forked from KdaiP/StableTTS
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
103 lines (78 loc) · 4.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
import torch
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from dataclasses import asdict
from datas.dataset import StableDataset, collate_fn
from datas.sampler import DistributedBucketSampler
from text import symbols
from config import MelConfig, ModelConfig, TrainConfig
from models.model import StableTTS
from utils.scheduler import get_cosine_schedule_with_warmup
from utils.load import continue_training
torch.backends.cudnn.benchmark = True
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
dist.init_process_group("gloo" if os.name == "nt" else "nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def _init_config(model_config: ModelConfig, mel_config: MelConfig, train_config: TrainConfig):
if not os.path.exists(train_config.model_save_path):
print(f'Creating {train_config.model_save_path}')
os.makedirs(train_config.model_save_path, exist_ok=True)
def train(rank, world_size):
setup(rank, world_size)
torch.cuda.set_device(rank)
model_config = ModelConfig()
mel_config = MelConfig()
train_config = TrainConfig()
_init_config(model_config, mel_config, train_config)
model = StableTTS(len(symbols), mel_config.n_mels, **asdict(model_config)).to(rank)
model = DDP(model, device_ids=[rank])
train_dataset = StableDataset(train_config.train_dataset_path, mel_config.hop_length)
train_sampler = DistributedBucketSampler(train_dataset, train_config.batch_size, [32,300,400,500,600,700,800,900,1000], num_replicas=world_size, rank=rank)
train_dataloader = DataLoader(train_dataset, batch_sampler=train_sampler, num_workers=4, pin_memory=True, collate_fn=collate_fn, persistent_workers=True)
if rank == 0:
writer = SummaryWriter(train_config.log_dir)
optimizer = optim.AdamW(model.parameters(), lr=train_config.learning_rate)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=int(train_config.warmup_steps), num_training_steps=train_config.num_epochs * len(train_dataloader))
# load latest checkpoints if possible
current_epoch = continue_training(train_config.model_save_path, model, optimizer)
model.train()
for epoch in range(current_epoch, train_config.num_epochs): # loop over the train_dataset multiple times
train_dataloader.batch_sampler.set_epoch(epoch)
if rank == 0:
dataloader = tqdm(train_dataloader)
else:
dataloader = train_dataloader
for batch_idx, datas in enumerate(dataloader):
datas = [data.to(rank, non_blocking=True) for data in datas]
x, x_lengths, y, y_lengths, z, z_lengths = datas
optimizer.zero_grad()
dur_loss, diff_loss, prior_loss, _ = model(x, x_lengths, y, y_lengths, z, z_lengths)
loss = dur_loss + diff_loss + prior_loss
loss.backward()
optimizer.step()
scheduler.step()
if rank == 0 and batch_idx % train_config.log_interval == 0:
steps = epoch * len(dataloader) + batch_idx
writer.add_scalar("training/diff_loss", diff_loss.item(), steps)
writer.add_scalar("training/dur_loss", dur_loss.item(), steps)
writer.add_scalar("training/prior_loss", prior_loss.item(), steps)
writer.add_scalar("learning_rate/learning_rate", scheduler.get_last_lr()[0], steps)
if rank == 0 and epoch % train_config.save_interval == 0:
torch.save(model.module.state_dict(), os.path.join(train_config.model_save_path, f'checkpoint_{epoch}.pt'))
torch.save(optimizer.state_dict(), os.path.join(train_config.model_save_path, f'optimizer_{epoch}.pt'))
print(f"Rank {rank}, Epoch {epoch}, Loss {loss.item()}")
cleanup()
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
world_size = torch.cuda.device_count()
torch.multiprocessing.spawn(train, args=(world_size,), nprocs=world_size)