-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
248 lines (206 loc) · 11 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
import tqdm
import random
import numpy as np
import pandas as pd
import shutil
import copy
from datetime import datetime
import time
import math
import torch
from torch.utils.data import SubsetRandomSampler, DataLoader
from torch.utils.tensorboard import SummaryWriter
from src.data.load_data import AAPMDataset
from src.model import model_utils
from src.data import data_utils, measure
class Solver(object):
def __init__(self, cfg) -> None:
super().__init__()
# Parameter
self.cfg = cfg
# Model
self.model = model_utils.build_model(cfg)
print("##########", cfg.model)
total_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
print('Model size (grad): {:.7f}MB'.format(total_params / 1024**2))
# Device
self.use_gpu = cfg.use_gpu and torch.cuda.is_available()
self.device = torch.device(f'cuda:{cfg.gpu}' if self.use_gpu else 'cpu')
self.model.to(self.device)
# self.model = torch.nn.DataParallel(self.model, device_ids=cfg.devices)
if torch.cuda.device_count() >= len(cfg.devices) > 1:
self.model = torch.nn.DataParallel(self.model, device_ids=cfg.devices)
# Seed
random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
torch.backends.cudnn.deterministic = True
if self.use_gpu:
torch.cuda.manual_seed_all(cfg.seed)
# Dataloader
self.loader_dict = self.loader_dict_()
# Checkpoint
self.ckpt_dict = {
'model_state_dict': None,
'optimizer_state_dict': None,
'epoch': 0,
'loss': float('inf')
}
def loader_dict_(self):
annotation_file = os.path.join(self.cfg.annotation, f'annotation_{self.cfg.input}.pkl')
print('\n')
print(f'Annotation file: {annotation_file}\n')
data = AAPMDataset(annotation_file, resize=self.cfg.resize, \
patch_n=self.cfg.patch_n, patch_size=self.cfg.patch_size)
train_indices_file = os.path.join(self.cfg.annotation, f'train_{self.cfg.input}.npy')
train_indices = np.load(train_indices_file)
train_sampler = SubsetRandomSampler(train_indices)
train_loader = DataLoader(data, batch_size=self.cfg.batch_size, sampler=train_sampler, num_workers=self.cfg.num_workers, pin_memory=True)
test_indices_file = os.path.join(self.cfg.annotation, f'test_{self.cfg.input}.npy')
test_indices = np.load(test_indices_file)
test_sampler = SubsetRandomSampler(test_indices)
test_loader = DataLoader(data, batch_size=self.cfg.batch_size, sampler=test_sampler, num_workers=self.cfg.num_workers, pin_memory=True)
loader_dict = {'train': train_loader, 'test': test_loader}
print("Train/Test loader size: {}, {}\n".format(len(train_loader), len(test_loader)))
return loader_dict
def train(self):
timestamp = str(int(datetime.now().timestamp()))
# Log
writer = SummaryWriter(os.path.join(self.cfg.log_path, timestamp))
# Option
optimizer = model_utils.build_optimizer(self.cfg, self.model)
scheduler = model_utils.build_scheduler(self.cfg, optimizer)
loss_func = model_utils.build_loss(self.cfg)
# Train
start_time = time.time()
step = 0
for epoch in range(1, self.cfg.num_epochs + 1):
## Train
self.model.train()
for data in tqdm.tqdm(self.loader_dict['train'], desc='train: '):
step += 1
images, targets, _ = data
images, targets = images.to(self.device, dtype=torch.float), targets.to(self.device, dtype=torch.float)
# full images: [16, 1, 256, 256]
# patched images: [16, 10, 1, 64, 64]
if self.cfg.patch_size: # patch training => [160, 1, 64, 64]
images = images.view(-1, 1, self.cfg.patch_size, self.cfg.patch_size)
targets = targets.view(-1, 1, self.cfg.patch_size, self.cfg.patch_size)
optimizer.zero_grad()
outputs = self.model(images)
loss = loss_func(outputs, targets)
# ####### self-defined new loss
# loss1 = loss_func(outputs, targets)
# loss1 = -math.log(loss1 + 1e-10) # Adding a small constant to avoid log(0)
# loss1 = loss1 / max(-math.log(1e-10), -math.log(1.0)) # rescale to [0,1]
# loss2 = measure.compute_SSIM(outputs, targets, 1)
# loss = 1-(0.5*loss1 + 0.5*loss2)
# loss = torch.tensor(loss, requires_grad=True)
# loss = loss.to(self.device, dtype=torch.float)
# ########
loss.backward()
optimizer.step()
if step % self.cfg.print_freq == 0:
lr = scheduler.get_last_lr()[0]
print(f'epoch: {epoch}/{self.cfg.num_epochs} | loss: {loss.item():.5e} | lr: {lr:.5e}')
# print(f'epoch: {epoch}/{self.cfg.num_epochs} | loss: {loss.item():.5e}')
writer.add_scalar('Loss/train', loss, step)
# torch.cuda.empty_cache()
## Val / Test
self.model.eval()
running_loss = 0.
