Skip to content

Latest commit

 

History

History
88 lines (67 loc) · 2.72 KB

README.md

File metadata and controls

88 lines (67 loc) · 2.72 KB

Normative Neurodevelopment: Cross-sectional predictive modeling

Environment build

conda create -n neurodev_cs_predictive python=3.7
conda activate neurodev_cs_predictive

# Essentials
pip install jupyterlab ipython pandas numpy seaborn matplotlib nibabel glob3 nilearn ipywidgets tqdm
pip install jupyter_contrib_nbextensions && jupyter contrib nbextension install

# Statistics
pip install scipy statsmodels sklearn pingouin pygam brainspace bctpy shap

# Pysurfer for plotting
pip install vtk==8.1.2
pip install mayavi
pip install PyQt5
jupyter nbextension install --py mayavi --user
jupyter nbextension enable --py mayavi --user
jupyter nbextension enable --py widgetsnbextension
pip install pysurfer

cd /Users/lindenmp/Google-Drive-Penn/work/research_projects/neurodev_cs_predictive
conda env export > environment.yml
pip freeze > requirements.txt

Environment build (cubic, home)

conda create -n neurodev_cs_predictive python=3.7
conda activate neurodev_cs_predictive

# Essentials
pip install ipython pandas numpy glob3

# Statistics
pip install scipy statsmodels sklearn

cd /cbica/home/parkesl/miniconda3/envs/neurodev_cs_predictive/
conda env export > environment.yml
pip freeze > requirements.txt

Code

Processing

  • 0_get_sample.ipynb
  • 1_compute_node_metrics.ipynb
  • 2_compute_gradients.ipynb

Results

  • 3_results_demographics_characteristics.ipynb

  • 4_results_str_ac_correlations.ipynb

  • 5_results_binned_prediction.ipynb

  • 6_job_submitter.ipynb

  • 7_results_model_performance.ipynb