-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathcentrality.py
59 lines (46 loc) · 1.94 KB
/
centrality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""A Centrality Summarizer"""
import os
from nltk import tokenize
from utils import *
from rouge import gen_config
def centrality(vects):
"""Calculate the centralities of each vector."""
n = len(vects)
# For each vector, find the average similarity to all the other
# vectors. Use reference equality to avoid comparing with self.
return [(sum([cosine_sim(vect, vect1)
for vect1 in vects
if vect is not vect1])
/ n)
for vect in vects]
def gen_centrality_summary(orig_sents, max_words):
"""Given a list of *untokenized* sentences and a threshold summary
length (in words), return an ordered list of sentences comprising
the summary."""
tok_sents = [tokenize.word_tokenize(orig_sent)
for orig_sent in orig_sents]
# TODO: Remove funcwords, etc?
feat_space = sorted(set().union(*tok_sents))
vects = [binary_vectorize(feat_space, tok_sent)
for tok_sent in tok_sents]
return gen_summary_from_rankings(centrality(vects), tok_sents,
orig_sents, max_words)
def gen_summary_from_rankings(score, tok_sents, orig_sents, max_words):
ranked_sents = sorted(zip(score, tok_sents, orig_sents), reverse=True)
summary, tok_summary = [], []
word_count = 0
for score, tok_sent, orig_sent in ranked_sents:
if word_count >= max_words:
break
if (is_valid_sent_len(tok_sent) and
not is_repeat(tok_sent, tok_summary)):
summary.append(orig_sent)
tok_summary.append(tok_sent)
word_count += len(tok_sent)
return summary
if __name__ == '__main__':
# Gen summaries
# gen_summaries('centrality-binary', gen_centrality_summary, 44, 50)
# gen_config('centrality-binary', 'rouge/centrality-binary-config.xml',
# 'centrality-binary')
gen_config('centrality', 'rouge/centrality-config.xml', 'centrality')