From 113f42a9054ee47002d9ac22ab5d9887157eb09c Mon Sep 17 00:00:00 2001 From: Grimspen66 Date: Sun, 6 Apr 2025 20:16:23 -0500 Subject: [PATCH 1/3] Add files via upload --- app.py | 1086 ++++---- keypoint_classification.ipynb | 2668 +++++++++++------- keypoint_classification_EN.ipynb | 2228 +++++++-------- point_history_classification.ipynb | 4149 ++++++++++++++-------------- 4 files changed, 5369 insertions(+), 4762 deletions(-) diff --git a/app.py b/app.py index c77a35d1..df953dab 100644 --- a/app.py +++ b/app.py @@ -1,543 +1,543 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -import csv -import copy -import argparse -import itertools -from collections import Counter -from collections import deque - -import cv2 as cv -import numpy as np -import mediapipe as mp - -from utils import CvFpsCalc -from model import KeyPointClassifier -from model import PointHistoryClassifier - - -def get_args(): - parser = argparse.ArgumentParser() - - parser.add_argument("--device", type=int, default=0) - parser.add_argument("--width", help='cap width', type=int, default=960) - parser.add_argument("--height", help='cap height', type=int, default=540) - - parser.add_argument('--use_static_image_mode', action='store_true') - parser.add_argument("--min_detection_confidence", - help='min_detection_confidence', - type=float, - default=0.7) - parser.add_argument("--min_tracking_confidence", - help='min_tracking_confidence', - type=int, - default=0.5) - - args = parser.parse_args() - - return args - - -def main(): - # Argument parsing ################################################################# - args = get_args() - - cap_device = args.device - cap_width = args.width - cap_height = args.height - - use_static_image_mode = args.use_static_image_mode - min_detection_confidence = args.min_detection_confidence - min_tracking_confidence = args.min_tracking_confidence - - use_brect = True - - # Camera preparation ############################################################### - cap = cv.VideoCapture(cap_device) - cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) - cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) - - # Model load ############################################################# - mp_hands = mp.solutions.hands - hands = mp_hands.Hands( - static_image_mode=use_static_image_mode, - max_num_hands=1, - min_detection_confidence=min_detection_confidence, - min_tracking_confidence=min_tracking_confidence, - ) - - keypoint_classifier = KeyPointClassifier() - - point_history_classifier = PointHistoryClassifier() - - # Read labels ########################################################### - with open('model/keypoint_classifier/keypoint_classifier_label.csv', - encoding='utf-8-sig') as f: - keypoint_classifier_labels = csv.reader(f) - keypoint_classifier_labels = [ - row[0] for row in keypoint_classifier_labels - ] - with open( - 'model/point_history_classifier/point_history_classifier_label.csv', - encoding='utf-8-sig') as f: - point_history_classifier_labels = csv.reader(f) - point_history_classifier_labels = [ - row[0] for row in point_history_classifier_labels - ] - - # FPS Measurement ######################################################## - cvFpsCalc = CvFpsCalc(buffer_len=10) - - # Coordinate history ################################################################# - history_length = 16 - point_history = deque(maxlen=history_length) - - # Finger gesture history ################################################ - finger_gesture_history = deque(maxlen=history_length) - - # ######################################################################## - mode = 0 - - while True: - fps = cvFpsCalc.get() - - # Process Key (ESC: end) ################################################# - key = cv.waitKey(10) - if key == 27: # ESC - break - number, mode = select_mode(key, mode) - - # Camera capture ##################################################### - ret, image = cap.read() - if not ret: - break - image = cv.flip(image, 1) # Mirror display - debug_image = copy.deepcopy(image) - - # Detection implementation ############################################################# - image = cv.cvtColor(image, cv.COLOR_BGR2RGB) - - image.flags.writeable = False - results = hands.process(image) - image.flags.writeable = True - - # #################################################################### - if results.multi_hand_landmarks is not None: - for hand_landmarks, handedness in zip(results.multi_hand_landmarks, - results.multi_handedness): - # Bounding box calculation - brect = calc_bounding_rect(debug_image, hand_landmarks) - # Landmark calculation - landmark_list = calc_landmark_list(debug_image, hand_landmarks) - - # Conversion to relative coordinates / normalized coordinates - pre_processed_landmark_list = pre_process_landmark( - landmark_list) - pre_processed_point_history_list = pre_process_point_history( - debug_image, point_history) - # Write to the dataset file - logging_csv(number, mode, pre_processed_landmark_list, - pre_processed_point_history_list) - - # Hand sign classification - hand_sign_id = keypoint_classifier(pre_processed_landmark_list) - if hand_sign_id == 2: # Point gesture - point_history.append(landmark_list[8]) - else: - point_history.append([0, 0]) - - # Finger gesture classification - finger_gesture_id = 0 - point_history_len = len(pre_processed_point_history_list) - if point_history_len == (history_length * 2): - finger_gesture_id = point_history_classifier( - pre_processed_point_history_list) - - # Calculates the gesture IDs in the latest detection - finger_gesture_history.append(finger_gesture_id) - most_common_fg_id = Counter( - finger_gesture_history).most_common() - - # Drawing part - debug_image = draw_bounding_rect(use_brect, debug_image, brect) - debug_image = draw_landmarks(debug_image, landmark_list) - debug_image = draw_info_text( - debug_image, - brect, - handedness, - keypoint_classifier_labels[hand_sign_id], - point_history_classifier_labels[most_common_fg_id[0][0]], - ) - else: - point_history.append([0, 0]) - - debug_image = draw_point_history(debug_image, point_history) - debug_image = draw_info(debug_image, fps, mode, number) - - # Screen reflection ############################################################# - cv.imshow('Hand Gesture Recognition', debug_image) - - cap.release() - cv.destroyAllWindows() - - -def select_mode(key, mode): - number = -1 - if 48 <= key <= 57: # 0 ~ 9 - number = key - 48 - if key == 110: # n - mode = 0 - if key == 107: # k - mode = 1 - if key == 104: # h - mode = 2 - return number, mode - - -def calc_bounding_rect(image, landmarks): - image_width, image_height = image.shape[1], image.shape[0] - - landmark_array = np.empty((0, 2), int) - - for _, landmark in enumerate(landmarks.landmark): - landmark_x = min(int(landmark.x * image_width), image_width - 1) - landmark_y = min(int(landmark.y * image_height), image_height - 1) - - landmark_point = [np.array((landmark_x, landmark_y))] - - landmark_array = np.append(landmark_array, landmark_point, axis=0) - - x, y, w, h = cv.boundingRect(landmark_array) - - return [x, y, x + w, y + h] - - -def calc_landmark_list(image, landmarks): - image_width, image_height = image.shape[1], image.shape[0] - - landmark_point = [] - - # Keypoint - for _, landmark in enumerate(landmarks.landmark): - landmark_x = min(int(landmark.x * image_width), image_width - 1) - landmark_y = min(int(landmark.y * image_height), image_height - 1) - # landmark_z = landmark.z - - landmark_point.append([landmark_x, landmark_y]) - - return landmark_point - - -def pre_process_landmark(landmark_list): - temp_landmark_list = copy.deepcopy(landmark_list) - - # Convert to relative coordinates - base_x, base_y = 0, 0 - for index, landmark_point in enumerate(temp_landmark_list): - if index == 0: - base_x, base_y = landmark_point[0], landmark_point[1] - - temp_landmark_list[index][0] = temp_landmark_list[index][0] - base_x - temp_landmark_list[index][1] = temp_landmark_list[index][1] - base_y - - # Convert to a one-dimensional list - temp_landmark_list = list( - itertools.chain.from_iterable(temp_landmark_list)) - - # Normalization - max_value = max(list(map(abs, temp_landmark_list))) - - def normalize_(n): - return n / max_value - - temp_landmark_list = list(map(normalize_, temp_landmark_list)) - - return temp_landmark_list - - -def pre_process_point_history(image, point_history): - image_width, image_height = image.shape[1], image.shape[0] - - temp_point_history = copy.deepcopy(point_history) - - # Convert to relative coordinates - base_x, base_y = 0, 0 - for index, point in enumerate(temp_point_history): - if index == 0: - base_x, base_y = point[0], point[1] - - temp_point_history[index][0] = (temp_point_history[index][0] - - base_x) / image_width - temp_point_history[index][1] = (temp_point_history[index][1] - - base_y) / image_height - - # Convert to a one-dimensional list - temp_point_history = list( - itertools.chain.from_iterable(temp_point_history)) - - return temp_point_history - - -def logging_csv(number, mode, landmark_list, point_history_list): - if mode == 0: - pass - if mode == 1 and (0 <= number <= 9): - csv_path = 'model/keypoint_classifier/keypoint.csv' - with open(csv_path, 'a', newline="") as f: - writer = csv.writer(f) - writer.writerow([number, *landmark_list]) - if mode == 2 and (0 <= number <= 9): - csv_path = 'model/point_history_classifier/point_history.csv' - with open(csv_path, 'a', newline="") as f: - writer = csv.writer(f) - writer.writerow([number, *point_history_list]) - return - - -def draw_landmarks(image, landmark_point): - if len(landmark_point) > 0: - # Thumb - cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]), - (255, 255, 255), 2) - - # Index finger - cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]), - (255, 255, 255), 2) - - # Middle finger - cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]), - (255, 255, 255), 2) - - # Ring finger - cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]), - (255, 255, 255), 2) - - # Little finger - cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]), - (255, 255, 255), 2) - - # Palm - cv.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]), - (255, 255, 255), 2) - cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]), - (0, 0, 0), 6) - cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]), - (255, 255, 255), 2) - - # Key Points - for index, landmark in enumerate(landmark_point): - if index == 0: # 手首1 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 1: # 手首2 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 2: # 親指:付け根 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 3: # 親指:第1関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 4: # 親指:指先 - cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) - if index == 5: # 人差指:付け根 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 6: # 人差指:第2関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 7: # 人差指:第1関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 8: # 人差指:指先 - cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) - if index == 9: # 中指:付け根 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 10: # 中指:第2関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 11: # 中指:第1関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 12: # 中指:指先 - cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) - if index == 13: # 薬指:付け根 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 14: # 薬指:第2関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 15: # 薬指:第1関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 16: # 薬指:指先 - cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) - if index == 17: # 小指:付け根 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 18: # 小指:第2関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 19: # 小指:第1関節 - cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) - if index == 20: # 小指:指先 - cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), - -1) - cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) - - return image - - -def draw_bounding_rect(use_brect, image, brect): - if use_brect: - # Outer rectangle - cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[3]), - (0, 0, 0), 1) - - return image - - -def draw_info_text(image, brect, handedness, hand_sign_text, - finger_gesture_text): - cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[1] - 22), - (0, 0, 0), -1) - - info_text = handedness.classification[0].label[0:] - if hand_sign_text != "": - info_text = info_text + ':' + hand_sign_text - cv.putText(image, info_text, (brect[0] + 5, brect[1] - 4), - cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, cv.LINE_AA) - - if finger_gesture_text != "": - cv.putText(image, "Finger Gesture:" + finger_gesture_text, (10, 60), - cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 4, cv.LINE_AA) - cv.putText(image, "Finger Gesture:" + finger_gesture_text, (10, 60), - cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2, - cv.LINE_AA) - - return image - - -def draw_point_history(image, point_history): - for index, point in enumerate(point_history): - if point[0] != 0 and point[1] != 0: - cv.circle(image, (point[0], point[1]), 1 + int(index / 2), - (152, 251, 152), 2) - - return image - - -def draw_info(image, fps, mode, number): - cv.putText(image, "FPS:" + str(fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX, - 1.0, (0, 0, 0), 4, cv.LINE_AA) - cv.putText(image, "FPS:" + str(fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX, - 1.0, (255, 255, 255), 2, cv.LINE_AA) - - mode_string = ['Logging Key Point', 'Logging Point History'] - if 1 <= mode <= 2: - cv.putText(image, "MODE:" + mode_string[mode - 1], (10, 90), - cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, - cv.LINE_AA) - if 0 <= number <= 9: - cv.putText(image, "NUM:" + str(number), (10, 110), - cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, - cv.LINE_AA) - return image - - -if __name__ == '__main__': - main() +#!/usr/bin/env python +# -*- coding: utf-8 -*- +import csv +import copy +import argparse +import itertools +from collections import Counter +from collections import deque + +import cv2 as cv +import numpy as np +import mediapipe as mp + +from utils import CvFpsCalc +from model import KeyPointClassifier +from model import PointHistoryClassifier + + +def get_args(): + parser = argparse.ArgumentParser() + + parser.add_argument("--device", type=int, default=0) + parser.add_argument("--width", help='cap width', type=int, default=960) + parser.add_argument("--height", help='cap height', type=int, default=540) + + parser.add_argument('--use_static_image_mode', action='store_true') + parser.add_argument("--min_detection_confidence", + help='min_detection_confidence', + type=float, + default=0.7) + parser.add_argument("--min_tracking_confidence", + help='min_tracking_confidence', + type=int, + default=0.5) + + args = parser.parse_args() + + return args + + +def main(): + # Argument parsing ################################################################# + args = get_args() + + cap_device = args.device + cap_width = args.width + cap_height = args.height + + use_static_image_mode = args.use_static_image_mode + min_detection_confidence = args.min_detection_confidence + min_tracking_confidence = args.min_tracking_confidence + + use_brect = True + + # Camera preparation ############################################################### + cap = cv.VideoCapture(cap_device) + cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) + cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) + + # Model load ############################################################# + mp_hands = mp.solutions.hands + hands = mp_hands.Hands( + static_image_mode=use_static_image_mode, + max_num_hands=2, + min_detection_confidence=min_detection_confidence, + min_tracking_confidence=min_tracking_confidence, + ) + + keypoint_classifier = KeyPointClassifier() + + point_history_classifier = PointHistoryClassifier() + + # Read labels ########################################################### + with open('model/keypoint_classifier/keypoint_classifier_label.csv', + encoding='utf-8-sig') as f: + keypoint_classifier_labels = csv.reader(f) + keypoint_classifier_labels = [ + row[0] for row in keypoint_classifier_labels + ] + with open( + 'model/point_history_classifier/point_history_classifier_label.csv', + encoding='utf-8-sig') as f: + point_history_classifier_labels = csv.reader(f) + point_history_classifier_labels = [ + row[0] for row in point_history_classifier_labels + ] + + # FPS Measurement ######################################################## + cvFpsCalc = CvFpsCalc(buffer_len=10) + + # Coordinate history ################################################################# + history_length = 16 + point_history = deque(maxlen=history_length) + + # Finger gesture history ################################################ + finger_gesture_history = deque(maxlen=history_length) + + # ######################################################################## + mode = 0 + + while True: + fps = cvFpsCalc.get() + + # Process Key (ESC: end) ################################################# + key = cv.waitKey(10) + if key == 27: # ESC + break + number, mode = select_mode(key, mode) + + # Camera capture ##################################################### + ret, image = cap.read() + if not ret: + break + image = cv.flip(image, 1) # Mirror display + debug_image = copy.deepcopy(image) + + # Detection implementation ############################################################# + image = cv.cvtColor(image, cv.COLOR_BGR2RGB) + + image.flags.writeable = False + results = hands.process(image) + image.flags.writeable = True + + # #################################################################### + if results.multi_hand_landmarks is not None: + for hand_landmarks, handedness in zip(results.multi_hand_landmarks, + results.multi_handedness): + # Bounding box calculation + brect = calc_bounding_rect(debug_image, hand_landmarks) + # Landmark calculation + landmark_list = calc_landmark_list(debug_image, hand_landmarks) + + # Conversion to relative coordinates / normalized coordinates + pre_processed_landmark_list = pre_process_landmark( + landmark_list) + pre_processed_point_history_list = pre_process_point_history( + debug_image, point_history) + # Write to the dataset file + logging_csv(number, mode, pre_processed_landmark_list, + pre_processed_point_history_list) + + # Hand sign classification + hand_sign_id = keypoint_classifier(pre_processed_landmark_list) + if hand_sign_id == 2: # Point gesture + point_history.append(landmark_list[8]) + else: + point_history.append([0, 0]) + + # Finger gesture classification + finger_gesture_id = 0 + point_history_len = len(pre_processed_point_history_list) + if point_history_len == (history_length * 2): + finger_gesture_id = point_history_classifier( + pre_processed_point_history_list) + + # Calculates the gesture IDs in the latest detection + finger_gesture_history.append(finger_gesture_id) + most_common_fg_id = Counter( + finger_gesture_history).most_common() + + # Drawing part + debug_image = draw_bounding_rect(use_brect, debug_image, brect) + debug_image = draw_landmarks(debug_image, landmark_list) + debug_image = draw_info_text( + debug_image, + brect, + handedness, + keypoint_classifier_labels[hand_sign_id], + point_history_classifier_labels[most_common_fg_id[0][0]], + ) + else: + point_history.append([0, 0]) + + debug_image = draw_point_history(debug_image, point_history) + debug_image = draw_info(debug_image, fps, mode, number) + + # Screen reflection ############################################################# + cv.imshow('Hand Gesture Recognition', debug_image) + + cap.release() + cv.destroyAllWindows() + + +def select_mode(key, mode): + number = -1 + if 48 <= key <= 57: # 0 ~ 9 + number = key - 48 + if key == 110: # n + mode = 0 + if key == 107: # k + mode = 1 + if key == 104: # h + mode = 2 + return number, mode + + +def calc_bounding_rect(image, landmarks): + image_width, image_height = image.shape[1], image.shape[0] + + landmark_array = np.empty((0, 2), int) + + for _, landmark in enumerate(landmarks.landmark): + landmark_x = min(int(landmark.x * image_width), image_width - 1) + landmark_y = min(int(landmark.y * image_height), image_height - 1) + + landmark_point = [np.array((landmark_x, landmark_y))] + + landmark_array = np.append(landmark_array, landmark_point, axis=0) + + x, y, w, h = cv.boundingRect(landmark_array) + + return [x, y, x + w, y + h] + + +def calc_landmark_list(image, landmarks): + image_width, image_height = image.shape[1], image.shape[0] + + landmark_point = [] + + # Keypoint + for _, landmark in enumerate(landmarks.landmark): + landmark_x = min(int(landmark.x * image_width), image_width - 1) + landmark_y = min(int(landmark.y * image_height), image_height - 1) + # landmark_z = landmark.z + + landmark_point.append([landmark_x, landmark_y]) + + return landmark_point + + +def pre_process_landmark(landmark_list): + temp_landmark_list = copy.deepcopy(landmark_list) + + # Convert to relative coordinates + base_x, base_y = 0, 0 + for index, landmark_point in enumerate(temp_landmark_list): + if index == 0: + base_x, base_y = landmark_point[0], landmark_point[1] + + temp_landmark_list[index][0] = temp_landmark_list[index][0] - base_x + temp_landmark_list[index][1] = temp_landmark_list[index][1] - base_y + + # Convert to a one-dimensional list + temp_landmark_list = list( + itertools.chain.from_iterable(temp_landmark_list)) + + # Normalization + max_value = max(list(map(abs, temp_landmark_list))) + + def normalize_(n): + return n / max_value + + temp_landmark_list = list(map(normalize_, temp_landmark_list)) + + return temp_landmark_list + + +def pre_process_point_history(image, point_history): + image_width, image_height = image.shape[1], image.shape[0] + + temp_point_history = copy.deepcopy(point_history) + + # Convert to relative coordinates + base_x, base_y = 0, 0 + for index, point in enumerate(temp_point_history): + if index == 0: + base_x, base_y = point[0], point[1] + + temp_point_history[index][0] = (temp_point_history[index][0] - + base_x) / image_width + temp_point_history[index][1] = (temp_point_history[index][1] - + base_y) / image_height + + # Convert to a one-dimensional list + temp_point_history = list( + itertools.chain.from_iterable(temp_point_history)) + + return temp_point_history + + +def logging_csv(number, mode, landmark_list, point_history_list): + if mode == 0: + pass + if mode == 1 and (0 <= number <= 9): + csv_path = 'model/keypoint_classifier/keypoint.csv' + with open(csv_path, 'a', newline="") as f: + writer = csv.writer(f) + writer.writerow([number, *landmark_list]) + if mode == 2 and (0 <= number <= 9): + csv_path = 'model/point_history_classifier/point_history.csv' + with open(csv_path, 'a', newline="") as f: + writer = csv.writer(f) + writer.writerow([number, *point_history_list]) + return + + +def draw_landmarks(image, landmark_point): + if len(landmark_point) > 0: + # Thumb + cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]), + (255, 255, 255), 2) + + # Index finger + cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]), + (255, 255, 255), 2) + + # Middle finger + cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]), + (255, 255, 255), 2) + + # Ring finger + cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]), + (255, 255, 255), 2) + + # Little finger + cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]), + (255, 255, 255), 2) + + # Palm + cv.