forked from ebhrz/TDL-GNSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
118 lines (96 loc) · 3.36 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import torch.nn as nn
import torch.nn.functional as F
class StandardizeLayer(nn.Module):
def __init__(self, mean, std):
super(StandardizeLayer, self).__init__()
self.mean = nn.Parameter(mean, requires_grad=False)
self.std = nn.Parameter(std, requires_grad=False)
def forward(self, x):
return (x - self.mean) / self.std
class DeStandardizeLayer(nn.Module):
def __init__(self, mean, std):
super(DeStandardizeLayer, self).__init__()
self.mean = nn.Parameter(mean, requires_grad=False)
self.std = nn.Parameter(std, requires_grad=False)
def forward(self, x):
return x * self.std+self.mean
class BiasNet(nn.Module):
def __init__(self, imean=0, istd=1, omean=0, ostd=1):
super().__init__()
self.seq = torch.nn.Sequential(
StandardizeLayer(imean, istd),
nn.Linear(3, 64),
torch.nn.BatchNorm1d(64),
nn.ReLU(),
nn.Linear(64,128),
torch.nn.BatchNorm1d(128),
nn.ReLU(),
nn.Linear(128, 1),
DeStandardizeLayer(omean,ostd)
)
def forward(self, x):
x = self.seq(x)
return x
class BiasNetTest(nn.Module):
def __init__(self, imean=torch.tensor([0,0,0],dtype=torch.float64), istd=torch.tensor([1,1,1],dtype=torch.float64)):
super().__init__()
self.seq = torch.nn.Sequential(
StandardizeLayer(imean, istd),
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64,128),
nn.ReLU(),
nn.Linear(128, 1),
)
def forward(self, x):
x = self.seq(x)
return x
class WeightNet(nn.Module):
def __init__(self, imean=torch.tensor([0,0,0],dtype=torch.float64), istd=torch.tensor([1,1,1],dtype=torch.float64)):
super().__init__()
self.seq = torch.nn.Sequential(
StandardizeLayer(imean, istd),
nn.Linear(3, 64),
#torch.nn.BatchNorm1d(64),
nn.Sigmoid(),
nn.Linear(64,128),
#torch.nn.BatchNorm1d(128),
nn.Sigmoid(),
nn.Linear(128, 64),
nn.Sigmoid(),
nn.Linear(64,1),
nn.Sigmoid()
)
def forward(self, x):
x = self.seq(x) * 10
x = torch.clamp(x,min=0,max = 10)
return x
class HybridNet(nn.Module):
def __init__(self, imean=torch.tensor([0,0,0],dtype=torch.float64), istd=torch.tensor([1,1,1],dtype=torch.float64)):
super().__init__()
self.weightNet = WeightNet(imean,istd)
self.biasNet = BiasNet(imean,istd)
def forward(self, x):
x1 = self.weightNet(x)
x2 = self.biasNet(x)
return x1,x2
class HybridShareNet(nn.Module):
def __init__(self, imean=torch.tensor([0,0,0],dtype=torch.float64), istd=torch.tensor([1,1,1],dtype=torch.float64)):
super().__init__()
self.seq = torch.nn.Sequential(
StandardizeLayer(imean, istd),
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64,128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64,2)
)
def forward(self, x):
x = self.seq(x)
bias = F.relu(x[:,1])
weight = torch.sigmoid(x[:,0])
weight = torch.clamp(weight,min=0,max = 1)
return weight,bias