}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[size=custom,width=100,height=100,scale=1.2,orientation=portrait]{beamerposter}
\usepackage[absolute,overlay]{textpos}
\usepackage{multirow}
\usepackage{titlecaps}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATH
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathtools}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}%
\newcommand{\sumsum}{
\sum_{m = 0}^{M_s-1}\sum_{n = 0}^{N_s-1}
}
\newcommand{\sad}{
\sumsum{\abs*{B_{s,p}(m,n) - C_{s,p,x,y}(m,n)}}
}
\newcommand{\minsad}{
\ensuremath{\text{minSAD}}
}
\newcommand{\lowersad}{
\text{SAD}^\Omega
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GLOSSARIES
\usepackage[acronym]{glossaries}
\loadglsentries{acronyms}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TIKZ
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{tkz-euclide}
\usetikzlibrary{positioning}
\usetikzlibrary{shapes,arrows}
\usetikzlibrary{arrows.meta}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% REFERENCES
\usepackage{cleveref}
\crefname{figure}{Fig.}{Figures}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BEAMER SETTINGS
\setbeamersize{text margin left=18cm,text margin right=2cm}
\setbeamerfont{normal text}{size=\normalsize}
\usepackage{sourcesanspro}
%\usefonttheme[onlymath]{mathpazo}
%\usepackage{kerkis} % Or palatino or mathpazo
%\usepackage{concmath}
%\usepackage{concrete}
%\usefonttheme{structurebold}
\setbeamertemplate{caption}[numbered]
%\def\baselinestretch{1.05}
\begin{document}
\usebackgroundtemplate{\includegraphics{icip.pdf}}
\begin{frame}[t]
\centering
%%%%%%%%%%%%%%%%%%%% HEADER %%%%%%%%%%%%%%%%%%%%%%%%%
\huge{Sub-Partition Reuse For Fast Optimal Motion Estimation\\ In HEVC Successive Elimination Algorithms}
\LARGE{Luc Trudeau, Stéphane Coulombe, Christian Desrosiers}
\Large{Department of Software and IT Engineering, École de technologie supérieure, Montréal, Canada}
%%%%%%%%%%%%%%%%%%%%%%%%% INTRO %%%%%%%%%%%%%%%%%%%%%%%%%
\normalsize
\begin{columns}[t, onlytextwidth]
\begin{column}{0.5\textwidth}
\begin{block}{\titlecap{1. Introduction}}
%\begin{minipage}{0.55\textwidth}
\begin{itemize}
% Here is a problem
\item Motion Estimation~(ME) is a crucial tool for video encoders.
\item ME seeks the best candidate block~($C$) from a search area~($\mathcal{S}$) in a previously coded frame to predict the current block~($B$) (see \cref{fig:MotionEstimation}).
% It's an interesting problem
\item For HEVC, considering every candidate is prohibitively expensive, so modern search algorithms often find sub-optimal solutions.
\item We want to reduce the number of candidates without sacrificing the optimal solution.
% Here is my idea
\item We propose an early termination scheme for square \glspl{pu} based on information reuse from rectangular ones.
\end{itemize}
%\end{minipage}\hfill
% \begin{minipage}{0.45\textwidth}
\begin{figure}[H]
\vspace{-2em}
\centering
\include{motionestimation}
\vspace{-1em}
\caption{Motion estimation finds the best candidate to predict the current block.}
\label{fig:MotionEstimation}
\end{figure}
%\end{minipage}
\end{block}
%%%%%%%%%%%%%%%%%%%%%%%%% SEA %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{block}{\titlecap{2. Successive Elimination Algorithm}}
\begin{itemize}
\item Let $s \in \{\mathbb{S}, \mathbb{V}, \mathbb{H}\}$ be the partitioning shape of a \gls{pu} and $p$ be the partition index
\begin{figure}[htb]
\centering
\input{figPUShapes.tex}
\caption{The first partition index is $0$ and if a second partition exists, its index is $1$.}
\label{fig:CUShapes}
\end{figure}
\item The candidate at position $(x,y)$ is evaluated using
\[
\text{RCSAD}(s,p,x,y) = \sad + \lambda R(x,y) \:.