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]), + (255, 255, 255), 2) + cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]), + (0, 0, 0), 6) + cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]), + (255, 255, 255), 2) + + # Key Points + for index, landmark in enumerate(landmark_point): + if index == 0: # 手首1 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 1: # 手首2 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 2: # 親指:付け根 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 3: # 親指:第1関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 4: # 親指:指先 + cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) + if index == 5: # 人差指:付け根 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 6: # 人差指:第2関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 7: # 人差指:第1関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 8: # 人差指:指先 + cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) + if index == 9: # 中指:付け根 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 10: # 中指:第2関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 11: # 中指:第1関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 12: # 中指:指先 + cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) + if index == 13: # 薬指:付け根 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 14: # 薬指:第2関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 15: # 薬指:第1関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 16: # 薬指:指先 + cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) + if index == 17: # 小指:付け根 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 18: # 小指:第2関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 19: # 小指:第1関節 + cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1) + if index == 20: # 小指:指先 + cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255), + -1) + cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1) + + return image + + +def draw_bounding_rect(use_brect, image, brect): + if use_brect: + # Outer rectangle + cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[3]), + (0, 0, 0), 1) + + return image + + +def draw_info_text(image, brect, handedness, hand_sign_text, + finger_gesture_text): + cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[1] - 22), + (0, 0, 0), -1) + + info_text = handedness.classification[0].label[0:] + if hand_sign_text != "": + info_text = info_text + ':' + hand_sign_text + cv.putText(image, info_text, (brect[0] + 5, brect[1] - 4), + cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, cv.LINE_AA) + + if finger_gesture_text != "": + cv.putText(image, "Finger Gesture:" + finger_gesture_text, (10, 60), + cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 4, cv.LINE_AA) + cv.putText(image, "Finger Gesture:" + finger_gesture_text, (10, 60), + cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2, + cv.LINE_AA) + + return image + + +def draw_point_history(image, point_history): + for index, point in enumerate(point_history): + if point[0] != 0 and point[1] != 0: + cv.circle(image, (point[0], point[1]), 1 + int(index / 2), + (152, 251, 152), 2) + + return image + + +def draw_info(image, fps, mode, number): + cv.putText(image, "FPS:" + str(fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX, + 1.0, (0, 0, 0), 4, cv.LINE_AA) + cv.putText(image, "FPS:" + str(fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX, + 1.0, (255, 255, 255), 2, cv.LINE_AA) + + mode_string = ['Logging Key Point', 'Logging Point History'] + if 1 <= mode <= 2: + cv.putText(image, "MODE:" + mode_string[mode - 1], (10, 90), + cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, + cv.LINE_AA) + if 0 <= number <= 9: + cv.putText(image, "NUM:" + str(number), (10, 110), + cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, + cv.LINE_AA) + return image + + +if __name__ == '__main__': + main() diff --git a/keypoint_classification.ipynb b/keypoint_classification.ipynb index 563c0df1..1b1f4500 100644 --- a/keypoint_classification.ipynb +++ b/keypoint_classification.ipynb @@ -1,1019 +1,1649 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import csv\n", - "\n", - "import numpy as np\n", - "import tensorflow as tf\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "RANDOM_SEED = 42" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 各パス指定" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "dataset = 'model/keypoint_classifier/keypoint.csv'\n", - "model_save_path = 'model/keypoint_classifier/keypoint_classifier.hdf5'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 分類数設定" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "NUM_CLASSES = 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 学習データ読み込み" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (21 * 2) + 1)))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# モデル構築" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "model = tf.keras.models.Sequential([\n", - " tf.keras.layers.Input((21 * 2, )),\n", - " tf.keras.layers.Dropout(0.2),\n", - " tf.keras.layers.Dense(20, activation='relu'),\n", - " tf.keras.layers.Dropout(0.4),\n", - " tf.keras.layers.Dense(10, activation='relu'),\n", - " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dropout (Dropout) (None, 42) 0 \n", - "_________________________________________________________________\n", - "dense (Dense) (None, 20) 860 \n", - "_________________________________________________________________\n", - "dropout_1 (Dropout) (None, 20) 0 \n", - "_________________________________________________________________\n", - "dense_1 (Dense) (None, 10) 210 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 3) 33 \n", - "=================================================================\n", - "Total params: 1,103\n", - "Trainable params: 1,103\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary() # tf.keras.utils.plot_model(model, show_shapes=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# モデルチェックポイントのコールバック\n", - "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", - " model_save_path, verbose=1, save_weights_only=False)\n", - "# 早期打ち切り用コールバック\n", - "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# モデルコンパイル\n", - "model.compile(\n", - " optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", - " metrics=['accuracy']\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# モデル訓練" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 1.1295 - accuracy: 0.3203\n", - "Epoch 00001: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 11ms/step - loss: 1.1004 - accuracy: 0.3602 - val_loss: 1.0431 - val_accuracy: 0.5220\n", - "Epoch 2/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 1.0440 - accuracy: 0.4844\n", - "Epoch 00002: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 1.0503 - accuracy: 0.4297 - val_loss: 0.9953 - val_accuracy: 0.6397\n", - "Epoch 3/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 1.0043 - accuracy: 0.5312\n", - "Epoch 00003: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 1.0210 - accuracy: 0.4582 - val_loss: 0.9545 - val_accuracy: 0.6523\n", - "Epoch 4/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.9503 - accuracy: 0.5625\n", - "Epoch 00004: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.9906 - accuracy: 0.5022 - val_loss: 0.9168 - val_accuracy: 0.6721\n", - "Epoch 5/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.9562 - accuracy: 0.5469\n", - "Epoch 00005: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.9654 - accuracy: 0.5340 - val_loss: 0.8791 - val_accuracy: 0.7017\n", - "Epoch 6/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.9184 - accuracy: 0.5938\n", - "Epoch 00006: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.9256 - accuracy: 0.5577 - val_loss: 0.8344 - val_accuracy: 0.7269\n", - "Epoch 7/1000\n", - "27/27 [==============================] - ETA: 0s - loss: 0.9050 - accuracy: 0.5715\n", - "Epoch 