-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappendix_SCO_exc.tex
177 lines (170 loc) · 8.23 KB
/
appendix_SCO_exc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
\chapter{Sample Excitation Condition in SCO Literature}
\label{ap: sco-exc}
In Section~\ref{sec: SCO-photo-4}, high sample excitation condition is suggested
as a possible explanation for the apparent conflict between the results
described by authors using different experimental techniques.
Table~\ref{tab: SCO-exc} contains a tabulation of the values of some key parameters
from some select works from SCO literature.
For reference, an extended version is included herein.
%
The peak fluence~$f$ and peak intensity~$I$ of the pump-laser pulse
are defined as
%
\begin{equation}
\begin{aligned}
f & = 4 \ln(2) \frac{E}{\unslant[-.2]\pi w^2} \\
I & = \frac{f}{\tau}
\end{aligned}
\end{equation}
%
where $\lambda, E, \tau, w$ are the centre wavelength, pulse energy,
pulse duration~(FWHM), and beamwidth~(FWHM) on the sample.
%
From the Beer-Lambert law,
the excitation fraction $\eta_\text{exc}$ as a function of optical path length~$l$
is given by
%
\begin{equation}
\begin{aligned}
\eta_\text{exc}(l) & = \frac{f}{h c / \lambda}
\frac{\Phi}{c_\text{abs} N_\text{A} l} \left( 1 - 10^{-l/L_\text{exc}}\right)
\end{aligned}
\end{equation}
%
where $L_\text{exc} = 1/(\epsilon_\text{abs} c_\text{abs})$ and
$h c / \lambda$ are the excitation depth and photon energy of the pump pulse.
$\epsilon_\text{abs}$, $c_\text{abs}$, $\Phi \approx 1$ are
the sample excitation depth, molar absorption coefficient, molar concentration,
and quantum yield of the excitation;
$N_\text{A} \approx 6.022 \times 10^{23}$~mol$^{-1}$ is the Avogadro constant.
%
At the surface of the sample,
%
\begin{equation}
\begin{aligned}
\eta_\text{exc}^0 & = \lim \limits_{l \to 0} \eta_\text{exc}(l) \\
& = \frac{f}{h c / \lambda}
\frac{\Phi}{c_\text{abs} N_\text{A}}
\lim \limits_{l \to 0} \frac{1 - 10^{-l/L_\text{exc}}}{l} \\
& = \frac{f}{h c / \lambda} \frac{\Phi}{c_\text{abs} N_\text{A}}
\frac{\ln(10)}{L_\text{exc}}
\end{aligned}
\end{equation}
% Tables:
\begin{table}[htp!]
\centering
{\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{ C{1cm} C{2cm} C{2.65cm} C{2.75cm} C{1cm} }
\toprule
\multirow{2}{*}{Work} & \multirow{2}{*}{Technique}
& \multirow{2}{*}{
\begin{minipage}[c]{2.5cm} \centering Peak Fluence (mJ/cm$^2$) \end{minipage}}
& \multirow{2}{*}{
\begin{minipage}[c]{2.6cm} \centering Peak Intensity (GW/cm$^2$) \end{minipage}}
& \multirow{2}{*}{$\eta_\text{exc}^0$} \\
& & & & \\
\midrule
\cite{Lorenc2009} & TR-XRD & 15 & 150 & ? \\
\cite{Collet2012a} & TR-XRD & 15 & ? & ? \\
\cite{Collet2012b} & TR-XRD & 15 & 150 & ? \\
\cite{Lorenc2012} & TR-XRD & 10 & 91 & ? \\
\cite{Marino2015} & TR-XRD & 0.7 & ? & ? \\
\cite{Bertoni2016b} & TR-XRD & 4 & ? & ? \\
\cite{Freyer2013} & TR-XRD & 32 & 800 & ? \\
\bottomrule
\end{tabular}
}
\caption{Sample excitation condition for works in SCO literature (part~1).}
\label{tab: SCO-exc-app-1}
\end{table}
% Abbreviation: TR-XRD = time-resolved X-ray diffraction.
\begin{table}[htp!]
