-
Notifications
You must be signed in to change notification settings - Fork 99
SPARSE 3::spadd
Luc Berger edited this page Jun 24, 2020
·
13 revisions
Header File: KokkosSparse_spadd.hpp
Usage: KokkosSparse::spadd_symbolic(handle, a, b, c);
Usage: KokkosSparse::spadd_numeric (handle, alpha, a, beta, b, c);
Add two sparse matrices.
template <typename KernelHandle,
typename AMatrix,
typename BMatrix,
typename CMatrix>
void spadd_symbolic(
KernelHandle* handle,
const AMatrix& A,
const BMatrix& B,
CMatrix& C);
template <typename KernelHandle,
typename AScalar,
typename AMatrix,
typename BScalar,
typename BMatrix,
typename CMatrix>
void spadd_numeric(
KernelHandle* handle,
const AScalar alpha,
const AMatrix& A,
const BScalar beta,
const BMatrix& B,
CMatrix& C);
spadd_symbolic
- KernelHandle
- InputMatrix: A
KokkosSparse::CrsMatrix
- InputMatrix: A
KokkosSparse::CrsMatrix
- Input/OutputMatrix: A
KokkosSparse::CrsMatrix
preferably with no views allocated.
spadd_numeric
- KernelHandle
- InputScalarType: Scalar multiplier for first input matrix
- InputMatrix: A
KokkosSparse::CrsMatrix
- InputScalarType: Scalar multiplier for second input matrix
- InputMatrix: A
KokkosSparse::CrsMatrix
- Input/OutputMatrix: A
KokkosSparse::CrsMatrix
with all views allocated and a valid row_map.
- Creation of a
KernelHandle
Matrix::value_type == Matrix::non_const_value_type
example source location: example/wiki/sparse/KokkosSparse_wiki_spadd.cpp
#include "Kokkos_Core.hpp"
#include "KokkosKernels_default_types.hpp"
#include "KokkosSparse_spadd.hpp"
#include "KokkosKernels_Test_Structured_Matrix.hpp"
using Scalar = default_scalar;
using Ordinal = default_lno_t;
using Offset = default_size_type;
using Layout = default_layout;
int main(int argc, char* argv[]) {
Kokkos::initialize();
using device_type = typename Kokkos::Device<
Kokkos::DefaultExecutionSpace,
typename Kokkos::DefaultExecutionSpace::memory_space>;
using execution_space = typename device_type::execution_space;
using memory_space = typename device_type::memory_space;
using matrix_type =
typename KokkosSparse::CrsMatrix<Scalar, Ordinal, device_type, void,
Offset>;
int return_value = 0;
{
// The mat_structure view is used to generate a matrix using
// finite difference (FD) or finite element (FE) discretization
// on a cartesian grid.
// Each row corresponds to an axis (x, y and z)
// In each row the first entry is the number of grid point in
// that direction, the second and third entries are used to apply
// BCs in that direction.
Kokkos::View<Ordinal* [3], Kokkos::HostSpace> mat_structure(
"Matrix Structure", 2);
mat_structure(0, 0) = 10; // Request 10 grid point in 'x' direction
mat_structure(0, 1) = 1; // Add BC to the left
mat_structure(0, 2) = 1; // Add BC to the right
mat_structure(1, 0) = 10; // Request 10 grid point in 'y' direction
mat_structure(1, 1) = 1; // Add BC to the bottom
mat_structure(1, 2) = 1; // Add BC to the top
matrix_type A =
Test::generate_structured_matrix2D<matrix_type>("FD", mat_structure);
matrix_type B =
Test::generate_structured_matrix2D<matrix_type>("FE", mat_structure);
matrix_type C;
// Create KokkosKernelHandle
using KernelHandle = KokkosKernels::Experimental::KokkosKernelsHandle<
Offset, Ordinal, Scalar, execution_space, memory_space, memory_space>;
KernelHandle kh;
kh.create_spadd_handle(false);
const Scalar alpha = 2.5;
const Scalar beta = 1.2;
KokkosSparse::spadd_symbolic(&kh, A, B, C);
KokkosSparse::spadd_numeric(&kh, alpha, A, beta, B, C);
kh.destroy_spadd_handle();
std::cout << "spadd was performed correctly!" << std::endl;
}
Kokkos::finalize();
return return_value;
}