forked from EndlessCheng/codeforces-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath_numerical_analysis.go
72 lines (62 loc) · 2.35 KB
/
math_numerical_analysis.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
package copypasta
import "math"
// 数值分析
// https://en.wikipedia.org/wiki/Numerical_analysis
type mathF func(x float64) float64
// Simpson's 1/3 rule
// https://en.wikipedia.org/wiki/Simpson%27s_rule
// 证明过程 https://phqghume.github.io/2018/05/19/%E8%87%AA%E9%80%82%E5%BA%94%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%B3%95/
func simpson(l, r float64, f mathF) float64 {
h := (r - l) / 2
return h * (f(l) + 4*f(l+h) + f(r)) / 3
}
// 不放心的话还可以设置一个最大递归深度 maxDeep
// 15eps 的证明过程 http://www2.math.umd.edu/~mariakc/teaching/adaptive.pdf
func asr(l, r, eps, A float64, f mathF) float64 {
mid := l + (r-l)/2
L := simpson(l, mid, f)
R := simpson(mid, r, f)
if math.Abs(L+R-A) <= 15*eps {
return L + R + (L+R-A)/15
}
return asr(l, mid, eps/2, L, f) + asr(mid, r, eps/2, R, f)
}
// 自适应辛普森积分 Adaptive Simpson's Rule
// https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method
// https://oi-wiki.org/math/integral/
// https://cp-algorithms.com/num_methods/simpson-integration.html
// 模板题 https://www.luogu.com.cn/problem/P4525 https://www.luogu.com.cn/problem/P4526 https://www.acwing.com/problem/content/3077/
func Asr(a, b, eps float64, f mathF) float64 {
return asr(a, b, eps, simpson(a, b, f), f)
}
//
// 多项式插值
// https://en.wikipedia.org/wiki/Polynomial_interpolation
// 拉格朗日插值
// 给定(同余)多项式上的 n 个点 (xi,yi),我们可以得到一个 n-1 次多项式,
// 利用拉格朗日插值可以在不用高斯消元的情况下,求出 f(k) 的值
// https://en.wikipedia.org/wiki/Lagrange_polynomial
// https://oi-wiki.org/math/poly/lagrange/
// 浅谈几种插值方法 https://www.luogu.com.cn/blog/zhang-xu-jia/ji-zhong-cha-zhi-fang-fa-yang-xie
//
// 模板题 https://www.luogu.com.cn/problem/P4781
// todo https://www.luogu.com.cn/problem/P5667
// 等幂和 https://codeforces.com/problemset/problem/622/F
// 交互 找零点 https://codeforces.com/problemset/problem/1155/E
func lagrangePolynomialInterpolation(xs, ys []int, k int) int {
inv := func(a int) int { return pow(a, mod-2) }
div := func(a, b int) int { return a % mod * inv(b) % mod }
fk := 0
for i, xi := range xs {
a, b := ys[i]%mod, 1
for j, xj := range xs {
if j != i {
a = a * (k - xj) % mod
b = b * (xi - xj) % mod
}
}
fk += div(a, b)
}
fk = (fk%mod + mod) % mod
return fk
}