-
Notifications
You must be signed in to change notification settings - Fork 9
/
train_handwritten.py
91 lines (79 loc) · 4.93 KB
/
train_handwritten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import time
from options.train_options import TrainOptions
import data_iam.lmdb_dataset_iam as lmdb_dataset
import data_iam.val_dataset_iam as val_dataset
from models import create_model
from util.visualizer import Visualizer
from validation import validateUN
import torch
import os
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
#import pdb;pdb.set_trace()
dataset = lmdb_dataset.ConcatLmdbDataset(
dataset_list=opt.dataroot,
batchsize_list=opt.batch_size,
ttfRoot=opt.ttfRoot,
corpusRoot=opt.corpusRoot,
transform_img=lmdb_dataset.resizeKeepRatio((opt.imgW, opt.imgH)),
transform_target_img=lmdb_dataset.resizeKeepRatio((opt.imgW, opt.imgH)),
alphabet=opt.alphabet)
train_loader = torch.utils.data.DataLoader(
dataset, batch_size=sum(opt.batch_size),
shuffle=True, sampler=None, drop_last=True,
num_workers=int(opt.num_threads))
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
valdataset = val_dataset.ValDataset(root = opt.val_seenstyleRoot, ttfRoot= opt.ttfRoot)
valdataset_unseen = val_dataset.ValDataset(root = opt.val_unseenstyleRoot, ttfRoot= opt.ttfRoot)
#import pdb;pdb.set_trace()
validationFunc = validateUN
val_dir = os.path.join(opt.checkpoints_dir, opt.name,'validation_seenstyle')
val_dir_unseen = os.path.join(opt.checkpoints_dir, opt.name,'validation_unseenstyle')
if not os.path.isdir(val_dir):
os.mkdir(val_dir)
if not os.path.isdir(val_dir_unseen):
os.mkdir(val_dir_unseen)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0
model.train()
for i, data in enumerate(train_loader): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_iters += sum(opt.batch_size)
epoch_iter += sum(opt.batch_size)
#import pdb;pdb.set_trace()
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / sum(opt.batch_size)
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
#if epoch >=5:
validationFunc(dataset=valdataset, model=model, epoch=epoch, val_dir=val_dir, val_num=opt.val_num)
validationFunc(dataset=valdataset_unseen, model = model,epoch= epoch, val_dir=val_dir_unseen, val_num=opt.val_num)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.