-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
49 lines (33 loc) · 1.41 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# rstanBF
rstanBF computes the Bayes Factor for data in specified two-level hierarchical models.
[![Build Status](https://travis-ci.org/lgaborini/rstanBF.svg?branch=master)](https://travis-ci.org/lgaborini/rstanBF)
[![Codecov test coverage](https://codecov.io/gh/lgaborini/rstanBF/branch/master/graph/badge.svg)](https://codecov.io/gh/lgaborini/rstanBF?branch=master)
It wraps the package [bridgesampling](https://cran.r-project.org/package=bridgesampling), and provides methods to compute the Bayes Factor for comparing two sets of samples.
## Documentation
Documentation for the stable version is available [here](https://lgaborini.github.io/rstanBF/).
## Installation
rstanBF is not yet available on CRAN.
You can install the development version from this repository using `devtools` or `remotes`:
```{r, eval=FALSE}
# install.packages('remotes')
remotes::install_github('lgaborini/rstanBF')
```
## Implemented models
The implemented models are:
```{r, message=FALSE, echo=FALSE, results='asis'}
suppressPackageStartupMessages(library(rstanBF))
df_models <- available_models(verbose = TRUE, do_print = FALSE)
cat(paste0("* ", df_models$long_name, '\n'), sep = '')
```