-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnn.py
145 lines (116 loc) · 4.77 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas
import math
from keras.models import Sequential
from keras.layers import Conv1D, Dense, LSTM, RepeatVector, TimeDistributed, Bidirectional, Flatten, Dropout, Reshape
from keras.callbacks import ModelCheckpoint
import numpy as np
from numpy import array
import matplotlib.pyplot as plt
import random
import time
from res50_nt import Res50NTv1
from config import *
from dataPreprocessing import load_data
from helper import RNN_model, DAE_model, mean_abs_err, PTECA, get_agg_mean_std, unstandardize_aggregate_input
#from Data_Preprocessing import *
appliance_name = 'kettle'
BATCH_SIZE = 128
num_epochs = 20
# training / loading
mode = 'loading'
X_train, X_test, y_train, y_test = load_data(appliance_name)
sequence_length = math.ceil(APPLIANCE_CONFIG[appliance_name]['window_width'] / SAMPLE_WIDTH)
max_power = APPLIANCE_CONFIG[appliance_name]['max_power']
X_train = X_train.values
X_test = X_test.values
y_train = y_train.values
y_test = y_test.values
unstd_X_test = unstandardize_aggregate_input(X_test, appliance_name)
mode = 'training'
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
#y_train = y_train.reshape((y_train.shape[0], y_train.shape[1], 1))
#y_test = y_test.reshape((y_test.shape[0], y_test.shape[1], 1))
print('Training Data:')
print(X_train.shape)
print(y_train.shape)
print('Test Data:')
print(X_test.shape)
print(y_test.shape)
# trainning
# list_model = [RNN_model(sequence_length), DAE_model(sequence_length)]
# list_model = [DAE_model()]
model = Res50NTv1(input_shape=X_train.shape[1:])
model.summary()
if mode == 'training':
start = time.time()
checkpointer = ModelCheckpoint(filepath="model_" + appliance_name + '_1_' + str(num_epochs) + 'epo.hdf5', verbose=1, save_best_only=True)
model.fit(X_train, y_train,
batch_size=BATCH_SIZE,
epochs=num_epochs,
validation_data=(X_test, y_test),
callbacks=[checkpointer])
end = time.time()
print('### Total trainning time cost: {} ###'. format(str(end - start)))
elif mode == 'loading':
# !trainning
print('loading from {}'.format("model_" + appliance_name + '_1_' + str(num_epochs) + 'epo.hdf5'))
model.load_weights("model_" + appliance_name + '_1_' + str(num_epochs) + 'epo.hdf5')
######### improvement by status detection #########
def classify_on_off(input_matrix, max_power, threshold=0.5, off_window=60):
result_matrix = np.zeros(input_matrix.shape)
for i in range(result_matrix.shape[0]):
current_window = 0
start = False
for j in range(result_matrix.shape[1]):
if not start:
if input_matrix[i,j] > max_power*threshold:
start = True
result_matrix[i,j] = 1
else:
if input_matrix[i,j] > max_power*threshold:
if current_window > 0:
for index in range(j-current_window ,j+1):
result_matrix[i, index] = 1
current_window = 0
else:
result_matrix[i,j] = 1
else:
if current_window > off_window:
current_window = 0
else:
current_window += 1
return result_matrix
def adjust_pre(status_matrix, pred):
result = pred[:]
for i in range(status_matrix.shape[0]):
for j in range(status_matrix.shape[1]):
if status_matrix[i,j] < 0.5:
result[i,j,0] = 0
return result
unstd_X_test = unstandardize_aggregate_input(X_test.reshape((X_test.shape[0], X_test.shape[1])), appliance_name)
status_matrix = classify_on_off(unstd_X_test, max_power)
preds = model.predict(X_test, verbose=0)
preds = adjust_pre(status_matrix, preds)
######### end of improvement by status detection #########
mae = mean_abs_err(preds, y_test) * max_power
print('MAE is {}'.format(mae))
# mae = mean_abs_err(mean_test, y_test) * max_power
# print('MAE is {}'.format(mae))
# pteca = PTECA(preds, y_test, X_test)
# print('pteca is {}'.format(pteca))
'''
count = 0
for index, list in enumerate(preds):
plt.plot([ i for i in range(sequence_length)], [ item[0]*max_power for item in list], label="Predict Value")
plt.plot([ i for i in range(sequence_length)], [ item[0]*max_power for item in y_test[index]], label="Ground Truth Value")
# plt.plot([ i for i in range(sequence_length)], [ item[0] for item in X_test[index]], label="Aggregate Value")
plt.legend()
# plt.legend({'Main', 'Appliance', 'Disaggregated'})
plt.xlabel('Relative Time (6s)')
plt.ylabel('Power (kw/h)')
plt.show()
count += 1
if count == 20:
break
'''