\centering
{\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{ C{1cm} C{2cm} C{2.65cm} C{2.75cm} C{1cm} }
\toprule
\multirow{2}{*}{Work} & \multirow{2}{*}{Technique}
& \multirow{2}{*}{
\begin{minipage}[c]{2.5cm} \centering Peak Fluence (mJ/cm$^2$) \end{minipage}}
& \multirow{2}{*}{
\begin{minipage}[c]{2.6cm} \centering Peak Intensity (GW/cm$^2$) \end{minipage}}
& \multirow{2}{*}{$\eta_\text{exc}^0$} \\
& & & & \\
\midrule
\cite{Monat2000} & TA & 0.6 & ? & 0.01 \\
\cite{Smeigh2008} & FSRS & ? & ? & ? \\
\cite{Gawelda2007a} & FLUPS & 2.8 & 70.6 & 0.06 \\
\cite{Gawelda2007a} & TA & 80 & 2724.9 & 1.9 \\
\cite{Consani2009} & TA & 38.1 & 846.7 & 1.2 \\
\cite{Aubock2015} & UV TA & 0.7 & 18.2 & 0.01 \\
\cite{Aubock2015} & Vis TA & 2.2 & 54.7 & 0.07 \\
\cite{Tribollet2011} & TA & ? & ? & ? \\
\cite{Galle2013} & TA & ? & ? & ? \\
\cite{Moisan2008} & TA & 4 & 40 & ? \\
\cite{Lorenc2009} & TA & 15 & 150 & ? \\
\cite{Tissot2011} & TA & 1 & 7 & ? \\
\cite{Collet2012a} & TA & 10 & 222 & ? \\
\cite{Bertoni2012} & TA & 4.5 & 64 & ? \\
\cite{Kaszub2013} & TA & 25 & 500 & ? \\
\cite{Marino2014} & TA & 11 & 220 & ? \\
\cite{Bertoni2016a} & TA & ? & ? & ? \\
\cite{Bertoni2016b} & TA & 4 & ? & ? \\
\cite{Marino2015} & TA & 1.4 & ? & ? \\
\cite{Marino2016} & TA & 40 & 1000 & 4.6 \\
\cite{Parpiiev2017} & TR & 0.35 & 2.2 & 0.02 \\
\cite{Zerdane2017} & TA & 0.4 & 5.7 & ? \\
\cite{Zerdane2017} & TA & 0.42 & 5.9 & ? \\
\cite{Moguilevski2016} & PES & 17.6 & 293 & 1.4 \\
\bottomrule
\end{tabular}
}
\caption{Sample excitation condition for works in SCO literature (part~2).}
\label{tab: SCO-exc-app-2}
\end{table}
% Abbreviations: FLUPS = fluorescence up-conversion spectroscopy,
% TA = transient absorption, TR = transient reflectivity, PES = photoemission spectrocopy.
\begin{table}[htp!]
\centering
{\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{ C{1cm} C{2cm} C{2.65cm} C{2.75cm} C{1cm} }
\toprule
\multirow{2}{*}{Work} & \multirow{2}{*}{Technique}
& \multirow{2}{*}{
\begin{minipage}[c]{2.5cm} \centering Peak Fluence (mJ/cm$^2$) \end{minipage}}
& \multirow{2}{*}{
\begin{minipage}[c]{2.6cm} \centering Peak Intensity (GW/cm$^2$) \end{minipage}}
& \multirow{2}{*}{$\eta_\text{exc}^0$} \\
& & & & \\
\midrule
\cite{Khalil2006} & XAS & 123.6 & 1235.6 & 4.76 \\
\cite{Gawelda2007b} & XAS & 180 & 1800 & 4.2 \\
\cite{Sato2009} & XAS & 245.1 & 1634 & 7.6 \\
\cite{Bressler2009} & XAS & ? & ? & ? \\
\cite{Vanko2010} & XES & 294 & 2942 & 6.8 \\
\cite{Huse2010} & XAS & 15.7 & 224 & 2.20 \\
\cite{Huse2011} & XAS & 3 & 43 & 0.4 \\
\cite{Lima2011} & XAS & 13--400 & 1.3--40 & 1--32 \\
\cite{Haldrup2012} & XXX & 19.6 & 1.96 & 1.6 \\
\cite{Vanko2013} & XES & 8.2 & 29 & 0.6 \\
\cite{Lemke2013} & XAS & 567.3 & 11346 & 13.10 \\
\cite{Cammarata2014} & XAS & 1.8 & 36 & ? \\
\cite{Zhang2014} & XES & 120 & 1714 & 9.4 \\
\cite{Canton2014} & XAS & ? & ? & ? \\
\cite{XZhang2015} & XAS & 100 & 20 & 12 \\
\cite{Vanko2015} & XES & 19.6 & 1.96 & 2.4 \\
\cite{Marino2016} & XAS & 50 & 1000 & 5.8 \\
\cite{VanKuiken2016} & XAS & 4.2 & 42 & 0.1 \\
\cite{Haldrup2016} & XX & 785 & 15700 & 18 \\
\cite{Biasin2016} & XDS & 275 & 3922 & 2.1 \\
\cite{Lemke2017} & XAS & 220 & 4400 & 17.51 \\
\cite{March2017} & XES & 30 & 3 & 3.7 \\
\cite{Zhang2017} & XES & 0.1 & 1.7 & 0.003 \\
\cite{Kjaer2017} & XES & 0.1 & 2.1 & 0.004 \\
\bottomrule
\end{tabular}
}
\caption{Sample excitation condition for works in SCO literature (part~3).}
\label{tab: SCO-exc-app-3}
\end{table}
% XAS = X-ray absorption spectroscopy,
% XES = X-ray emission spectroscopy, XDS = X-ray diffuse scattering,