-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathDGCNN.py
90 lines (77 loc) · 3.27 KB
/
DGCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import KNNGraph, EdgeConv
import numpy as np
from utils import weights_init_kaiming, weights_init_classifier
# I modified the code from https://raw.githubusercontent.com/dmlc/dgl/master/examples/pytorch/pointcloud/model.py
class DGCNN(nn.Module):
def __init__(self, k, feature_dims, emb_dims, output_classes, input_dims=3,
dropout_prob=0.5):
super(DGCNN, self).__init__()
self.nng = KNNGraph(k)
self.conv = nn.ModuleList()
self.num_layers = len(feature_dims)
for i in range(self.num_layers):
self.conv.append(EdgeConv(
feature_dims[i - 1] if i > 0 else input_dims,
feature_dims[i],
batch_norm=True))
self.proj = nn.Linear(sum(feature_dims), emb_dims[0])
self.embs = nn.ModuleList()
self.bn_embs = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.num_embs = len(emb_dims) - 1
for i in range(1, self.num_embs + 1):
self.embs.append(nn.Linear(
# * 2 because of concatenation of max- and mean-pooling
emb_dims[i - 1] if i > 1 else (emb_dims[i - 1] * 2),
emb_dims[i]))
self.bn_embs.append(nn.BatchNorm1d(emb_dims[i]))
self.dropouts.append(nn.Dropout(dropout_prob))
self.proj_output = nn.Linear(emb_dims[-1], output_classes)
# Init
self.conv.apply(weights_init_kaiming)
self.proj.apply(weights_init_kaiming)
self.embs.apply(weights_init_kaiming)
self.bn_embs.apply(weights_init_kaiming)
self.proj_output.apply(weights_init_classifier)
def forward(self, xyz, rgb, istrain=False):
hs = []
h = rgb
batch_size, n_points, x_dims = h.shape
g = self.nng(xyz)
for i in range(self.num_layers):
h = h.view(batch_size * n_points, -1)
h = self.conv[i](g, h)
h = F.leaky_relu(h, 0.2)
h = h.view(batch_size, n_points, -1)
hs.append(h)
h = torch.cat(hs, 2)
h = self.proj(h)
h_max, _ = torch.max(h, 1)
h_avg = torch.mean(h, 1)
h = torch.cat([h_max, h_avg], 1)
for i in range(self.num_embs):
h = self.embs[i](h)
h = self.bn_embs[i](h)
h = F.leaky_relu(h, 0.2)
h = self.dropouts[i](h)
h = self.proj_output(h)
return h
if __name__ == '__main__':
# Here I left a simple forward function.
# Test the model, before you train it.
# net = Model_dense( 20, [64, 128, 256, 512], [512, 512], output_classes=751, init_points = 512, input_dims=3, dropout_prob=0.5, npart= 1)
net = DGCNN( 20, [64,128,256,512], [512,512], output_classes=751, input_dims=3, dropout_prob=0.5)
xyz = torch.FloatTensor(np.random.normal(size=(4,6890, 3))).cuda()
rgb = torch.FloatTensor(4, 6890, 3).cuda()
net = net.cuda()
print(net)
net.proj_output = nn.Sequential()
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Number of parameters: %.2f M'% (params/1e6) )
output = net(xyz, rgb)
print('net output size:')
print(output.shape)