m = 0
with torch.no_grad():
for data in tqdm.tqdm(self.loader_dict['test'], desc='val: '):
images, targets, _ = data
images, targets = images.to(self.device, dtype=torch.float), targets.to(self.device, dtype=torch.float)
outputs = self.model(images)
loss = loss_func(outputs, targets) # loss=MSE
running_loss += loss.item()
m += 1
avg_loss = running_loss / m
print(f'epoch: {epoch}/{self.cfg.num_epochs} | val_loss: {avg_loss:.3e}')
writer.add_scalar('Loss/validation', avg_loss, step)
if avg_loss < self.ckpt_dict['loss'] and epoch > 20:
self.ckpt_dict['loss'] = avg_loss
self.ckpt_dict['epoch'] = epoch
self.ckpt_dict['model_state_dict'] = copy.deepcopy(self.model.state_dict())
self.ckpt_dict['optimizer_state_dict'] = copy.deepcopy(optimizer.state_dict())
print('epoch: {} | best_loss: {:.3e}'.format(self.ckpt_dict['epoch'], self.ckpt_dict['loss']))
scheduler.step()
writer.close()
end_time = time.time()
total_time = (end_time - start_time)/3600
print(f'Finished {self.cfg.num_epochs} training epochs in {total_time:.4f} hours.')
# Save best model
ckpt_file = "{}_{}_{}.pt".format(self.cfg.model, self.ckpt_dict['epoch'], timestamp)
ckpt_path = os.path.join(self.cfg.checkpoint_path, self.cfg.dataset_name)
os.makedirs(ckpt_path, exist_ok=True)
ckpt_file = os.path.join(ckpt_path, ckpt_file)
print(f'Checkpoint file: {ckpt_file}')
torch.save(self.ckpt_dict, ckpt_file)
def test(self, save_path):
# Dataloader
loader = self.loader_dict['test']
# Model
ckpt_file = os.path.join(self.cfg.checkpoint_path, self.cfg.dataset_name, self.cfg.checkpoint_file)
print("##########ckpt_file:", ckpt_file)
self.ckpt_dict = torch.load(ckpt_file)
self.model.load_state_dict(self.ckpt_dict['model_state_dict'])
# compute PSNR, SSIM, RMSE
img_names = []
ori_psnrs, ori_ssims, ori_rmses = [], [], []
pred_psnrs, pred_ssims, pred_rmses = [], [], []
# Test
self.model.eval()
for images, targets, names in tqdm.tqdm(loader, desc='test: '):
images, targets = images.to(self.device, dtype=torch.float), targets.to(self.device, dtype=torch.float)
outputs = self.model(images)
images = images.cpu().data
targets = targets.cpu().data
outputs = outputs.cpu().data
## denormalize, truncate
images = data_utils.denormalize(images, self.cfg.norm_range_max, self.cfg.norm_range_min)
images = data_utils.trunc(images, self.cfg.trunc_max, self.cfg.trunc_min)
targets = data_utils.denormalize(targets, self.cfg.norm_range_max, self.cfg.norm_range_min)
targets = data_utils.trunc(targets, self.cfg.trunc_max, self.cfg.trunc_min)
outputs = data_utils.denormalize(outputs, self.cfg.norm_range_max, self.cfg.norm_range_min)
outputs = data_utils.trunc(outputs, self.cfg.trunc_max, self.cfg.trunc_min)
# criterion
data_range = self.cfg.trunc_max - self.cfg.trunc_min # 400.0
for i in range(len(names)):
image, target, output, name = images[i].squeeze(0), targets[i].squeeze(0), outputs[i].squeeze(0), names[i]
original_result, pred_result = measure.compute_measure(image, target, output, data_range)
img_names.append(name)
ori_psnrs.append(original_result[0])
ori_ssims.append(original_result[1])
ori_rmses.append(original_result[2])
pred_psnrs.append(pred_result[0])
pred_ssims.append(pred_result[1])
pred_rmses.append(pred_result[2])
if save_path:
path = os.path.join(save_path, f'{name}.png')
data_utils.save_fig(image, target, output, path, original_result, pred_result, self.cfg.trunc_max, self.cfg.trunc_min)
path = os.path.join(save_path, f'{name}_ouput.npy')
with open(path, 'wb') as f:
np.save(f, output)
path = os.path.join(save_path, f'{name}_input.npy')
with open(path, 'wb') as f:
np.save(f, image)
path = os.path.join(save_path, f'{name}_target.npy')
with open(path, 'wb') as f:
np.save(f, target)
results = {'img_names':img_names, 'ori_psnrs':ori_psnrs, 'ori_ssims':ori_ssims, 'ori_rmses':ori_rmses,\
'pred_psnrs':pred_psnrs, 'pred_ssims':pred_ssims, 'pred_rmses':pred_rmses}
results = pd.DataFrame(results)
results.to_csv(os.path.join(save_path, 'results.csv'))
print('\n')
print('Original === \nPSNR avg: {:.4f} \nSSIM avg: {:.4f} \nRMSE avg: {:.4f}'.format(np.mean(ori_psnrs),
np.mean(ori_ssims),
np.mean(ori_rmses)))
print('\n')
print('Predictions === \nPSNR avg: {:.4f}±{:.4f} \nSSIM avg: {:.4f}±{:.4f} \nRMSE avg: {:.4f}±{:.4f}'.format(\
np.mean(pred_psnrs), np.std(pred_psnrs),
np.mean(pred_ssims), np.std(pred_ssims),
np.mean(pred_rmses), np.std(pred_rmses)))