\]
\item Successive elimination uses a lower bound approximation of the RCSAD
\[ \small
\text{RCADS}(s,p,x,y) = \abs*{\sumsum{B}_{s,p}(m,n) - \sumsum{C_{s,p,x,y}(m,n)}} + \lambda R(x,y)\:.
\label{eq:RCADS}
\]
\item Let $(\hat{x},\hat{y})$ be the position of the current best candidate. By transitivity:
\begin{align*}
\text{RCADS}(s,p,x,y) &\geqslant \text{RCSAD}(s,p,\hat{x},\hat{y}) \nonumber \\
\implies \text{RCSAD}(s,p,x,y) &\geqslant \text{RCSAD}(s,p,\hat{x},\hat{y})\:.
\label{eq:TransitiveElimination}
\end{align*}
\end{itemize}
\end{block}
%%%%%%%%%%%%%%%%%%%%%%%%% INFORMATION REUSE BETWEEN PU SHAPES %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{block}{\titlecap{3. Information reuse between PU shapes}}
\begin{itemize}
\item Traditionally, \glspl{pu} are evaluated in the order \[\mathbb{S} \rightarrow \mathbb{V} \rightarrow \mathbb{H}\:.\]
\item Consider the following orders \[\mathbb{V} \rightarrow \mathbb{H} \rightarrow \mathbb{S} \text{ and } \mathbb{H} \rightarrow \mathbb{V} \rightarrow \mathbb{S}\:,\] which allow for information reuse from $\mathbb{V}$ and/or $\mathbb{H}$ into $\mathbb{S}$. Such as
\begin{equation}
\lowersad =
\max \begin{pmatrix}
\minsad(\mathbb{V},0) &+ \minsad(\mathbb{V},1), \nonumber \\
\minsad(\mathbb{H},0) &+ \minsad(\mathbb{H},1)
\end{pmatrix}.
\end{equation}
\item It follows that
\[
\lowersad \leqslant \text{SAD}(\mathbb{S},0,x,y),~\forall~ (x,y) \in \mathcal{S}_{\mathbb{S},0} \:.
\]
\item At worst, the min SAD of a partitioning is the min SAD of the block
\begin{equation*} \text{SAD} \left(\: \tikz[scale=0.70,baseline=-0.25cm,very thick]{\draw (-2,-2) rectangle (2,2); \draw (0,-2) -- (0,2); \draw[->] (-1, 0) -- (-0.5, 0.5); \draw[->] (1, 0) -- (0.5, -0.5);
}\:\right) \leqslant \text{SAD} \left(\: \tikz[scale=0.70,baseline=-0.25cm,very thick]{\draw (-2,-2) rectangle (2,2); \draw[->] (0, 0) -- (0.5, -0.5); }\:\right)\:.
\end{equation*}
\end{itemize}
\end{block}
\begin{block}{\titlecap{4. Improved early termination for $\mathbb{S}$}}
\begin{itemize}
\item We evaluate candidates in increasing order of rate. When the rate is large the search can terminate (without evaluating the remainder of $\mathcal{S}$).
\item Early termination rate proposed at ICIP 2014
\[
R(x,y) \geqslant \frac{\text{SAD}(s,p,\hat{x},\hat{y})}{\lambda} + R(\hat{x},\hat{y}) \:.
\label{eq:Thres}
\]
\item Improved early termination rate for $\mathbb{S}$
\[
R(x,y) \geqslant \frac{\text{SAD}(\mathbb{S},0,\hat{x},\hat{y}) - \lowersad}{\lambda} + R(\hat{x},\hat{y}) \:.
