From 03cd1e87a3aaa7b5eb84576133788d243948c1c8 Mon Sep 17 00:00:00 2001 From: Ben Ryan Date: Tue, 7 Jan 2025 20:12:03 -0700 Subject: [PATCH] still working --- README.md | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index 61ec67c..39eec5d 100644 --- a/README.md +++ b/README.md @@ -7,20 +7,21 @@ Performance Portable Opacity and Emissivity library for simulation codes ## API -singularity-opac provides a uniform API for all opacity models. The following functions are provided +singularity-opac provides a uniform API for all opacity models, in two forms: frequency-averaged +(Plank or Rosseland means) and frewquency-dependent. The following functions are provided (here, $\sigma$ is the frequency- and angle-dependent cross section in units of ${\rm cm}^2$): | Function | Expression | Description | Units | | --------------------- | ---------- | --------------------- | ------- | -| AbsorptionCoefficient | $n \sigma$ | Absorption coefficient | $cm^{-1}$ | +| AbsorptionCoefficient | $n \sigma$ | Absorption coefficient | ${\rm cm}^{-1}$ | | AngleAveragedAbsorptionCoefficient | $\frac{1}{4 \pi}\int n \sigma d\Omega$ | Absorption coefficient averaged over solid angle | ${\rm cm}^{-1}$ | -| EmissivityPerNuOmega | $j_{\nu} = \frac{dE}{d^3x dt d\Omega d\nu}$ | Frequency- and angle-dependent emissivity | ${\rm erg~cm}^{-3} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1}$ | -| EmissivityPerNu | $\int j_{\nu} d\Omega$ | Frequency-dependent emissivity | ${\rm erg~cm}^{-3} {\rm s}^{-1} {\rm Hz}^{-1}$ | -| Emissivity | $\int j_{\nu} d\nu d\Omega$ | Total emissivity | ${\rm erg~cm}^{-3} {\rm s}^{-1}$ | -| NumberEmissivity | $\int \frac{1}{h \nu} j_{\nu} d\Omega d\nu$ | Total number emissivity | ${\rm cm}^{-3} {\rm s}^{-1}$ | -| ThermalDistributionOfTNu | $B_{\nu} = \frac{dE}{dA dt d\Omega d\nu}$ | Specific intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1}$ | -| DThermalDistributionOfTNuDT | $dB_{\nu}/dT$ | Temperature derivative of specific intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1} {\rm Sr}^{-1} {\rm Hz}^{-1} {\rm K}^{-1}$ | -| ThermalDistributionOfT | $B = \int B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1}$ | -| ThermalNumberDistributionOfT | $B = \int \frac{1}{h \nu} B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2} {\rm s}^{-1}$ | +| EmissivityPerNuOmega | $j_{\nu} = \frac{dE}{d^3x dt d\Omega d\nu}$ | Frequency- and angle-dependent emissivity | ${\rm erg~cm}^{-3}~{\rm s}^{-1}~{\rm Sr}^{-1}~{\rm Hz}^{-1}$ | +| EmissivityPerNu | $\int j_{\nu} d\Omega$ | Frequency-dependent emissivity | ${\rm erg~cm}^{-3}~{\rm s}^{-1}~{\rm Hz}^{-1}$ | +| Emissivity | $\int j_{\nu} d\nu d\Omega$ | Total emissivity | ${\rm erg~cm}^{-3}~{\rm s}^{-1}$ | +| NumberEmissivity | $\int \frac{1}{h \nu} j_{\nu} d\Omega d\nu$ | Total number emissivity | ${\rm cm}^{-3}~{\rm s}^{-1}$ | +| ThermalDistributionOfTNu | $B_{\nu} = \frac{dE}{dA dt d\Omega d\nu}$ | Specific intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}~{\rm Sr}^{-1}~{\rm Hz}^{-1}$ | +| DThermalDistributionOfTNuDT | $dB_{\nu}/dT$ | Temperature derivative of specific intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}~{\rm Sr}^{-1}~{\rm Hz}^{-1}~{\rm K}^{-1}$ | +| ThermalDistributionOfT | $B = \int B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}$ | +| ThermalNumberDistributionOfT | $B = \int \frac{1}{h \nu} B_{\nu} d\Omega d\nu$ | Frequency- and angle-integrated intensity of thermal distribution | ${\rm erg~cm}^{-2}~{\rm s}^{-1}$ | Note that the thermal radiation energy density `u = 1/c ThermalDistributionOfT` and the thermal radiation number density `n = 1/c ThermalNumberDistributionOfT`.