-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathluaneural.lua
270 lines (212 loc) · 8.68 KB
/
luaneural.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
-- Author: "Soulkiller" (http://www.forums.evilmana.com/psp-lua-codebase/lua-neural-networks/)
-- Gists of code: https://gist.github.com/cassiozen/de0dff87eb7ed599b5d0
ACTIVATION_RESPONSE = 1
NeuralNetwork = {
transfer = function( x) return 1 / (1 + math.exp(-x / ACTIVATION_RESPONSE)) end --This is the Transfer function (in this case a sigmoid)
}
function NeuralNetwork.create( _numInputs, _numOutputs, _numHiddenLayers, _neuronsPerLayer, _learningRate)
_numInputs = _numInputs or 1
_numOutputs = _numOutputs or 1
_numHiddenLayers = _numHiddenLayers or math.ceil(_numInputs/2)
_neuronsPerLayer = _neuronsPerLayer or math.ceil(_numInputs*.66666+_numOutputs)
_learningRate = _learningRate or .5
--order goes network[layer][neuron][wieght]
local network = setmetatable({
learningRate = _learningRate
},{ __index = NeuralNetwork});
network[1] = {} --Input Layer
for i = 1,_numInputs do
network[1][i] = {}
end
for i = 2,_numHiddenLayers+2 do --plus 2 represents the output layer (also need to skip input layer)
network[i] = {}
local neuronsInLayer = _neuronsPerLayer
if i == _numHiddenLayers+2 then
neuronsInLayer = _numOutputs
end
for j = 1,neuronsInLayer do
network[i][j] = {bias = math.random()*2-1}
local numNeuronInputs = table.getn(network[i-1])
for k = 1,numNeuronInputs do
network[i][j][k] = math.random()*2-1 --return random number between -1 and 1
end
end
end
return network
end
function NeuralNetwork:forewardPropagate(a, b, c)
local arg = {a, b, c}
if table.getn(arg) ~= table.getn(self[1]) and type(arg[1]) ~= "table" then
error("Neural Network received "..table.getn(arg).." input[s] (expected "..table.getn(self[1]).." input[s])",2)
elseif type(arg[1]) == "table" and table.getn(arg[1]) ~= table.getn(self[1]) then
error("Neural Network received "..table.getn(arg[1]).." input[s] (expected "..table.getn(self[1]).." input[s])",2)
end
local outputs = {}
for i = 1,table.getn(self) do
for j = 1,table.getn(self[i]) do
if i == 1 then
if type(arg[1]) == "table" then
self[i][j].result = arg[1][j]
else
self[i][j].result = arg[j]
end
else
self[i][j].result = self[i][j].bias
for k = 1,table.getn(self[i][j]) do
self[i][j].result = self[i][j].result + (self[i][j][k]*self[i-1][k].result)
end
self[i][j].result = NeuralNetwork.transfer(self[i][j].result)
if i == table.getn(self) then
table.insert(outputs,self[i][j].result)
end
end
end
end
return outputs
end
function NeuralNetwork:backwardPropagate(inputs,desiredOutputs)
if table.getn(inputs) ~= table.getn(self[1]) then
error("Neural Network received "..table.getn(inputs).." input[s] (expected "..table.getn(self[1]).." input[s])",2)
elseif table.getn(desiredOutputs) ~= table.getn(self[table.getn(self)]) then
error("Neural Network received "..table.getn(desiredOutputs).." desired output[s] (expected "..table.getn(self[table.getn(self)]).." desired output[s])",2)
end
self:forewardPropagate(inputs) --update the internal inputs and outputs
for i = table.getn(self),2,-1 do --iterate backwards (nothing to calculate for input layer)
local tempResults = {}
for j = 1,table.getn(self[i]) do
if i == table.getn(self) then --special calculations for output layer
self[i][j].delta = (desiredOutputs[j] - self[i][j].result) * self[i][j].result * (1 - self[i][j].result)
else
local weightDelta = 0
for k = 1,table.getn(self[i+1]) do
weightDelta = weightDelta + self[i+1][k][j]*self[i+1][k].delta
end
self[i][j].delta = self[i][j].result * (1 - self[i][j].result) * weightDelta
end
end
end
for i = 2,table.getn(self) do
for j = 1,table.getn(self[i]) do
self[i][j].bias = self[i][j].delta * self.learningRate
for k = 1,table.getn(self[i][j]) do
