forked from daniel-thom/HPC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stf_01.f90
399 lines (395 loc) · 13.1 KB
/
stf_01.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
!version: mpi with 1d decomposition
! solves the 2d Stommel Model of Ocean Circulation
! using a Five-point stencil and Jacobi iteration
!
! gamma*((d(d(psi)/dx)/dx) + (d(d(psi)/dy)/dy))
! +beta(d(psi)/dx)=-alpha*sin(pi*y/(2*ly))
!
module numz
! module defines the basic real type and pi
integer, parameter:: b8 = selected_real_kind(14)
real(b8), parameter :: pi = 3.141592653589793239_b8
end module
!*********************
module input
! module contains the inputs
use numz
integer nx,ny ! number of interior points for our grid (50 50)
real(b8) lx,ly ! physical size of our grid (2000 2000)
real(b8) alpha,beta,gamma ! parameters of the calculation (1.0e-9 2.25e-11 3.0e-6)
integer steps ! number of Jacobi iteration steps (60)
end module
!*********************
module constants
! this module contains the invariants (constants) of the
! calculation. these values are determined in the main
! routine and used in the do_jacobi Jacobi iteration subroutine
! a6 is used in the force function
use numz
real(b8) dx,dy,a1,a2,a3,a4,a5,a6
real(b8), allocatable:: for(:,:) ! our force grid
end module
!*********************
module face
! this module contains the interface for the two subroutines
! that modify the grid. an interface is a good idea in this
! case because we are passing allocatable arrays
interface bc
subroutine bc (psi,i1,i2,j1,j2)
! sets the boundary conditions
! input is the grid and the indices for the interior cells
use numz
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1:i2,j1:j2):: psi
end subroutine
end interface
interface do_jacobi
subroutine do_jacobi (psi,new_psi,diff,i1,i2,j1,j2)
! does a single Jacobi iteration step
! input is the grid and the indices for the interior cells
! new_psi is temp storage for the the updated grid
! output is the updated grid in psi and diff which is
! the sum of the differences between the old and new grids
use numz
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: psi
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: new_psi
real(b8) diff
end subroutine
end interface
! interface for the forcing function
interface force
function force(y)
use numz
real(b8) force,y
end function force
end interface
! interface for setting the force routine
interface do_force
subroutine do_force (i1,i2,j1,j2)
! sets the force array
! input is the grid and the indices for the interior cells
use numz
integer,intent(in):: i1,i2,j1,j2
end subroutine
end interface
! interface for routine to write the grid
interface write_grid
subroutine write_grid (psi,i1,i2,j1,j2)
! input is the grid and the indices for the interior cells
use numz
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1:i2,j1:j2):: psi
end subroutine
end interface
interface do_transfer
subroutine do_transfer (psi,i1,i2,j1,j2)
! sets the boundary conditions
! input is the grid and the indices for the interior cells
use numz
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1:i2,j1:j2):: psi
end subroutine
end interface
interface unique
function unique(name)
character (len=*) name
character (len=20) unique
end function
end interface
end module
module mympi
! use mpi
include "mpif.h"
integer numnodes,myid,mpi_err
integer, parameter::mpi_master=0
integer status(MPI_STATUS_SIZE)
end module
!*********************
program stommel
use numz
use input
use constants
use face
use mympi
implicit none
real(b8) t1,t2
real(b8)diff,mydiff
real(b8)dx2,dy2,bottom
real(b8), allocatable:: psi(:,:) ! our calculation grid
real(b8), allocatable:: new_psi(:,:) ! temp storage for the grid
integer i,j,i1,i2,j1,j2
integer iout
integer ic,COMMAND_ARGUMENT_COUNT
character (len=128) arg
character (len=64) :: instr
