-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkaggle_airbnb.py
159 lines (122 loc) · 6.03 KB
/
kaggle_airbnb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn import preprocessing
def train_test_shape():
df_train = pd.read_csv('train_users_2.csv')
df_test = pd.read_csv('test_users.csv')
label = df_train['country_destination']
id_list = df_test['id']
return df_train.shape[0], df_test.shape[0], label, id_list
def data_set():
df_train = pd.read_csv('train_users_2.csv')
df_test = pd.read_csv('test_users.csv')
df_train = df_train.drop('country_destination', axis=1)
df = pd.concat((df_train, df_test), axis=0, ignore_index=True)
return df
def sessions_stats(group):
group.fillna(0, inplace=True)
if group.count() == 0:
return {'sessions_total_duration': group.max() - group.min(),
'average_action_duration': 0,
'actions_total_count': 0}
else:
return {'sessions_total_duration': group.max() - group.min(),
'average_action_duration': (group.max() - group.min()) / group.count(),
'actions_total_count': group.count()}
def session():
sessions_scaler = preprocessing.MinMaxScaler(feature_range=(0, 100))
df = pd.read_csv('sessions.csv')
#对数值变量进行描述性统计,groupby后连接apply函数,可自行编写统计规则
df_stats = df['secs_elapsed'].groupby(df['user_id']).apply(sessions_stats).unstack()
df_stats['actions_total_count'] = df_stats['actions_total_count'].apply(
lambda x: np.sqrt(x/3600))
df_stats['average_action_duration'] = df_stats['average_action_duration'].apply(
lambda x: np.sqrt(x/3600))
normalize_feats = ['actions_total_count',
'average_action_duration',
'sessions_total_duration']
#将属性缩放到一定范围,针对方差很小的数值,稀疏矩阵为0的条目
for f in normalize_feats:
df_stats[f] = sessions_scaler.fit_transform(
df_stats[f].reshape(-1, 1)).astype(int)
df_sactions = df.groupby(['user_id', 'action_detail', 'action_type'],
as_index=False).count()
df_sactions.drop(['secs_elapsed', 'action', 'device_type'],
axis=1, inplace=True)
ohe_features = ['action_detail', 'action_type']
for f in ohe_features:
df_dummy = pd.get_dummies(df_sactions[f], prefix=f)
df_sactions.drop([f], axis=1, inplace = True)
df_sactions = pd.concat((df_sactions, df_dummy.astype(int)), axis=1)
#将复数条用户数据groupby成1条记录
df_sactions = df_sactions.groupby(['user_id']).sum().reset_index()
df_joined = df_sactions.join(df_stats, on=['user_id'], how='left')
df_joined.rename(columns={'user_id': 'id'}, inplace=True)
return df_joined
def transform_data(df):
df['date_account_created'] = pd.to_datetime(df['date_account_created'])
df['date_first_booking'] = pd.to_datetime(df['date_first_booking'])
df['timestamp_first_active'] = pd.to_datetime(df['timestamp_first_active'])
df['timestamp_first_active_date'] = df['timestamp_first_active'].apply(
lambda x: x.strftime('%Y-%m-%d'))
df['timestamp_first_active_date'] = pd.to_datetime(df['timestamp_first_active_date'])
df['toacc_date_range'] = (df['date_account_created'] -
df['timestamp_first_active_date'])\
/ np.timedelta64(1, 'ns')
df['tobooking_date_range'] = (df['date_first_booking'] -
df['date_account_created'])\
/ np.timedelta64(1, 'ns')
df['tobooking_date_range'].fillna(0, inplace = True)
if np.where(df['tobooking_date_range'] < 0):
df['tobooking_date_range'].values[np.where(df['tobooking_date_range'] < 0)] = 0
df = df.drop(['date_account_created',
'timestamp_first_active', 'date_first_booking',
'timestamp_first_active_date'], axis=1)
df['age'].fillna(-1, inplace = True)
if np.where(df['age'] > 100):
df['age'].values[np.where(df['age'] > 100)] = -1
if np.where(df['age'] < 20):
df['age'].values[np.where(df['age'] < 20)] = -1
ohe_feats = ['gender', 'signup_method',
'signup_flow', 'language',
'affiliate_channel', 'affiliate_provider',
'first_affiliate_tracked',
'signup_app', 'first_device_type',
'first_browser']
for f in ohe_feats:
df_dummy = pd.get_dummies(df[f], prefix=f)
df = df.drop([f], axis=1)
df = pd.concat((df, df_dummy), axis=1)
return df
def model(x_train, x_test, y_train, id_test):
clf = RandomForestClassifier(n_estimators=100, n_jobs=-1,
random_state=1)
clf.fit(x_train, y_train)
y_predict = clf.predict_proba(x_test)
#sample_submission = {}
#sample_submission['country'] = le.inverse_transform(y_predict)
#sample_submission['id'] = id_test
#sub = pd.DataFrame(sample_submission, columns=['id', 'country'])
#return sub.to_csv('sub.csv',index=False)
ids = []
cts = []
for i in range(len(id_test)):
idx = id_test[i]
ids += [idx] * 5
cts += le.inverse_transform(np.argsort(y_predict[i])[::-1])[:5].tolist()
sub = pd.DataFrame(np.column_stack((ids, cts)), columns=['id', 'country'])
return sub.to_csv('sub_RandomForest.csv',index=False)
x = transform_data(data_set())
x_all = pd.merge(x, session(), how='left', on='id')
x_session = x_all.drop('id', axis=1)
x_session.fillna(0, inplace=True)
x_train = x_session[:train_test_shape()[0]]
x_test = x_session[train_test_shape()[0]:]
le = LabelEncoder()
y_train = le.fit_transform(train_test_shape()[2].values)
id_test = train_test_shape()[3]
model(x_train, x_test, y_train, id_test)