00007: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.9050 - accuracy: 0.5715 - val_loss: 0.7887 - val_accuracy: 0.7646\n", - "Epoch 8/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.9135 - accuracy: 0.5547\n", - "Epoch 00008: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.8642 - accuracy: 0.5993 - val_loss: 0.7414 - val_accuracy: 0.7996\n", - "Epoch 9/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.8002 - accuracy: 0.6172\n", - "Epoch 00009: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.8258 - accuracy: 0.6263 - val_loss: 0.6881 - val_accuracy: 0.8149\n", - "Epoch 10/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.8056 - accuracy: 0.6328\n", - "Epoch 00010: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.8008 - accuracy: 0.6341 - val_loss: 0.6461 - val_accuracy: 0.8239\n", - "Epoch 11/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.7746 - accuracy: 0.6719\n", - "Epoch 00011: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.7771 - accuracy: 0.6491 - val_loss: 0.6143 - val_accuracy: 0.8266\n", - "Epoch 12/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.7242 - accuracy: 0.7109\n", - "Epoch 00012: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.7490 - accuracy: 0.6650 - val_loss: 0.5740 - val_accuracy: 0.8320\n", - "Epoch 13/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.8363 - accuracy: 0.6328\n", - "Epoch 00013: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.7397 - accuracy: 0.6731 - val_loss: 0.5465 - val_accuracy: 0.8446\n", - "Epoch 14/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.7634 - accuracy: 0.6172\n", - "Epoch 00014: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.7190 - accuracy: 0.6883 - val_loss: 0.5202 - val_accuracy: 0.8589\n", - "Epoch 15/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6699 - accuracy: 0.6875\n", - "Epoch 00015: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.7077 - accuracy: 0.6973 - val_loss: 0.4944 - val_accuracy: 0.8652\n", - "Epoch 16/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6447 - accuracy: 0.7500\n", - "Epoch 00016: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.6903 - accuracy: 0.6928 - val_loss: 0.4781 - val_accuracy: 0.8805\n", - "Epoch 17/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.7165 - accuracy: 0.6875\n", - "Epoch 00017: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.6919 - accuracy: 0.6973 - val_loss: 0.4696 - val_accuracy: 0.8895\n", - "Epoch 18/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6268 - accuracy: 0.7422\n", - "Epoch 00018: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.6498 - accuracy: 0.7303 - val_loss: 0.4440 - val_accuracy: 0.8967\n", - "Epoch 19/1000\n", - "27/27 [==============================] - ETA: 0s - loss: 0.6499 - accuracy: 0.7261\n", - "Epoch 00019: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.6499 - accuracy: 0.7261 - val_loss: 0.4254 - val_accuracy: 0.9039\n", - "Epoch 20/1000\n", - "26/27 [===========================>..] - ETA: 0s - loss: 0.6386 - accuracy: 0.7236\n", - "Epoch 00020: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.6415 - accuracy: 0.7228 - val_loss: 0.4082 - val_accuracy: 0.9093\n", - "Epoch 21/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5631 - accuracy: 0.7500\n", - "Epoch 00021: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.6484 - accuracy: 0.7180 - val_loss: 0.4114 - val_accuracy: 0.9173\n", - "Epoch 22/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5775 - accuracy: 0.7812\n", - "Epoch 00022: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.6154 - accuracy: 0.7480 - val_loss: 0.3907 - val_accuracy: 0.9218\n", - "Epoch 23/1000\n", - "25/27 [==========================>...] - ETA: 0s - loss: 0.5967 - accuracy: 0.7588\n", - "Epoch 00023: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.5971 - accuracy: 0.7582 - val_loss: 0.3763 - val_accuracy: 0.9227\n", - "Epoch 24/1000\n", - "26/27 [===========================>..] - ETA: 0s - loss: 0.6064 - accuracy: 0.7569\n", - "Epoch 00024: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.6066 - accuracy: 0.7567 - val_loss: 0.3714 - val_accuracy: 0.9254\n", - "Epoch 25/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6211 - accuracy: 0.7422\n", - "Epoch 00025: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 7ms/step - loss: 0.5954 - accuracy: 0.7579 - val_loss: 0.3611 - val_accuracy: 0.9353\n", - "Epoch 26/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5621 - accuracy: 0.7812\n", - "Epoch 00026: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5818 - accuracy: 0.7737 - val_loss: 0.3498 - val_accuracy: 0.9380\n", - "Epoch 27/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6431 - accuracy: 0.7500\n", - "Epoch 00027: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5882 - accuracy: 0.7648 - val_loss: 0.3355 - val_accuracy: 0.9416\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 28/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5633 - accuracy: 0.8203\n", - "Epoch 00028: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5746 - accuracy: 0.7702 - val_loss: 0.3273 - val_accuracy: 0.9425\n", - "Epoch 29/1000\n", - "27/27 [==============================] - ETA: 0s - loss: 0.5856 - accuracy: 0.7651\n", - "Epoch 00029: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.5856 - accuracy: 0.7651 - val_loss: 0.3237 - val_accuracy: 0.9434\n", - "Epoch 30/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5524 - accuracy: 0.7812\n", - "Epoch 00030: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5576 - accuracy: 0.7788 - val_loss: 0.3203 - val_accuracy: 0.9452\n", - "Epoch 31/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5643 - accuracy: 0.7578\n", - "Epoch 00031: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5450 - accuracy: 0.7773 - val_loss: 0.3111 - val_accuracy: 0.9443\n", - "Epoch 32/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5507 - accuracy: 0.7812\n", - "Epoch 00032: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 6ms/step - loss: 0.5574 - accuracy: 0.7860 - val_loss: 0.3017 - val_accuracy: 0.9434\n", - "Epoch 33/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5302 - accuracy: 0.8125\n", - "Epoch 00033: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5444 - accuracy: 0.7905 - val_loss: 0.2917 - val_accuracy: 0.9479\n", - "Epoch 34/1000\n", - "27/27 [==============================] - ETA: 0s - loss: 0.5421 - accuracy: 0.7848\n", - "Epoch 00034: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.5421 - accuracy: 0.7848 - val_loss: 0.2863 - val_accuracy: 0.9470\n", - "Epoch 35/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4633 - accuracy: 0.8125\n", - "Epoch 00035: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5331 - accuracy: 0.7980 - val_loss: 0.2804 - val_accuracy: 0.9506\n", - "Epoch 36/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5972 - accuracy: 0.7812\n", - "Epoch 00036: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5255 - accuracy: 0.7968 - val_loss: 0.2774 - val_accuracy: 0.9479\n", - "Epoch 37/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5851 - accuracy: 0.7578\n", - "Epoch 00037: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5284 - accuracy: 0.7947 - val_loss: 0.2681 - val_accuracy: 0.9497\n", - "Epoch 38/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4775 - accuracy: 0.7812\n", - "Epoch 00038: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5143 - accuracy: 0.7995 - val_loss: 0.2678 - val_accuracy: 0.9479\n", - "Epoch 39/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5495 - accuracy: 0.7812\n", - "Epoch 00039: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5250 - accuracy: 0.7935 - val_loss: 0.2657 - val_accuracy: 0.9470\n", - "Epoch 40/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5244 - accuracy: 0.8203\n", - "Epoch 