-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathtriplet.py
55 lines (44 loc) · 1.95 KB
/
triplet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import torch
from torch import nn
from torch.nn import functional as F
from __init__ import DEVICE
class TripletSemihardLoss(nn.Module):
"""
Shape:
- Input: :math:`(N, C)` where `C = number of channels`
- Target: :math:`(N)`
- Output: scalar.
"""
def __init__(self, margin=0, size_average=True):
super(TripletSemihardLoss, self).__init__()
self.margin = margin
self.size_average = size_average
def forward(self, input, target):
y_true = target.int().unsqueeze(-1)
same_id = torch.eq(y_true, y_true.t()).type_as(input)
pos_mask = same_id
neg_mask = 1 - same_id
def _mask_max(input_tensor, mask, axis=None, keepdims=False):
input_tensor = input_tensor - 1e6 * (1 - mask)
_max, _idx = torch.max(input_tensor, dim=axis, keepdim=keepdims)
return _max, _idx
def _mask_min(input_tensor, mask, axis=None, keepdims=False):
input_tensor = input_tensor + 1e6 * (1 - mask)
_min, _idx = torch.min(input_tensor, dim=axis, keepdim=keepdims)
return _min, _idx
# output[i, j] = || feature[i, :] - feature[j, :] ||_2
dist_squared = torch.sum(input ** 2, dim=1, keepdim=True) + \
torch.sum(input.t() ** 2, dim=0, keepdim=True) - \
2.0 * torch.matmul(input, input.t())
dist = dist_squared.clamp(min=1e-16).sqrt()
pos_max, pos_idx = _mask_max(dist, pos_mask, axis=-1)
neg_min, neg_idx = _mask_min(dist, neg_mask, axis=-1)
# loss(x, y) = max(0, -y * (x1 - x2) + margin)
y = torch.ones(same_id.size()[0]).to(DEVICE)
return F.margin_ranking_loss(neg_min.float(),
pos_max.float(),
y,
self.margin,
self.size_average)