-
Notifications
You must be signed in to change notification settings - Fork 213
/
N-Queens.h
59 lines (55 loc) · 1.65 KB
/
N-Queens.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
Author: Annie Kim, [email protected]
Date: Apr 24, 2013
Update: Jul 25, 2013
Problem: N-Queens
Difficulty: Medium
Source: http://leetcode.com/onlinejudge#question_51
Notes:
The n-queens puzzle is the problem of placing n queens on an n*n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Solution: Recursion (DFS). Use bit-manipulation solution (See N-QueensII for more details).
*/
class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
vector<vector<string> > res;
vector<string> sol;
solveNQueensRe(n, 0, 0, 0, sol, res);
return res;
}
void solveNQueensRe(int n, int row, int ld, int rd, vector<string> &sol, vector<vector<string>> &res)
{
if (row == (1 << n) - 1)
{
res.push_back(sol);
return;
}
int avail = ~(row | ld | rd);
for (int i = n-1; i >= 0; --i)
{
int pos = 1 << i;
if (avail & pos)
{
string s(n, '.');
s[i] = 'Q';
sol.push_back(s);
solveNQueensRe(n, row | pos, (ld|pos) << 1, (rd|pos) >> 1, sol, res);
sol.pop_back();
}
}
}
};