00040: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5195 - accuracy: 0.8001 - val_loss: 0.2606 - val_accuracy: 0.9524\n", - "Epoch 41/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6996 - accuracy: 0.6953\n", - "Epoch 00041: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5304 - accuracy: 0.7956 - val_loss: 0.2572 - val_accuracy: 0.9515\n", - "Epoch 42/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4843 - accuracy: 0.8281\n", - "Epoch 00042: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5115 - accuracy: 0.8091 - val_loss: 0.2513 - val_accuracy: 0.9524\n", - "Epoch 43/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3830 - accuracy: 0.8594\n", - "Epoch 00043: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4939 - accuracy: 0.8133 - val_loss: 0.2423 - val_accuracy: 0.9551\n", - "Epoch 44/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4531 - accuracy: 0.7969\n", - "Epoch 00044: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4969 - accuracy: 0.8094 - val_loss: 0.2437 - val_accuracy: 0.9497\n", - "Epoch 45/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5198 - accuracy: 0.7812\n", - "Epoch 00045: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4961 - accuracy: 0.8106 - val_loss: 0.2441 - val_accuracy: 0.9533\n", - "Epoch 46/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5912 - accuracy: 0.7812\n", - "Epoch 00046: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4816 - accuracy: 0.8271 - val_loss: 0.2482 - val_accuracy: 0.9542\n", - "Epoch 47/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5292 - accuracy: 0.8047\n", - "Epoch 00047: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4789 - accuracy: 0.8127 - val_loss: 0.2313 - val_accuracy: 0.9569\n", - "Epoch 48/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4428 - accuracy: 0.8125\n", - "Epoch 00048: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4901 - accuracy: 0.8079 - val_loss: 0.2319 - val_accuracy: 0.9560\n", - "Epoch 49/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4565 - accuracy: 0.8281\n", - "Epoch 00049: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4893 - accuracy: 0.8154 - val_loss: 0.2300 - val_accuracy: 0.9533\n", - "Epoch 50/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5185 - accuracy: 0.7812\n", - "Epoch 00050: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.5079 - accuracy: 0.8112 - val_loss: 0.2386 - val_accuracy: 0.9524\n", - "Epoch 51/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4280 - accuracy: 0.8203\n", - "Epoch 00051: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4692 - accuracy: 0.8205 - val_loss: 0.2332 - val_accuracy: 0.9578\n", - "Epoch 52/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5299 - accuracy: 0.8203\n", - "Epoch 00052: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4907 - accuracy: 0.8145 - val_loss: 0.2336 - val_accuracy: 0.9569\n", - "Epoch 53/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5856 - accuracy: 0.7969\n", - "Epoch 00053: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4882 - accuracy: 0.8181 - val_loss: 0.2306 - val_accuracy: 0.9605\n", - "Epoch 54/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4466 - accuracy: 0.8047\n", - "Epoch 00054: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4641 - accuracy: 0.8235 - val_loss: 0.2218 - val_accuracy: 0.9596\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 55/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3760 - accuracy: 0.8672\n", - "Epoch 00055: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4630 - accuracy: 0.8241 - val_loss: 0.2242 - val_accuracy: 0.9578\n", - "Epoch 56/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4607 - accuracy: 0.7734\n", - "Epoch 00056: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4546 - accuracy: 0.8277 - val_loss: 0.2168 - val_accuracy: 0.9605\n", - "Epoch 57/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4946 - accuracy: 0.7969\n", - "Epoch 00057: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4675 - accuracy: 0.8214 - val_loss: 0.2211 - val_accuracy: 0.9578\n", - "Epoch 58/1000\n", - "25/27 [==========================>...] - ETA: 0s - loss: 0.4393 - accuracy: 0.8334\n", - "Epoch 00058: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.4418 - accuracy: 0.8325 - val_loss: 0.2115 - val_accuracy: 0.9632\n", - "Epoch 59/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4987 - accuracy: 0.7969\n", - "Epoch 00059: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4646 - accuracy: 0.8217 - val_loss: 0.2116 - val_accuracy: 0.9596\n", - "Epoch 60/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4904 - accuracy: 0.7812\n", - "Epoch 00060: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4576 - accuracy: 0.8232 - val_loss: 0.2108 - val_accuracy: 0.9569\n", - "Epoch 61/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5147 - accuracy: 0.8281\n", - "Epoch 00061: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4646 - accuracy: 0.8253 - val_loss: 0.2174 - val_accuracy: 0.9587\n", - "Epoch 62/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3386 - accuracy: 0.8750\n", - "Epoch 00062: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4433 - accuracy: 0.8310 - val_loss: 0.2145 - val_accuracy: 0.9560\n", - "Epoch 63/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4222 - accuracy: 0.8594\n", - "Epoch 00063: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4624 - accuracy: 0.8283 - val_loss: 0.2099 - val_accuracy: 0.9569\n", - "Epoch 64/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4376 - accuracy: 0.8203\n", - "Epoch 00064: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4601 - accuracy: 0.8235 - val_loss: 0.2075 - val_accuracy: 0.9641\n", - "Epoch 65/1000\n", - "27/27 [==============================] - ETA: 0s - loss: 0.4676 - accuracy: 0.8265\n", - "Epoch 00065: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4676 - accuracy: 0.8265 - val_loss: 0.2172 - val_accuracy: 0.9551\n", - "Epoch 66/1000\n", - "26/27 [===========================>..] - ETA: 0s - loss: 0.4434 - accuracy: 0.8368\n", - "Epoch 00066: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 1s 20ms/step - loss: 0.4429 - accuracy: 0.8370 - val_loss: 0.2154 - val_accuracy: 0.9578\n", - "Epoch 67/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4827 - accuracy: 0.8125\n", - "Epoch 00067: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4434 - accuracy: 0.8358 - val_loss: 0.2090 - val_accuracy: 0.9587\n", - "Epoch 68/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5810 - accuracy: 0.7656\n", - "Epoch 00068: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4892 - accuracy: 0.8049 - val_loss: 0.2160 - val_accuracy: 0.9578\n", - "Epoch 69/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4375 - accuracy: 0.7812\n", - "Epoch 00069: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4597 - accuracy: 0.8250 - val_loss: 0.2100 - val_accuracy: 0.9605\n", - "Epoch 70/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3782 - accuracy: 0.8359\n", - "Epoch 00070: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4408 - accuracy: 0.8349 - val_loss: 0.2087 - val_accuracy: 0.9596\n", - "Epoch 71/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4578 - accuracy: 0.8438\n", - "Epoch 00071: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4425 - accuracy: 0.8355 - val_loss: 0.2075 - val_accuracy: 0.9587\n", - "Epoch 72/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4267 - accuracy: 0.8438\n", - "Epoch 00072: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4581 - accuracy: 0.8292 - val_loss: 0.2059 - val_accuracy: 0.9623\n", - "Epoch 73/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4450 - accuracy: 0.8750\n", - "Epoch 00073: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4508 - accuracy: 0.8403 - val_loss: 