self[i][j][k] = self[i][j][k] + self[i][j].delta * self.learningRate * self[i-1][k].result
end
end
end
end
function NeuralNetwork:save()
--[[
File specs:
|INFO| - should be FF BP NN
|I| - number of inputs
|O| - number of outputs
|HL| - number of hidden layers
|NHL| - number of neurons per hidden layer
|LR| - learning rate
|BW| - bias and weight values
]]--
local data = "|INFO|FF BP NN|I|"..tostring(table.getn(self[1])).."|O|"..tostring(table.getn(self[table.getn(self)])).."|HL|"..tostring(table.getn(self)-2).."|NHL|"..tostring(table.getn(self[2])).."|LR|"..tostring(self.learningRate).."|BW|"
for i = 2,table.getn(self) do -- nothing to save for input layer
for j = 1,table.getn(self[i]) do
local neuronData = tostring(self[i][j].bias).."{"
for k = 1,table.getn(self[i][j]) do
neuronData = neuronData..tostring(self[i][j][k])
neuronData = neuronData..","
end
data = data..neuronData.."}"
end
end
data = data.."|END|"
return data
end
function NeuralNetwork.load( data)
local dataPos = string.find(data,"|")+1
local currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
local dataPos = string.find(data,"|",dataPos)+1
local _inputs, _outputs, _hiddenLayers, _neuronsPerLayer, _learningRate
local biasWeights = {}
local errorExit = false
while currentChunk ~= "END" and not errorExit do
if currentChuck == "INFO" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
if currentChunk ~= "FF BP NN" then
errorExit = true
end
elseif currentChunk == "I" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
_inputs = tonumber(currentChunk)
elseif currentChunk == "O" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
_outputs = tonumber(currentChunk)
elseif currentChunk == "HL" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
_hiddenLayers = tonumber(currentChunk)
elseif currentChunk == "NHL" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
_neuronsPerLayer = tonumber(currentChunk)
elseif currentChunk == "LR" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
_learningRate = tonumber(currentChunk)
elseif currentChunk == "BW" then
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
local subPos = 1
local subChunk
for i = 1,_hiddenLayers+1 do
biasWeights[i] = {}
local neuronsInLayer = _neuronsPerLayer
if i == _hiddenLayers+1 then
neuronsInLayer = _outputs
end
for j = 1,neuronsInLayer do
biasWeights[i][j] = {}
biasWeights[i][j].bias = tonumber(string.sub(currentChunk,subPos,string.find(currentChunk,"{",subPos)-1))
subPos = string.find(currentChunk,"{",subPos)+1
subChunk = string.sub( currentChunk, subPos, string.find(currentChunk,",",subPos)-1)
local maxPos = string.find(currentChunk,"}",subPos)
while subPos < maxPos do
table.insert(biasWeights[i][j],tonumber(subChunk))
subPos = string.find(currentChunk,",",subPos)+1
if string.find(currentChunk,",",subPos) ~= nil then
subChunk = string.sub( currentChunk, subPos, string.find(currentChunk,",",subPos)-1)
end
end
subPos = maxPos+1
end
end
end
currentChunk = string.sub( data, dataPos, string.find(data,"|",dataPos)-1)
dataPos = string.find(data,"|",dataPos)+1
end
if errorExit then
error("Failed to load Neural Network:"..currentChunk,2)
end
local network = setmetatable({
learningRate = _learningRate
},{ __index = NeuralNetwork});
network[1] = {} --Input Layer
for i = 1,_inputs do
network[1][i] = {}
end
for i = 2,_hiddenLayers+2 do --plus 2 represents the output layer (also need to skip input layer)
network[i] = {}
local neuronsInLayer = _neuronsPerLayer
if i == _hiddenLayers+2 then
neuronsInLayer = _outputs
end
for j = 1,neuronsInLayer do
network[i][j] = {bias = biasWeights[i-1][j].bias}
local numNeuronInputs = table.getn(network[i-1])
for k = 1,numNeuronInputs do
network[i][j][k] = biasWeights[i-1][j][k]
end
end
end
return network
end