real(b8) dj
! do the mpi init stuff
call MPI_INIT( mpi_err )
call MPI_COMM_SIZE( MPI_COMM_WORLD, numnodes, mpi_err )
call MPI_COMM_RANK( MPI_COMM_WORLD, myid, mpi_err )
! get the input. see above for typical values
if(myid .eq. mpi_master)then
instr="200 200" ; read(instr,*)nx,ny
instr="2000000 2000000" ; read(instr,*)lx,ly
instr="1.0e-9 2.25e-11 3.0e-6" ; read(instr,*)alpha,beta,gamma
instr="75000" ; read(instr,*)steps
ic=COMMAND_ARGUMENT_COUNT()
if (ic .gt. 0)then
do i=1,ic
CALL get_command_argument(i, arg)
WRITE (*,*) "command line argument ",i,TRIM(arg)
enddo
endif
endif
!send the data to other processors
call MPI_BCAST(nx, 1,MPI_INTEGER, mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(ny, 1,MPI_INTEGER, mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(steps,1,MPI_INTEGER, mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(lx, 1,MPI_DOUBLE_PRECISION,mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(ly, 1,MPI_DOUBLE_PRECISION,mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(alpha,1,MPI_DOUBLE_PRECISION,mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(beta, 1,MPI_DOUBLE_PRECISION,mpi_master,MPI_COMM_WORLD,mpi_err)
call MPI_BCAST(gamma,1,MPI_DOUBLE_PRECISION,mpi_master,MPI_COMM_WORLD,mpi_err)
! calculate the constants for the calculations
dx=lx/(nx+1)
dy=ly/(ny+1)
dx2=dx*dx
dy2=dy*dy
bottom=2.0_b8*(dx2+dy2)
a1=(dy2/bottom)+(beta*dx2*dy2)/(2.0_b8*gamma*dx*bottom)
a2=(dy2/bottom)-(beta*dx2*dy2)/(2.0_b8*gamma*dx*bottom)
a3=dx2/bottom
a4=dx2/bottom
a5=dx2*dy2/(gamma*bottom)
a6=pi/(ly)
! set the indices for the interior of the grid
! we stripe the grid across the processors
i1=1
i2=ny
dj=real(nx,b8)/real(numnodes,b8)
j1=nint(1.0_b8+myid*dj)
j2=nint(1.0_b8+(myid+1)*dj)-1
if(myid == mpi_master)write(*,'("rows= ",i4)')numnodes
write(*,101)myid,i1,i2,j1,j2
101 format("myid= ",i4,3x,&
" (",i3," <= i <= ",i3,") , ", &
" (",i3," <= j <= ",i3,")")
! allocate the grid to (i1-1:i2+1,j1-1:j2+1) this includes boundary cells
allocate(psi(i1-1:i2+1,j1-1:j2+1))
allocate(new_psi(i1-1:i2+1,j1-1:j2+1))
allocate(for(i1-1:i2+1,j1-1:j2+1))
! set initial guess for the value of the grid
psi=1.0_b8
! set boundary conditions
call bc(psi,i1,i2,j1,j2)
! set the force array
call do_force(i1,i2,j1,j2)
call do_transfer(psi,i1,i2,j1,j2)
! do the jacobian iterations
iout=steps/10
if(iout == 0)iout=1
t1=MPI_Wtime()
do i=1,steps
call do_jacobi(psi,new_psi,mydiff,i1,i2,j1,j2)
call do_transfer(psi,i1,i2,j1,j2)
! write(*,*)myid,i,mydiff
call MPI_REDUCE(mydiff,diff,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,mpi_master,MPI_COMM_WORLD,mpi_err)
if(myid .eq. mpi_master .and. mod(i,iout) .eq. 0)write(*,'(i6,1x,g20.10)')i,diff
enddo
t2=MPI_Wtime()
if(myid .eq. mpi_master)write(*,'("run time =",f10.2)')t2-t1
!call write_grid(psi,i1,i2,j1,j2)
call MPI_Finalize(mpi_err)
end program stommel
!*********************
subroutine bc(psi,i1,i2,j1,j2)
! sets the boundary conditions
! input is the grid and the indices for the interior cells
use numz
use mympi
use input, only : nx,ny
implicit none
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: psi
! do the top edges
if(i1 .eq. 1) psi(i1-1,:)=0.0_b8
! do the bottom edges
if(i2 .eq. ny) psi(i2+1,:)=0.0_b8
! do left edges
if(j1 .eq. 1) psi(:,j1-1)=0.0_b8
! do right edges
if(j2 .eq. nx) psi(:,j2+1)=0.0_b8
end subroutine bc
!*********************
subroutine do_jacobi(psi,new_psi,diff,i1,i2,j1,j2)
! does a single Jacobi iteration step
! input is the grid and the indices for the interior cells
! new_psi is temp storage for the the updated grid
! output is the updated grid in psi and diff which is
! the sum of the differences between the old and new grids
use numz
use constants
implicit none
integer,intent(in) :: i1,i2,j1,j2
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: psi
