-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
41 lines (34 loc) · 1.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import numpy as np
import torch
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
class CustomizedDataset:
def __init__(self) -> None:
self.transform = transforms.Compose([
transforms.ToTensor(),
])
self.train_dataset = datasets.MNIST(root='../data', train=True,
download=True, transform=self.transform)
self.test_dataset = datasets.MNIST(root='../data', train=False,
download=True, transform=self.transform)
def visualize_float_result(image, axs):
for i, img in enumerate(image):
axs[i // 4, i % 4].imshow(img)
axs[i // 4, i % 4].axis('off')
return axs
def visualize_binary_result(image, output_path, row=4, col=4):
fig, axs = plt.subplots(row, col, figsize=(8, 8))
for i, img in enumerate(image):
axs[i // 4, i % 4].imshow(img, cmap='binary')
axs[i // 4, i % 4].axis('off')
plt.tight_layout()
plt.savefig(os.path.join(output_path, f"visualization.jpg"), bbox_inches='tight', pad_inches=0)
plt.close(fig)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def visualize_latent_space(latents, labels, ax):
latents = latents.cpu().numpy()
labels = labels.cpu().numpy()
ax.scatter(latents[:, 0], latents[:, 1], c=labels, s=10, cmap='hsv')
return ax