0.2083 - val_accuracy: 0.9614\n", - "Epoch 74/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3858 - accuracy: 0.8906\n", - "Epoch 00074: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4472 - accuracy: 0.8361 - val_loss: 0.2043 - val_accuracy: 0.9650\n", - "Epoch 75/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4439 - accuracy: 0.8359\n", - "Epoch 00075: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4515 - accuracy: 0.8325 - val_loss: 0.2138 - val_accuracy: 0.9632\n", - "Epoch 76/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3983 - accuracy: 0.8203\n", - "Epoch 00076: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4462 - accuracy: 0.8334 - val_loss: 0.2065 - val_accuracy: 0.9623\n", - "Epoch 77/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5020 - accuracy: 0.8047\n", - "Epoch 00077: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4325 - accuracy: 0.8388 - val_loss: 0.2061 - val_accuracy: 0.9605\n", - "Epoch 78/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3215 - accuracy: 0.8672\n", - "Epoch 00078: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4394 - accuracy: 0.8391 - val_loss: 0.2054 - val_accuracy: 0.9578\n", - "Epoch 79/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4025 - accuracy: 0.8359\n", - "Epoch 00079: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4370 - accuracy: 0.8310 - val_loss: 0.2031 - val_accuracy: 0.9605\n", - "Epoch 80/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4505 - accuracy: 0.8125\n", - "Epoch 00080: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4419 - accuracy: 0.8340 - val_loss: 0.2010 - val_accuracy: 0.9596\n", - "Epoch 81/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5287 - accuracy: 0.7891\n", - "Epoch 00081: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4369 - accuracy: 0.8304 - val_loss: 0.2081 - val_accuracy: 0.9578\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 82/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5132 - accuracy: 0.8047\n", - "Epoch 00082: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4360 - accuracy: 0.8460 - val_loss: 0.2045 - val_accuracy: 0.9605\n", - "Epoch 83/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4239 - accuracy: 0.8125\n", - "Epoch 00083: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4511 - accuracy: 0.8313 - val_loss: 0.1984 - val_accuracy: 0.9605\n", - "Epoch 84/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4853 - accuracy: 0.8203\n", - "Epoch 00084: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4357 - accuracy: 0.8304 - val_loss: 0.2024 - val_accuracy: 0.9623\n", - "Epoch 85/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4782 - accuracy: 0.8125\n", - "Epoch 00085: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4320 - accuracy: 0.8424 - val_loss: 0.2015 - val_accuracy: 0.9587\n", - "Epoch 86/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3985 - accuracy: 0.8828\n", - "Epoch 00086: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4422 - accuracy: 0.8349 - val_loss: 0.2087 - val_accuracy: 0.9587\n", - "Epoch 87/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4810 - accuracy: 0.8359\n", - "Epoch 00087: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4393 - accuracy: 0.8316 - val_loss: 0.2105 - val_accuracy: 0.9605\n", - "Epoch 88/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4819 - accuracy: 0.8125\n", - "Epoch 00088: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4381 - accuracy: 0.8400 - val_loss: 0.2070 - val_accuracy: 0.9623\n", - "Epoch 89/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5002 - accuracy: 0.8281\n", - "Epoch 00089: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4428 - accuracy: 0.8343 - val_loss: 0.2044 - val_accuracy: 0.9605\n", - "Epoch 90/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3314 - accuracy: 0.9062\n", - "Epoch 00090: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4156 - accuracy: 0.8406 - val_loss: 0.2026 - val_accuracy: 0.9578\n", - "Epoch 91/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3850 - accuracy: 0.8594\n", - "Epoch 00091: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4125 - accuracy: 0.8439 - val_loss: 0.2058 - val_accuracy: 0.9551\n", - "Epoch 92/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4976 - accuracy: 0.7734\n", - "Epoch 00092: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4217 - accuracy: 0.8415 - val_loss: 0.1999 - val_accuracy: 0.9623\n", - "Epoch 93/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4155 - accuracy: 0.8516\n", - "Epoch 00093: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4166 - accuracy: 0.8412 - val_loss: 0.1947 - val_accuracy: 0.9614\n", - "Epoch 94/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3642 - accuracy: 0.8750\n", - "Epoch 00094: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4204 - accuracy: 0.8418 - val_loss: 0.2008 - val_accuracy: 0.9569\n", - "Epoch 95/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3773 - accuracy: 0.8594\n", - "Epoch 00095: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 4ms/step - loss: 0.4171 - accuracy: 0.8421 - val_loss: 0.1945 - val_accuracy: 0.9596\n", - "Epoch 96/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4086 - accuracy: 0.8672\n", - "Epoch 00096: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4124 - accuracy: 0.8520 - val_loss: 0.1930 - val_accuracy: 0.9614\n", - "Epoch 97/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.2914 - accuracy: 0.8906\n", - "Epoch 00097: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4303 - accuracy: 0.8367 - val_loss: 0.1958 - val_accuracy: 0.9569\n", - "Epoch 98/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4562 - accuracy: 0.8672\n", - "Epoch 00098: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4191 - accuracy: 0.8400 - val_loss: 0.1950 - val_accuracy: 0.9596\n", - "Epoch 99/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3967 - accuracy: 0.8438\n", - "Epoch 00099: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4260 - accuracy: 0.8418 - val_loss: 0.2044 - val_accuracy: 0.9551\n", - "Epoch 100/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4173 - accuracy: 0.8516\n", - "Epoch 00100: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4200 - accuracy: 0.8442 - val_loss: 0.2066 - val_accuracy: 0.9560\n", - "Epoch 101/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3892 - accuracy: 0.8438\n", - "Epoch 00101: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4245 - accuracy: 0.8418 - val_loss: 0.2058 - val_accuracy: 0.9578\n", - "Epoch 102/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.2965 - accuracy: 0.8984\n", - "Epoch 00102: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4100 - accuracy: 0.8445 - val_loss: 0.2093 - val_accuracy: 0.9578\n", - "Epoch 103/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4241 - accuracy: 0.8125\n", - "Epoch 00103: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4189 - accuracy: 0.8403 - val_loss: 0.1928 - val_accuracy: 0.9659\n", - "Epoch 104/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.6486 - accuracy: 0.7891\n", - "Epoch 00104: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4223 - accuracy: 0.8424 - val_loss: 0.1964 - val_accuracy: 0.9596\n", - "Epoch 105/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4589 - accuracy: 0.8281\n", - "Epoch 00105: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4199 - accuracy: 0.8418 - val_loss: 0.1971 - val_accuracy: 0.9623\n", - "Epoch 106/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4395 - accuracy: 0.8203\n", - "Epoch 00106: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4028 - accuracy: 0.8511 - val_loss: 0.1912 - val_accuracy: 0.9641\n", - "Epoch 107/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4061 - accuracy: 0.8594\n", - "Epoch 