-
Notifications
You must be signed in to change notification settings - Fork 99
SPARSE 3::spgemm
Luc Berger edited this page Jun 24, 2020
·
4 revisions
Header File: KokkosSparse_spgemm.hpp
Usage: KokkosSparse::spgemm_symbolic(handle, A, transposeA, B, transpose, B, C);
Usage: KokkosSparse::spgemm_numeric(handle, A, transposeA, B, transpose, B, C);
Multiply two sparse matrices.
template <class KernelHandle,
class AMatrix,
class BMatrix,
class CMatrix>
void spgemm_symbolic(
KernelHandle& handle,
const AMatrix& A,
const bool transposeA,
const BMatrix& B,
const bool transposeB,
CMatrix& C);
template <class KernelHandle,
class AMatrix,
class BMatrix,
class CMatrix>
void spgemm_numeric(
KernelHandle& handle,
const AMatrix& A,
const bool transposeA,
const BMatrix& B,
const bool transposeB,
CMatrix& C);
spgemm_symbolic
- KernelHandle
- InputMatrix: A
KokkosSparse::CrsMatrix
- InputModeBool: Currently must be "false" (transpose not yet implemented)
- InputMatrix: A
KokkosSparse::CrsMatrix
- InputModeBool: Currently must be "false" (transpose not yet implemented)
- Input/OutputMatrix: A
KokkosSparse::CrsMatrix
with non-const data type and no views allocated.
spgemm_numeric
- KernelHandle
- InputMatrix: A
KokkosSparse::CrsMatrix
- InputModeBool: Currently must be "false" (transpose not yet implemented)
- InputMatrix: A
KokkosSparse::CrsMatrix
- InputModeBool: Currently must be "false" (transpose not yet implemented)
- Input/OutputMatrix: A
KokkosSparse::CrsMatrix
with non-const data type, all view allocated and a valid row map.
- Creation of a
KernelHandle
Matrix::value_type == Matrix::non_const_value_type
-
trasposeA==false && transposeB==false
(transpose is not yet implemented)
example source location: example/wiki/sparse/KokkosSparse_wiki_spgemm.cpp
#include "Kokkos_Core.hpp"
#include "KokkosKernels_default_types.hpp"
#include "KokkosSparse_spgemm.hpp"
#include "KokkosKernels_Test_Structured_Matrix.hpp"
using Scalar = default_scalar;
using Ordinal = default_lno_t;
using Offset = default_size_type;
using Layout = default_layout;
int main(int argc, char* argv[]) {
Kokkos::initialize();
using device_type = typename Kokkos::Device<
Kokkos::DefaultExecutionSpace,
typename Kokkos::DefaultExecutionSpace::memory_space>;
using execution_space = typename device_type::execution_space;
using memory_space = typename device_type::memory_space;
using matrix_type =
typename KokkosSparse::CrsMatrix<Scalar, Ordinal, device_type, void,
Offset>;
int return_value = 0;
{
// The mat_structure view is used to generate a matrix using
// finite difference (FD) or finite element (FE) discretization
// on a cartesian grid.
// Each row corresponds to an axis (x, y and z)
// In each row the first entry is the number of grid point in
// that direction, the second and third entries are used to apply
// BCs in that direction.
Kokkos::View<Ordinal* [3], Kokkos::HostSpace> mat_structure(
"Matrix Structure", 2);
mat_structure(0, 0) = 10; // Request 10 grid point in 'x' direction
mat_structure(0, 1) = 1; // Add BC to the left
mat_structure(0, 2) = 1; // Add BC to the right
mat_structure(1, 0) = 10; // Request 10 grid point in 'y' direction
mat_structure(1, 1) = 1; // Add BC to the bottom
mat_structure(1, 2) = 1; // Add BC to the top
matrix_type A =
Test::generate_structured_matrix2D<matrix_type>("FD", mat_structure);
matrix_type B =
Test::generate_structured_matrix2D<matrix_type>("FE", mat_structure);
matrix_type C;
// Create KokkosKernelHandle
using KernelHandle = KokkosKernels::Experimental::KokkosKernelsHandle<
Offset, Ordinal, Scalar, execution_space, memory_space, memory_space>;
KernelHandle kh;
kh.set_team_work_size(16);
kh.set_dynamic_scheduling(true);
// Select an spgemm algorithm, limited by configuration at compile-time and
// set via the handle Some options: {SPGEMM_KK_MEMORY, SPGEMM_KK_SPEED,
// SPGEMM_KK_MEMSPEED, /*SPGEMM_CUSPARSE, */ SPGEMM_MKL}
std::string myalg("SPGEMM_KK_MEMORY");
KokkosSparse::SPGEMMAlgorithm spgemm_algorithm =
KokkosSparse::StringToSPGEMMAlgorithm(myalg);
kh.create_spgemm_handle(spgemm_algorithm);
KokkosSparse::spgemm_symbolic(kh, A, false, B, false, C);
KokkosSparse::spgemm_numeric(kh, A, false, B, false, C);
std::cout << "spgemm was performed correctly!" << std::endl;
}
Kokkos::finalize();
return return_value;
}