-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathinterpolag_Ssim.f90
165 lines (147 loc) · 5.43 KB
/
interpolag_Ssim.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
!!
!! Copyright (C) 2009-2017 Johns Hopkins University
!!
!! This file is part of lesgo.
!!
!! lesgo is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! lesgo is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with lesgo. If not, see <http://www.gnu.org/licenses/>.
!!
!*******************************************************************************
subroutine interpolag_Ssim ()
!*******************************************************************************
! This subroutine takes the arrays F_LM and F_MM from the previous
! timestep and essentially moves the values around to follow the
! corresponding particles. The (x, y, z) value at the current
! timestep will be the (x-u*dt, y-v*dt, z-w*dt) value at the
! previous timestep. Since particle motion does not conform to
! the grid, an interpolation will be required. Variables should
! be on the w-grid.
! This subroutine assumes that dt and cs_count are chosen such that
! the Lagrangian CFL in the z-direction will never exceed 1. If the
! Lag. CFL in the x-direction is less than one this should generally
! be satisfied.
use types, only : rprec
use param
use sgs_param, only: F_LM, F_MM, lagran_dt
#ifdef PPDYN_TN
use sgs_param, only: F_ee2, F_deedt2, ee_past
#endif
use messages
use sim_param, only : u,v,w
use grid_m
use functions, only:trilinear_interp
#ifdef PPMPI
use mpi_defs, only:mpi_sync_real_array,MPI_SYNC_DOWNUP
#endif
use cfl_util, only : get_max_cfl
implicit none
real(rprec), dimension(3) :: xyz_past
real(rprec), dimension(ld,ny,lbz:nz) :: tempF_LM, tempF_MM
#ifdef PPDYN_TN
real(rprec), dimension(ld,ny,lbz:nz) :: tempF_ee2, tempF_deedt2, tempee_past
#endif
integer :: i,j,k,kmin
real (rprec) :: lcfl
real(rprec), pointer, dimension(:) :: x,y,z
nullify(x,y,z)
x => grid % x
y => grid % y
z => grid % z
! Perform (backwards) Lagrangian interpolation
! F_* arrays should be synced at this point (for MPI)
! Create dummy arrays so information will not be overwritten during interpolation
tempF_LM = F_LM
tempF_MM = F_MM
#ifdef PPDYN_TN
tempF_ee2 = F_ee2
tempF_deedt2 = F_deedt2
tempee_past = ee_past
#endif
! Loop over domain (within proc): for each, calc xyz_past then trilinear_interp
! Variables x,y,z, F_LM, F_MM, etc are on w-grid
! Interpolation out of top/bottom of domain is not permitted.
! Note: x,y,z values are only good for k=1:nz-1 within each proc
if ( coord.eq.0 ) then
kmin = 2
! At the bottom-most level (at the wall) the velocities are zero.
! Since there is no movement the values of F_LM, F_MM, etc should
! not change and no interpolation is necessary.
else
kmin = 1
endif
! Intermediate levels
do k=kmin,nz-1
do j=1,ny
do i=1,nx
! Determine position at previous timestep (u,v interp to w-grid)
xyz_past(1) = x(i) - 0.5_rprec*(u(i,j,k-1)+u(i,j,k))*lagran_dt
xyz_past(2) = y(j) - 0.5_rprec*(v(i,j,k-1)+v(i,j,k))*lagran_dt
xyz_past(3) = z(k) - w(i,j,k)*lagran_dt
! Interpolate
F_LM(i,j,k) = trilinear_interp(tempF_LM(1:nx,1:ny,lbz:nz),lbz,xyz_past)
F_MM(i,j,k) = trilinear_interp(tempF_MM(1:nx,1:ny,lbz:nz),lbz,xyz_past)
#ifdef PPDYN_TN
F_ee2(i,j,k) = trilinear_interp(tempF_ee2(1:nx,1:ny,lbz:nz),lbz,xyz_past)
F_deedt2(i,j,k) = trilinear_interp(tempF_deedt2(1:nx,1:ny,lbz:nz),lbz,xyz_past)
ee_past(i,j,k) = trilinear_interp(tempee_past(1:nx,1:ny,lbz:nz),lbz,xyz_past)
#endif
enddo
enddo
enddo
! Top-most level should not allow negative w
#ifdef PPMPI
if (coord.eq.nproc-1) then
#endif
k = nz
do j = 1, ny
do i = 1, nx
! Determine position at previous timestep (u,v interp to w-grid)
xyz_past(1) = x(i) - 0.5_rprec*(u(i,j,k-1)+u(i,j,k))*lagran_dt
xyz_past(2) = y(j) - 0.5_rprec*(v(i,j,k-1)+v(i,j,k))*lagran_dt
xyz_past(3) = z(k) - max(0.0_rprec,w(i,j,k))*lagran_dt
! Interpolate
F_LM(i,j,k) = trilinear_interp(tempF_LM(1:nx,1:ny,lbz:nz),lbz,xyz_past)
F_MM(i,j,k) = trilinear_interp(tempF_MM(1:nx,1:ny,lbz:nz),lbz,xyz_past)
#ifdef PPDYN_TN
F_ee2(i,j,k) = trilinear_interp(tempF_ee2(1:nx,1:ny,lbz:nz),lbz,xyz_past)
F_deedt2(i,j,k) = trilinear_interp(tempF_deedt2(1:nx,1:ny,lbz:nz),lbz,xyz_past)
ee_past(i,j,k) = trilinear_interp(tempee_past(1:nx,1:ny,lbz:nz),lbz,xyz_past)
#endif
enddo
enddo
#ifdef PPMPI
endif
#endif
! Share new data between overlapping nodes
#ifdef PPMPI
call mpi_sync_real_array( F_LM, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( F_MM, 0, MPI_SYNC_DOWNUP )
#ifdef PPDYN_TN
call mpi_sync_real_array( F_ee2, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( F_deedt2, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( ee_past, 0, MPI_SYNC_DOWNUP )
#endif
#endif
! Compute the Lagrangian CFL number and print to screen
! Note: this is only in the x-direction... not good for complex geometry cases
if (mod (jt_total, lag_cfl_count) .eq. 0) then
lcfl = get_max_cfl()
lcfl = lcfl*lagran_dt/dt
#ifdef PPMPI
if(coord.eq.0) print*, 'Lagrangian CFL condition= ', lcfl
#else
print*, 'Lagrangian CFL condition= ', lcfl
#endif
endif
nullify(x,y,z)
end subroutine interpolag_Ssim