-
-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathresnet52_2stream_gan.m
42 lines (37 loc) · 1.48 KB
/
resnet52_2stream_gan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function nn = resnet52_2stream()
% Concat two model.
if(~exist('net.mat'))
net1 = resnet52_market();
net1.removeLayer('top5err');
net2 = resnet52_market(); %imagenet
net2.removeLayer('top5err');
%change name
for i = 1:numel(net2.layers)
net2.renameLayer(net2.layers(i).name,sprintf('%s_2',net2.layers(i).name));
end
for i = 1:numel(net2.vars)
net2.renameVar(net2.vars(i).name,sprintf('%s_2',net2.vars(i).name));
end
nn = concat_2net(net1,net2);
net_struct = nn.saveobj();
save('net.mat','net_struct');
else
load('net.mat');
nn = dagnn.DagNN.loadobj(net_struct);
end
% *****************************************************************************
% 2 classify
nn.addLayer('Square',dagnn.Square(),{'pool5','pool5_2'},{'ODist'},{});
dropoutBlock = dagnn.DropOut('rate',0.9);
nn.addLayer('dropout_D',dropoutBlock,{'ODist'},{'ODist_d'},{});
fc751Block = dagnn.Conv('size',[1 1 2048 2],'hasBias',true,'stride',[1,1],'pad',[0,0,0,0]);
nn.addLayer('fc9',fc751Block,{'ODist_d'},{'Dist_prediction'},{'fc9f','fc9b'});
lossBlock = dagnn.Loss('loss', 'softmaxlog');
nn.addLayer('softmaxloss_D',lossBlock,{'Dist_prediction','label_f'},'objective_final');
nn.addLayer('top1err_compare', dagnn.Loss('loss', 'classerror'), ...
{'Dist_prediction','label_f'}, 'top1err_cmopare') ;
nn.layers(174).block.rate = 0.75;
nn.layers(352).block.rate = 0.75;
nn.layers(176).block.loss = 'labelsmooth';
nn.layers(354).block.loss = 'labelsmooth';
nn.initParams();