\label{eq:SThres}
\]
\end{itemize}
\end{block}
\end{column}
\begin{column}{0.5\textwidth}
%%%%%%%%%%%%%%%%%%%%%%%%% EARLY TERMINATION %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{block}{}
\begin{figure}
\centering
\vspace{-1em}
\begin{tikzpicture}[scale=1.3]
\tikzstyle{every node}=[font=\small]
\draw[gray] (0,0) grid (20,16);
\draw[line width=.5mm] (0,15) -- node[above] {$\lambda$} (15,0);
\draw[decoration={markings,mark=at position 1 with
{\arrow[scale=4,>=stealth]{>}}},postaction={decorate}, line width=.75mm] (0,0) -- (0,16) node[above] {Distortion};
\draw[decoration={markings,mark=at position 1 with
{\arrow[scale=4,>=stealth]{>}}},postaction={decorate}, line width=.75mm] (0,0) -- (20,0) node[right] {Rate};
%\fill[yellow, fill opacity=0.4] (8,0) -- (8,7) -- (15,0);
\draw[loosely dashed, line width=1mm, blue, very thick] (8,7) -- (8,0);
\draw[line width=1mm, red, very thick] (20,7) -- (0,7);
\draw[loosely dashed, line width=1mm] (3,12) -- (0,12) node[left] {};
\draw[loosely dashed, line width=1mm] (3,12) -- (3,0);
\draw[|<->|, line width=1mm] (0,-0.75) -- node[fill=white] {$R(\hat{x},\hat{y})$} (3,-0.75);
\draw[|<->|, line width=1mm] (0,-2) -- node[fill=white] {$\frac{\text{SAD}(\mathbb{S},0,\hat{x},\hat{y}) - \lowersad}{\lambda} + R(\hat{x},\hat{y})$} (8,-2);
\draw[|<->|, line width=1mm] (0,-3) -- node[fill=white] {$\frac{\text{SAD}(\mathbb{S},0,\hat{x},\hat{y})}{\lambda} + R(\hat{x},\hat{y})$} (15,-3);
\draw[|<->|, line width=1mm] (-1,0) -- node[fill=white, rotate=90] {$\lowersad$} (-1,7);
\draw[|<->|, line width=1mm] (-2,0) -- node[fill=white, rotate=90] {$\text{SAD}(\mathbb{S},0,\hat{x},\hat{y})$} (-2,12);
\draw[|<->|, line width=1mm] (-3,0) -- node[fill=white, rotate=90] {$\text{SAD}(\mathbb{S},0,\hat{x}, \hat{y}) + \lambda R(\hat{x}, \hat{y})$} (-3,15);
\draw[->, line width=1mm, blue] (10, 11) node[above, align=center] {\textbf{Proposed Early Termination Threshold}} to[out=270,in=45] (8,7.1);
\draw[->, line width=1mm, text width=6cm] (14, 4) node[above, align=center] {Previous Early Termination Threshold} to[out=270,in=45] (15,0.1);
\draw[->, line width=1mm, text width=6cm] (19, 4) node[above] {Edge of the search area} to[out=270,in=90] (19,0.1);
\draw[->, line width=1mm, text width=8cm, red] (14, 9) node[above, align=center] {\textbf{New: No candidates below this line}} to[out=270,in=90] (14,7.1);
\fill[yellow, fill opacity=0.2] (0,16) -- (0,15) -- (8,7) -- (19,7) -- (19,16);
\node[text width=15cm, orange] at (14, 15) {Candidates are only in this region};
\end{tikzpicture}
\vspace{-0.5em}
\caption{Geometric representation of the early termination thresholds.}
\label{fig:Triangle}
\end{figure}
\end{block}
%%%%%%%%%%%%%%%%%%%%%%%%% EXPERIMENTAL RESULTS %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{block}{\titlecap{5. Experimental Results}}
\input{table.tex}
\begin{figure}[htb]
\centering
\input{figBarChart-Poster.tex}
\vspace{-0.5em}
\caption{Results for main profile with 8-bit coding and Low Delay P settings (No AMP)}
\label{fig:SADSavingBar}
\end{figure}
\end{block}
%%%%%%%%%%%%%%%%%%%%%%%%% CONCLUSION %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{block}{\titlecap{6. Conclusion}}
\begin{itemize}
\item The proposed early termination scheme for square \glspl{pu}, based on information reuse from rectangular \glspl{pu}, results in a \textbf{6.13x} speedup and \textbf{94.9\%} SAD savings when compared to HM (Full Search).
\item This work considerably decreases the number of candidates imposed by the HEVC standard in order to find the optimal solution.
\end{itemize}
\end{block}
\end{column}
\end{columns}
\end{frame}
\end{document}