-
Notifications
You must be signed in to change notification settings - Fork 1
/
unet.py
272 lines (211 loc) · 12.6 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.regularizers import l2
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.utils import multi_gpu_model, to_categorical
def custom_loss_layer(layer):
def loss(y_true, y_pred):
w = tf.math.sqrt(1.0 - layer)
return K.mean(K.binary_crossentropy(y_true, y_pred) * w, axis=-1)
return loss
def generalized_dice_score(y_true, y_pred):
epsilon = 1e-5 # To ensure no division by 0
numerator = denominator = epsilon
intersection = y_true * y_pred
union = y_true + y_pred
for i in range(0, y_pred.shape[-1]):
intersection_sum = tf.reduce_sum(intersection[..., i])
union_sum = tf.reduce_sum(union[..., i])
class_weight = 1.0 / (tf.reduce_sum(y_true[..., i]) ** 2 + epsilon)
numerator += class_weight * intersection_sum
denominator += class_weight * union_sum
dice_score = 2 * numerator / denominator
return dice_score
def recall(y_true, y_pred):
# Compute average recall over segmentation classes
avg_recall = 0 # NOTE: sensitivity = recall
num_classes = y_pred.shape[-1]
for i in range(0, num_classes):
true_pos = tf.reduce_sum(y_true[..., i] * y_pred[..., i])
true_neg = tf.reduce_sum((1 - y_true[..., i]) * (1 - y_pred[..., i]))
false_neg = tf.reduce_sum(1 - y_pred[..., i]) - true_neg
recall = true_pos / (true_pos + false_neg) # i.e. recall
avg_recall += recall
avg_recall /= num_classes.value
return avg_recall
def specificity(y_true, y_pred):
# Compute average specificity over segmentation classes
avg_specificity = 0
num_classes = y_pred.shape[-1]
for i in range(0, num_classes):
true_pos = tf.reduce_sum(y_true[..., i] * y_pred[..., i])
true_neg = tf.reduce_sum((1 - y_true[..., i]) * (1 - y_pred[..., i]))
false_pos = tf.reduce_sum(y_pred[..., i]) - true_pos
specificity = true_neg / (true_neg + false_pos)
avg_specificity += specificity
avg_specificity /= num_classes.value
return avg_specificity
def precision(y_true, y_pred):
# Compute average precision over segmentation classes
num_classes = y_pred.shape[-1]
avg_precision = 0
for i in range(0, num_classes):
true_pos = tf.reduce_sum(y_true[..., i] * y_pred[..., i])
false_pos = tf.reduce_sum(y_pred[..., i]) - true_pos
precision = true_pos / (true_pos + false_pos)
avg_precision += precision
avg_precision /= num_classes.value
return avg_precision
def generalized_dice_loss(y_true, y_pred):
dice_score = generalized_dice_score(y_true, y_pred)
return 1.0 - dice_score
def custom_loss(y_true, y_pred):
return generalized_dice_loss(y_true, y_pred) + tf.keras.losses.categorical_crossentropy(y_true, y_pred)
'''
def unet(pretrained_weights=None, input_size=(256, 256, 1)):
inputs = Input(input_size)
x = 6
conv1 = Conv2D(2**x, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(2**x, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(2**(x+1), 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(2**(x+1), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(2**(x+2), 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(2**(x+2), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(2**(x+3), 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(2**(x+3), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(2**(x+4), 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(2**(x+4), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(2**(x+3), 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(2**(x+3), 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(2**(x+3), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(2**(x+2), 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(2**(x+2), 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(2**(x+2), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(2**(x+1), 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(2**(x+1), 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(2**(x+1), 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(2**x, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(2**x, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(2**x, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
model.compile(optimizer=Adam(lr=1e-4), loss="binary_crossentropy", metrics=['accuracy'])
print(model.summary())
if (pretrained_weights):
model.load_weights(pretrained_weights)
return model
'''