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: new_psi
real(b8) diff
integer i,j
real(b8) y
diff=0.0_b8
do j=j1,j2
do i=i1,i2
! y=j*dy
new_psi(i,j)=a1*psi(i+1,j) + a2*psi(i-1,j) + &
a3*psi(i,j+1) + a4*psi(i,j-1) - &
a5*for(i,j)
! a5*force(y)
diff=diff+abs(new_psi(i,j)-psi(i,j))
enddo
enddo
psi(i1:i2,j1:j2)=new_psi(i1:i2,j1:j2)
end subroutine do_jacobi
!*********************
function force(y)
use numz
use input
use constants
implicit none
real(b8) force,y
force=-alpha*sin(y*a6)
end function force
!*********************
subroutine do_force (i1,i2,j1,j2)
! sets the force conditions
! input is the grid and the indices for the interior cells
use numz
use constants, only:for,dy
use face, only : force
implicit none
integer,intent(in):: i1,i2,j1,j2
real(b8) y
integer i,j
do i=i1,i2
do j=j1,j2
y=j*dy
for(i,j)=force(y)
enddo
enddo
end subroutine
!*********************
subroutine write_grid(psi,i1,i2,j1,j2)
! input is the grid and the indices for the interior cells
use numz
use mympi
use face ,only : unique
implicit none
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: psi
integer i,j
integer istart,iend,jstart,jend
! each processor writes its section of the grid
istart=i1-1
iend=i2+1
jstart=j1-1
jend=j2+1
open(18,file=unique("out1d_"),recl=max(80,15*((jend-jstart)+3)+2))
write(18,101)myid,istart,iend,jstart,jend
101 format("myid= ",i3,3x, &
" (",i3," <= i <= ",i3,") , ", &
" (",i3," <= j <= ",i3,")")
do i=istart,iend
do j=jstart,jend
write(18,'(g14.7)',advance="no")psi(i,j)
if(j .ne. j2)write(18,'(" ")',advance="no")
enddo
write(18,*)
enddo
close(18)
end subroutine write_grid
!*********************
subroutine do_transfer(psi,i1,i2,j1,j2)
! sets the boundary conditions
! input is the grid and the indices for the interior cells
use numz
use mympi
use input
implicit none
integer,intent(in):: i1,i2,j1,j2
real(b8),dimension(i1-1:i2+1,j1-1:j2+1):: psi
integer num_x,myleft,myright
logical even
num_x=i2-i1+3
myleft=myid-1
myright=myid+1
if(myleft .le. -1)myleft=MPI_PROC_NULL
if(myright .ge. numnodes)myright=MPI_PROC_NULL
! write(*,*)"left,mid,right",myleft,myid,myright
if(even(myid))then
! send to left
call MPI_SEND(psi(:,j1), num_x,MPI_DOUBLE_PRECISION,myleft, &
100,MPI_COMM_WORLD,mpi_err)
! write(*,*)"sl",myid,psi(:,j1)
! rec from left
call MPI_RECV(psi(:,j1-1),num_x,MPI_DOUBLE_PRECISION,myleft, &
100,MPI_COMM_WORLD,status,mpi_err)
! write(*,*)"rl",myid,psi(:,j1-1)
! rec from right
call MPI_RECV(psi(:,j2+1),num_x,MPI_DOUBLE_PRECISION,myright, &
100,MPI_COMM_WORLD,status,mpi_err)
! write(*,*)"rr",myid,psi(:,j2+1)
! send to right
call MPI_SEND(psi(:,j2), num_x,MPI_DOUBLE_PRECISION,myright, &
100,MPI_COMM_WORLD,mpi_err)
! write(*,*)"sr",myid,psi(:,j2)
else ! we are on an odd col processor
! rec from right
call MPI_RECV(psi(:,j2+1),num_x,MPI_DOUBLE_PRECISION,myright, &
100,MPI_COMM_WORLD,status,mpi_err)
! write(*,*)"rr",myid,psi(:,j2+1)
! send to right
call MPI_SEND(psi(:,j2), num_x,MPI_DOUBLE_PRECISION,myright, &
100,MPI_COMM_WORLD,mpi_err)
! write(*,*)"sr",myid,psi(:,j2)
! send to left
call MPI_SEND(psi(:,j1), num_x,MPI_DOUBLE_PRECISION,myleft, &
100,MPI_COMM_WORLD,mpi_err)
! write(*,*)"sl",myid,psi(:,j1)
! rec from left
call MPI_RECV(psi(:,j1-1),num_x,MPI_DOUBLE_PRECISION,myleft, &
100,MPI_COMM_WORLD,status,mpi_err)
! write(*,*)"rl",myid,psi(:,j1-1)
endif
end subroutine do_transfer
!*********************
function unique(name)
use numz
use mympi
character (len=*) name
character (len=20) unique
character (len=80) temp
if(myid .gt. 99)then
write(temp,"(a,i3)")trim(name),myid
else
if(myid .gt. 9)then
write(temp,"(a,'0',i2)")trim(name),myid
else
write(temp,"(a,'00',i1)")trim(name),myid
endif
endif
unique=temp
return
end function unique
!*********************
function even(i)
integer i
logical even
j=i/2
if(j*2 .eq. i)then
even = .true.
else
even = .false.
endif
return
end function even