-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest.py
81 lines (65 loc) · 2.86 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch import jit
import io
import time
import argparse
from vgg import VGGNet
# Check device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#device = torch.device('cpu') # 'to' is not supported on TracedModules, ref: https://github.com/pytorch/pytorch/issues/6008
def test(model, test_loader):
#model.eval()
print_freq = 10 # print every 10 batches
correct = 0
total = 0
with torch.no_grad(): # no need to track history
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
# compute output
outputs = model(inputs)
# record prediction accuracy
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % print_freq == 0:
print('Batch: %d, Acc: %.3f%% (%d/%d)' % (batch_idx+1, 100.*correct/total, correct, total))
return correct, total
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='VGGNet Test Tool')
parser.add_argument('mtype', type=str, choices=['pytorch', 'torch-script'], help='Model type')
args = parser.parse_args()
# Model
print('==> Building model...')
if args.mtype == 'pytorch':
model = VGGNet('D-DSM', num_classes=10, input_size=32) # depthwise separable
# Load model
print('==> Loading PyTorch model...')
model.load_state_dict(torch.load('VGG16model.pth'))
model.to(device)
else:
print('==> Loading Torch Script model...')
# Load ScriptModule from io.BytesIO object
with open('VGG16-traced-eval.pt', 'rb') as f:
buffer = io.BytesIO(f.read())
model = torch.jit.load(buffer)
print('[WARNING] ScriptModules cannot be moved to a GPU device yet. Running strictly on CPU for now.')
device = torch.device('cpu') # 'to' is not supported on TracedModules (yet)
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
test_loader = DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
if device.type == 'cuda':
cudnn.benchmark = True
model = torch.nn.DataParallel(model)
t0 = time.time()
correct, total = test(model, test_loader)
t1 = time.time()
print('Accuracy of the network on test dataset: %f (%d/%d)' % (100.*correct/total, correct, total))
print('Elapsed time: {} seconds'.format(t1-t0))