forked from disintegration/imaging
-
Notifications
You must be signed in to change notification settings - Fork 2
/
effects.go
169 lines (153 loc) · 3.68 KB
/
effects.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
package imaging
import (
"image"
"math"
)
func gaussianBlurKernel(x, sigma float64) float64 {
return math.Exp(-(x*x)/(2*sigma*sigma)) / (sigma * math.Sqrt(2*math.Pi))
}
// Blur produces a blurred version of the image using a Gaussian function.
// Sigma parameter must be positive and indicates how much the image will be blurred.
//
// Example:
//
// dstImage := imaging.Blur(srcImage, 3.5)
//
func Blur(img image.Image, sigma float64) *image.NRGBA {
if sigma <= 0 {
return Clone(img)
}
radius := int(math.Ceil(sigma * 3.0))
kernel := make([]float64, radius+1)
for i := 0; i <= radius; i++ {
kernel[i] = gaussianBlurKernel(float64(i), sigma)
}
return blurVertical(blurHorizontal(img, kernel), kernel)
}
func blurHorizontal(img image.Image, kernel []float64) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
radius := len(kernel) - 1
parallel(0, src.h, func(ys <-chan int) {
scanLine := make([]uint8, src.w*4)
scanLineF := make([]float64, len(scanLine))
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
for i, v := range scanLine {
scanLineF[i] = float64(v)
}
for x := 0; x < src.w; x++ {
min := x - radius
if min < 0 {
min = 0
}
max := x + radius
if max > src.w-1 {
max = src.w - 1
}
var r, g, b, a, wsum float64
for ix := min; ix <= max; ix++ {
i := ix * 4
weight := kernel[absint(x-ix)]
wsum += weight
s := scanLineF[i : i+4 : i+4]
wa := s[3] * weight
r += s[0] * wa
g += s[1] * wa
b += s[2] * wa
a += wa
}
if a != 0 {
aInv := 1 / a
j := y*dst.Stride + x*4
d := dst.Pix[j : j+4 : j+4]
d[0] = clamp(r * aInv)
d[1] = clamp(g * aInv)
d[2] = clamp(b * aInv)
d[3] = clamp(a / wsum)
}
}
}
})
return dst
}
func blurVertical(img image.Image, kernel []float64) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
radius := len(kernel) - 1
parallel(0, src.w, func(xs <-chan int) {
scanLine := make([]uint8, src.h*4)
scanLineF := make([]float64, len(scanLine))
for x := range xs {
src.scan(x, 0, x+1, src.h, scanLine)
for i, v := range scanLine {
scanLineF[i] = float64(v)
}
for y := 0; y < src.h; y++ {
min := y - radius
if min < 0 {
min = 0
}
max := y + radius
if max > src.h-1 {
max = src.h - 1
}
var r, g, b, a, wsum float64
for iy := min; iy <= max; iy++ {
i := iy * 4
weight := kernel[absint(y-iy)]
wsum += weight
s := scanLineF[i : i+4 : i+4]
wa := s[3] * weight
r += s[0] * wa
g += s[1] * wa
b += s[2] * wa
a += wa
}
if a != 0 {
aInv := 1 / a
j := y*dst.Stride + x*4
d := dst.Pix[j : j+4 : j+4]
d[0] = clamp(r * aInv)
d[1] = clamp(g * aInv)
d[2] = clamp(b * aInv)
d[3] = clamp(a / wsum)
}
}
}
})
return dst
}
// Sharpen produces a sharpened version of the image.
// Sigma parameter must be positive and indicates how much the image will be sharpened.
//
// Example:
//
// dstImage := imaging.Sharpen(srcImage, 3.5)
//
func Sharpen(img image.Image, sigma float64) *image.NRGBA {
if sigma <= 0 {
return Clone(img)
}
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, src.h))
blurred := Blur(img, sigma)
parallel(0, src.h, func(ys <-chan int) {
scanLine := make([]uint8, src.w*4)
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
j := y * dst.Stride
for i := 0; i < src.w*4; i++ {
val := int(scanLine[i])<<1 - int(blurred.Pix[j])
if val < 0 {
val = 0
} else if val > 0xff {
val = 0xff
}
dst.Pix[j] = uint8(val)
j++
}
}
})
return dst
}