forked from daniel-thom/HPC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
invertc.c
242 lines (230 loc) · 6.21 KB
/
invertc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/* cc -lm t4.c -qsmp */
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>
#define FLT double
/* utility routines */
FLT system_clock(FLT *x);
FLT **matrix(int nrl,int nrh,int ncl,int nch);
/* work routines */
void mset(FLT **m, int n, int in);
FLT mcheck(FLT **m, int n, int in);
void over(FLT ** mat,int size);
int main(int argc,char *argv[]) {
FLT **m1,**m2,**m3,**m4;
FLT t0_start;
FLT t1_start,t1_end,e1;
FLT t2_start,t2_end,e2;
FLT t3_start,t3_end,e3;
FLT t4_start,t4_end,e4;
int n,narg,iarg;
int diag[5];
diag[0]=10;
diag[1]=20;
diag[2]=30;
diag[3]=40;
diag[4]=50;
iarg=argc;
if(iarg > 5)iarg=5;
if(iarg > 1){
for (narg=1;narg<=iarg;narg++) {
diag[narg-1]=atoi(argv[narg]);
}
}
for(narg=0;narg<5;narg++)
printf("%d ",diag[narg]);
printf("\n");
n=diag[4];
m1=matrix(1,n,1,n);
m2=matrix(1,n,1,n);
m3=matrix(1,n,1,n);
m4=matrix(1,n,1,n);
mset(m1,n,diag[0]);
mset(m2,n,diag[1]);
mset(m3,n,diag[2]);
mset(m4,n,diag[3]);
system_clock(&t0_start);
#pragma omp parallel sections
{
#pragma omp section
{
system_clock(&t1_start);
over(m1,n);
over(m1,n);
system_clock(&t1_end);
e1=mcheck(m1,n,diag[0]);
t1_start=t1_start-t0_start;
t1_end=t1_end-t0_start;
}
#pragma omp section
{
system_clock(&t2_start);
over(m2,n);
over(m2,n);
system_clock(&t2_end);
e2=mcheck(m2,n,diag[1]);
t2_start=t2_start-t0_start;
t2_end=t2_end-t0_start;
}
#pragma omp section
{
system_clock(&t3_start);
over(m3,n);
over(m3,n);
system_clock(&t3_end);
e3=mcheck(m3,n,diag[2]);
t3_start=t3_start-t0_start;
t3_end=t3_end-t0_start;
}
#pragma omp section
{
system_clock(&t4_start);
over(m4,n);
over(m4,n);
system_clock(&t4_end);
e4=mcheck(m4,n,diag[3]);
t4_start=t4_start-t0_start;
t4_end=t4_end-t0_start;
}
}
printf("section 1 start time= %10.5g end time= %10.5g error= %g\n",t1_start,t1_end,e1);
printf("section 2 start time= %10.5g end time= %10.5g error= %g\n",t2_start,t2_end,e2);
printf("section 3 start time= %10.5g end time= %10.5g error= %g\n",t3_start,t3_end,e3);
printf("section 4 start time= %10.5g end time= %10.5g error= %g\n",t4_start,t4_end,e4);
e1=e1+e2+e3+e4;
if (e1 < 1) {
return 0;
}
else {
return 1;
}
}
void mset(FLT **m, int n, int in) {
int i,j;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++) {
if(i == j) {
m[i][j]=in;
} else {
m[i][j]=1;
}
}
}
FLT mcheck(FLT **m, int n, int in) {
int i,j;
FLT x;
x=0.0;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++) {
if(i == j) {
x=x+fabs(m[i][j]-in);
} else {
x=x+fabs(m[i][j]-1);
}
}
return x;
}
void over(FLT ** mat,int size)
{
int k, jj, kp1, i, j, l, krow, irow;
FLT pivot, temp;
FLT sw[2000][2];
for (k = 1 ;k<= size ; k++)
{
jj = k;
if (k != size)
{
kp1 = k + 1;
pivot = fabs(mat[k][k]);
for( i = kp1;i<= size ;i++)
{
temp = fabs(mat[i][k]);
if (pivot < temp)
{
pivot = temp;
jj = i;
}
}
}
sw[k][0] =k;
sw[k][1] = jj;
if (jj != k)
for (j = 1 ;j<= size; j++)
{
temp = mat[jj][j];
mat[jj][j] = mat[k][ j];
mat[k][j] = temp;
}
for (j = 1 ;j<= size; j++)
if (j != k)
mat[k][j] = mat[k][j] / mat[k][k];
mat[k][k] = 1.0 / mat[k][k];
for (i = 1; i<=size; i++)
if (i != k)
for (j = 1;j<=size; j++)
if (j != k)
mat[i][j] = mat[i][j] - mat[k][j] * mat[i][k];
for (i = 1;i<=size;i++)
if (i != k)
mat[i][k] = -mat[i][k] * mat[k][k];
}
for (l = 1; l<=size; ++l)
{
k = size - l + 1;
krow = sw[k][0];
irow = sw[k][1];
if (krow != irow)
for (i = 1; i<= size; ++i)
{
temp = mat[i][krow];
mat[i][krow] = mat[i][irow];
mat[i][irow] = temp;
}
}
}
/*
The routine matrix was adapted from
Numerical Recipes in C The Art of Scientific Computing
Press, Flannery, Teukolsky, Vetting
Cambridge University Press, 1988.
*/
FLT **matrix(int nrl,int nrh,int ncl,int nch)
{
int i;
FLT **m;
m=(FLT **) malloc((unsigned) (nrh-nrl+1)*sizeof(FLT*));
if (!m){
printf("allocation failure 1 in matrix()\n");
exit(1);
}
m -= nrl;
for(i=nrl;i<=nrh;i++) {
if(i == nrl){
m[i]=(FLT *) malloc((unsigned) (nrh-nrl+1)*(nch-ncl+1)*sizeof(FLT));
if (!m[i]){
printf("allocation failure 2 in matrix()\n");
exit(1);
}
m[i] -= ncl;
}
else {
m[i]=m[i-1]+(nch-ncl+1);
}
}
return m;
}
FLT system_clock(FLT *x) {
FLT t;
FLT six=1.0e-6;
struct timeval tb;
struct timezone tz;
gettimeofday(&tb,&tz);
t=(FLT)tb.tv_sec+((FLT)tb.tv_usec)*six;
if(x){
*x=t;
}
return(t);
}