-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
250 lines (226 loc) · 8.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import yaml
import easydict # type: ignore
from pathlib import Path
from loguru import logger
import numpy as np
from datetime import datetime
import torch
from torch.utils.data import DataLoader
from scene import Scene, data_to_device
from model import gaussian
import tqdm
from torch.utils.tensorboard import SummaryWriter
from eval import Evaluator
from typing import Dict, Any
import time
from eval import eval
from utils import set_global_state, load_camera_states, save_gaussian_model
from viewer import Viewer, CameraState
def train(cfg: easydict.EasyDict):
scene = Scene(
cfg.data,
cfg.data_format,
cfg.output,
cfg.total_iterations,
cfg.eval,
cfg.eval_split_ratio,
cfg.eval_in_val,
cfg.eval_in_test,
cfg.use_masks,
cfg.mask_expand_pixels,
cfg.white_background,
)
train_dataloader = DataLoader(
scene.train_dataset,
batch_size=1,
shuffle=True,
pin_memory=True,
num_workers=cfg.dataloader_workers,
collate_fn=lambda x: x[0],
)
eval_dataloader = DataLoader(
scene.eval_dataset,
batch_size=1,
pin_memory=True,
num_workers=cfg.dataloader_workers,
collate_fn=lambda x: x[0],
persistent_workers=cfg.dataloader_workers != 0,
)
gaussian_model = gaussian.GaussianModel(
scene.pc,
cfg.sh_degree,
cfg.sh_degree_interval,
cfg.means_lr_init,
cfg.means_lr_final,
cfg.means_lr_schedule_max_steps,
cfg.densify_grad_thresh,
cfg.densify_scale_thresh,
cfg.num_splits,
cfg.prune_radii_ratio_thresh,
cfg.prune_scale_thresh,
cfg.min_opacity,
cfg.use_scale_regularization,
cfg.max_scale_ratio,
cfg.white_background,
)
optimizer = gaussian.build_optimizers(
gaussian_model,
cfg.means_lr_init,
cfg.log_scales_lr,
cfg.quats_lr,
cfg.sh_0_lr,
cfg.sh_rest_lr,
cfg.logit_opacities_lr,
)
loss_computer = gaussian.LossComputer(
gaussian_model, cfg.lambda_ssim, cfg.lambda_scale
)
evaluator = Evaluator(cfg.eval_render_num)
tb_path = Path(cfg.output) / "tensorboard"
logger.info(f"monitor training status: tensorboard --logdir {tb_path}")
tb_writer = SummaryWriter(tb_path)
viewer = None
if cfg.view_online:
viewer = construct_viewer(gaussian_model, Path(cfg.output))
progress_bar = tqdm.tqdm(
total=cfg.total_iterations, ncols=120, postfix={"loss": float("inf")}
)
step = 0
for data in train_dataloader:
step += 1
all_tb_info: Dict[str, Any] = {}
data_to_device(data)
model_output = gaussian_model(data)
loss_dict = loss_computer.get_loss_dict(
model_output["render_img"],
data["image"],
data["mask"],
)
loss_dict["total"].backward()
all_tb_info["train/loss"] = {}
for name, loss in loss_dict.items():
all_tb_info["train/loss"][name] = loss.item()
with torch.no_grad():
# save model
if step in cfg.save_model_iterations:
model_save_path = (
Path(cfg.output) / "checkpoints" / f"iterations_{step}.pth"
)
model_save_path.parent.mkdir(exist_ok=True)
save_gaussian_model(model_save_path, gaussian_model)
# evaluation
if len(eval_dataloader) != 0 and (step == 1 or step % cfg.eval_every == 0):
gaussian_model.eval()
metrics_dict = evaluator(eval_dataloader, gaussian_model)
for key, value in metrics_dict.items():
if "render" in key:
all_tb_info[f"render/{key}"] = value
if key in ["psnr", "ssim", "lpips", "fps"]:
all_tb_info[f"eval/{key}"] = value
gaussian_model.train()
# refine
if cfg.refine_start < step <= cfg.refine_stop:
gaussian_model.update_statistics(data, model_output)
if (step - cfg.refine_start) % cfg.refine_every == 0:
tb_info = gaussian_model.densify_and_prune()
all_tb_info.update(tb_info)
if (step - cfg.refine_start) % cfg.reset_opacities_every == 0:
gaussian_model.reset_opacities()
# increase sh_degree
if cfg.sh_degree_interval != 0 and step % cfg.sh_degree_interval == 0:
gaussian_model.up_sh_degree()
# update learning_rate
gaussian_model.update_learning_rate(step)
# write to tensorboard
if (
step == 1
or step % cfg.log_every == 0
or step % cfg.eval_every == 0
or (step - cfg.refine_start) % cfg.refine_every == 0
):
tb_report(tb_writer, step, all_tb_info)
# update progress_bar
if step % 10 == 0:
progress_bar.set_postfix(
{"loss": "%7.5f" % (loss_dict["total"].item())}
)
progress_bar.update(10)
optimizer.step()
optimizer.zero_grad()
if viewer is not None:
viewer.update_render_image()
progress_bar.update(progress_bar.total - progress_bar.n)
progress_bar.close()
tb_writer.close()
def construct_viewer(
gaussian_model: gaussian.GaussianModel, cameras_json_path: Path
) -> Viewer:
camera_states = load_camera_states(cameras_json_path)
@torch.no_grad()
def gs_render_func(camera_state: CameraState) -> np.ndarray:
gaussian_model.eval()
data = {
"w2c": torch.tensor(camera_state.w2c, dtype=torch.float32, device="cuda"),
"K": torch.tensor(camera_state.K, dtype=torch.float32, device="cuda"),
"height": camera_state.height,
"width": camera_state.width,
}
image = gaussian_model(data)["render_img"].cpu().numpy()
gaussian_model.train()
return image
viewer = Viewer(gs_render_func, camera_states, in_training_mode=True)
return viewer
def tb_report(tb_writer: SummaryWriter, step: int, tb_info: Dict[str, Any]):
for key, value in tb_info.items():
if isinstance(value, dict):
tb_writer.add_scalars(key, value, step, walltime=time.time())
elif isinstance(value, float) or isinstance(value, int):
tb_writer.add_scalar(key, value, step, walltime=time.time())
elif isinstance(value, np.ndarray):
tb_writer.add_image(
key, value, step, walltime=time.time(), dataformats="HWC"
)
else:
logger.warning(
f"unsupported type for tensorboard report: {type(value)} (key={key})"
)
def parse_cfg(args) -> easydict.EasyDict:
if not Path(args.config).exists():
raise FileNotFoundError(f"config does not exist: {args.config}")
if not Path(args.data).exists():
raise FileNotFoundError(f"data does not exist: {args.data}")
with open(args.config, "rb") as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
cfg["data"] = args.data
cfg["output"] = args.output
cfg["view_online"] = args.view_online
cfg = easydict.EasyDict(cfg)
project_name = Path(cfg.data).stem
time_formatted = datetime.now().strftime(r"%m-%d_%H-%M-%S")
cfg.output = str(Path(cfg.output) / project_name / time_formatted)
return cfg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", "-c", type=str, required=True)
parser.add_argument("--data", "-d", type=str, required=True)
parser.add_argument("--output", "-o", type=str, default="output")
parser.add_argument("--view_online", action="store_true")
args = parser.parse_args()
cfg = parse_cfg(args)
set_global_state(cfg.random_seed, cfg.device)
if cfg.total_iterations not in cfg.save_model_iterations:
logger.warning(
"total_iterations is not in save_model_iterations, append total_iterations to save_model_iterations"
)
cfg.save_model_iterations.append(cfg.total_iterations)
logger.info(f"output dir: {cfg.output}")
Path(cfg.output).mkdir(parents=True)
with open(Path(cfg.output) / "config.yaml", "w") as f:
yaml.dump(dict(cfg), f, sort_keys=False)
logger.info("----------------------- train -----------------------")
train(cfg)
logger.info("training finished")
logger.info("--------------------- evaluation ---------------------")
for iteration in cfg.save_model_iterations:
eval(cfg.output, iteration)