def unet(pretrained_weights=None, input_size=(256, 256, 1), num_gpus=1):
num_classes = 3
x = 6
inputs = Input(input_size)
main_path = inputs
num_convs = 3
res_layers = [None] * num_convs
# Down convolutions
for i in range(0, num_convs):
main_path = Conv2D(2 ** (x + i), 3, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
main_path = Conv2D(2 ** (x + i), 3, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
#if i == 3:
# main_path = Dropout(0.5)(main_path)
res_layers[i] = main_path
main_path = MaxPooling2D(pool_size=(2, 2))(main_path)
# Bottleneck
main_path = Conv2D(2 ** (x + num_convs), 3, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
main_path = Conv2D(2 ** (x + num_convs), 3, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
#main_path = Dropout(0.5)(main_path)
# Up convolutions
for i in reversed(range(0, num_convs)):
main_path = UpSampling2D(size=(2, 2))(main_path)
main_path = Conv2D(2 ** (x + i), 2, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
main_path = concatenate([res_layers[i], main_path], axis=3)
main_path = Conv2D(2 ** (x + i), 3, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
main_path = Conv2D(2 ** (x + i), 3, activation='relu', padding='same', kernel_initializer='he_normal')(main_path)
# Output
output = Conv2D(num_classes, 1, activation='softmax')(main_path)
# Define model
model = Model(inputs=inputs, outputs=output)
parallel_model = model
# Replicate the model on 2 GPUs
if num_gpus > 1:
parallel_model = multi_gpu_model(model, gpus=num_gpus)
# Set optimizer, loss function
parallel_model.compile(optimizer=Adam(lr=1e-4), loss="categorical_crossentropy", metrics=['accuracy', generalized_dice_score, recall, precision, specificity])
#print(model.summary())
# Load pretrained weights, if provided
if (pretrained_weights):
parallel_model.load_weights(pretrained_weights)
return model, parallel_model
class Squeeze(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(Squeeze, self).__init__()
def call(self, inputs, axis=[1]):
return tf.squeeze(inputs, axis=axis)
class Split(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(Split, self).__init__()
def call(self, inputs, num_or_size_splits=3, axis=1):
return tf.split(inputs, num_or_size_splits=num_or_size_splits, axis=axis)
class Stack(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(Stack, self).__init__()
def call(self, inputs, axis=1):
return tf.stack(inputs, axis=axis)
def runet(pretrained_weights=None, input_size=(3, 256, 256, 1)):
inputs = Input(input_size)
img0, img1, img2 = Split()(inputs, num_or_size_splits=3, axis=1)
down_layers = [img0, img1, img2]
for i in range(len(down_layers)):
down_layers[i] = Squeeze()(down_layers[i], axis=[1])
res_layers = [None] * 4
save_layers = [None] * 3
for i in range(len(res_layers)):
for j in range(len(down_layers)):
down_layers[j] = Conv2D(2 ** (i+5), 3, activation='relu', padding='same', kernel_initializer='he_normal')(down_layers[j])
save_layers[j] = Conv2D(2 ** (i+5), 3, activation='relu', padding='same', kernel_initializer='he_normal')(down_layers[j])
down_layers[j] = MaxPooling2D(pool_size=(2, 2))(save_layers[j])
#conv_concat = Stack()([save_layers[0], save_layers[1], save_layers[2]], axis=1)
#res_layers[i] = ConvLSTM2D(2 ** (i+5), 3, padding="same", return_sequences=False)(conv_concat)
res_layers[i] = save_layers[2]
conv_concat = Stack()([down_layers[0], down_layers[1], down_layers[2]], axis=1)
convlstm = ConvLSTM2D(512, 3, padding="same", return_sequences=False)(conv_concat)
bottleneck = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(convlstm)
bottleneck = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(bottleneck)
bottleneck = Dropout(0.5)(bottleneck)
up6 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(bottleneck))
merge6 = concatenate([res_layers[3], up6], axis=3)
conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(25, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([res_layers[2], up7], axis=3)
conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([res_layers[1], up8], axis=3)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(32, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([res_layers[0], up9], axis=3)
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
#print(model.summary())
if (pretrained_weights):
model.load_weights(pretrained_weights)
return model