00107: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4093 - accuracy: 0.8556 - val_loss: 0.1854 - val_accuracy: 0.9668\n", - "Epoch 108/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4142 - accuracy: 0.8438\n", - "Epoch 00108: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4249 - accuracy: 0.8367 - val_loss: 0.2008 - val_accuracy: 0.9614\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 109/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5373 - accuracy: 0.7969\n", - "Epoch 00109: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4198 - accuracy: 0.8379 - val_loss: 0.1955 - val_accuracy: 0.9659\n", - "Epoch 110/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3872 - accuracy: 0.8281\n", - "Epoch 00110: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4077 - accuracy: 0.8505 - val_loss: 0.2020 - val_accuracy: 0.9614\n", - "Epoch 111/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3474 - accuracy: 0.8828\n", - "Epoch 00111: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4132 - accuracy: 0.8433 - val_loss: 0.1984 - val_accuracy: 0.9632\n", - "Epoch 112/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4205 - accuracy: 0.8672\n", - "Epoch 00112: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4182 - accuracy: 0.8397 - val_loss: 0.1973 - val_accuracy: 0.9614\n", - "Epoch 113/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4995 - accuracy: 0.8125\n", - "Epoch 00113: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4042 - accuracy: 0.8478 - val_loss: 0.1922 - val_accuracy: 0.9650\n", - "Epoch 114/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3640 - accuracy: 0.8750\n", - "Epoch 00114: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4072 - accuracy: 0.8430 - val_loss: 0.1868 - val_accuracy: 0.9596\n", - "Epoch 115/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5042 - accuracy: 0.8203\n", - "Epoch 00115: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.3999 - accuracy: 0.8535 - val_loss: 0.1966 - val_accuracy: 0.9605\n", - "Epoch 116/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.5355 - accuracy: 0.7422\n", - "Epoch 00116: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4174 - accuracy: 0.8433 - val_loss: 0.1919 - val_accuracy: 0.9659\n", - "Epoch 117/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3729 - accuracy: 0.8750\n", - "Epoch 00117: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4101 - accuracy: 0.8451 - val_loss: 0.1932 - val_accuracy: 0.9578\n", - "Epoch 118/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3193 - accuracy: 0.8828\n", - "Epoch 00118: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4260 - accuracy: 0.8379 - val_loss: 0.1865 - val_accuracy: 0.9641\n", - "Epoch 119/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3852 - accuracy: 0.8438\n", - "Epoch 00119: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.3797 - accuracy: 0.8622 - val_loss: 0.1900 - val_accuracy: 0.9677\n", - "Epoch 120/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3636 - accuracy: 0.8594\n", - "Epoch 00120: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4017 - accuracy: 0.8460 - val_loss: 0.1908 - val_accuracy: 0.9659\n", - "Epoch 121/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4521 - accuracy: 0.8359\n", - "Epoch 00121: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4023 - accuracy: 0.8538 - val_loss: 0.1935 - val_accuracy: 0.9659\n", - "Epoch 122/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4849 - accuracy: 0.8203\n", - "Epoch 00122: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4186 - accuracy: 0.8457 - val_loss: 0.1937 - val_accuracy: 0.9659\n", - "Epoch 123/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4021 - accuracy: 0.8516\n", - "Epoch 00123: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4156 - accuracy: 0.8478 - val_loss: 0.1907 - val_accuracy: 0.9632\n", - "Epoch 124/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3601 - accuracy: 0.8906\n", - "Epoch 00124: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.3948 - accuracy: 0.8550 - val_loss: 0.1862 - val_accuracy: 0.9605\n", - "Epoch 125/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.4446 - accuracy: 0.7891\n", - "Epoch 00125: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.4152 - accuracy: 0.8520 - val_loss: 0.1888 - val_accuracy: 0.9623\n", - "Epoch 126/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3733 - accuracy: 0.8438\n", - "Epoch 00126: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.3913 - accuracy: 0.8550 - val_loss: 0.1937 - val_accuracy: 0.9632\n", - "Epoch 127/1000\n", - " 1/27 [>.............................] - ETA: 0s - loss: 0.3000 - accuracy: 0.8828\n", - "Epoch 00127: saving model to model/keypoint_classifier\\keypoint_classifier.hdf5\n", - "27/27 [==============================] - 0s 3ms/step - loss: 0.3820 - accuracy: 0.8583 - val_loss: 0.1867 - val_accuracy: 0.9632\n", - "Epoch 00127: early stopping\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.fit(\n", - " X_train,\n", - " y_train,\n", - " epochs=1000,\n", - " batch_size=128,\n", - " validation_data=(X_test, y_test),\n", - " callbacks=[cp_callback, es_callback]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "9/9 [==============================] - 0s 1ms/step - loss: 0.1867 - accuracy: 0.9632\n" - ] - } - ], - "source": [ - "# モデル評価\n", - "val_loss, val_acc = model.evaluate(X_test, y_test, batch_size=128)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# 保存したモデルのロード\n", - "model = tf.keras.models.load_model(model_save_path)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.77297777 0.1697358 0.05728642]\n", - "0\n" - ] - } - ], - "source": [ - "# 推論テスト\n", - "predict_result = model.predict(np.array([X_test[0]]))\n", - "print(np.squeeze(predict_result))\n", - "print(np.argmax(np.squeeze(predict_result)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 混同行列" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAFmCAYAAAClXQeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfJklEQVR4nO3de5yWdZn48c81DKiA5llhYMWUPGQbtumalBnkibXQLQlfmSc22s3MyvLQK9d0s7VNM63NbVwPuJsoWaRrHlP8mZkgChKndPIQIIh4BExl5vn+/phbeyJmHmTumeeeez5vX/eL5/k+9+Ea58VcXN/re98TKSUkScpDQ70DkCSVh0lFkpQbk4okKTcmFUlSbkwqkqTcmFQkSbkxqUhSHxMR/SJiTkTckr3fNSJmRkRLRNwQEQOy8c2y9y3Z5yNqnbuxm2Nn3aonvBGmwAY1HVTvENQJ7yMrvnVvLIvczpXDz8v+279zY+I5DVgEbJW9/w5wSUrp+oj4L2AScHn254sppd0jYmK236c6O7GViiQVRaWt61sNETEM+Afgv7P3AYwBbsx2mQIclb0en70n+3xstn+HTCqS1Ld8HzgDqGTvtwNeSim1Zu+XAk3Z6yZgCUD2+cvZ/h0yqUhSUaRKl7eImBwRs6u2yW+ePiKOBFamlB7uri+h23sqkqSNVKnU3qeGlFIz0NzBx6OBj0fEOGBz2nsqlwJbR0RjVo0MA5Zl+y8DhgNLI6IReAfwfGfXt1KRpIJIqdLlrfPzp7NTSsNSSiOAicA9KaVPAzOAT2a7nQDclL2+OXtP9vk9qcbqEZOKJOlM4CsR0UJ7z+TKbPxKYLts/CvAWbVO5PSXJBVFDtNfGyuldC9wb/b6CWD/DezzGnDM2zmvSUWSiqLG9FVvYFKRpKLYiPtMis6kIklFUYJKxUa9JCk3ViqSVBQ92KjvLiYVSSqIWveZ9AYmFUkqCisVSVJuSlCp2KiXJOXGSkWSisL7VCRJuSnB9JdJRZKKogSNensqkqTcWKlIUlE4/SVJyk0Jpr9MKpJUECm5+kuSlJcSTH/ZqJck5cZKRZKKwp6KJCk3JZj+MqlIUlH4mBZJUm5KUKnYqJck5cZKRZKKwka9JCk3JZj+MqlIUlGUoFKxpyJJyo2ViiQVRQkqFZOKJBWED5SUJOXHSkWSlJsSrP6yUS9Jyo1JRZKKolLp+taJiNg8ImZFxKMRsSAizsvGr4mIJyNibraNysYjIi6LiJaImBcR76v1JTj9JUlF0f3TX68DY1JKayKiP3B/RNyWffa1lNKN6+1/BDAy2/4euDz7s0MmFUkqim5u1KeUErAme9s/21Inh4wHrs2OezAito6IISml5R0d4PSXJBVFqnR5i4jJETG7aptcfYmI6BcRc4GVwF0ppZnZRxdkU1yXRMRm2VgTsKTq8KXZWIesVCSpRFJKzUBzJ5+3AaMiYmtgekTsA5wNrAAGZMeeCZy/Kde3UpGkoujmRn21lNJLwAzg8JTS8tTudeBqYP9st2XA8KrDhmVjHTKpSFJRdP/qrx2yCoWI2AI4BFgcEUOysQCOAuZnh9wMHJ+tAjsAeLmzfgo4/SVJxdH9q7+GAFMioh/tRcW0lNItEXFPROwABDAX+Ods/1uBcUAL8CpwUq0LmFQkqY9IKc0D9t3A+JgO9k/AKW/nGk5/bUBbWxufPPEUPv+1cwFY+swKjv3slzhiwsmcfs6/s27dur/Y/64Z97PP6COYv+ixeoSrKg0NDcyaeTvTp19T71BUZdiwodx150959NEZzJ17D6d+YVK9QyqmHuypdBeTygb8709v4p0j/uat95dcfhWf+dRR3DbtKrbacjA/u+WOtz5bu/ZV/venN/G3e+9Rj1C1nlNPncTixS31DkPraW1t5YwzzuO97/0IH/zgx/jnfzmRvfYaWe+wiieHJcX1ZlJZz4qVz3HfA7P4xMcOAyClxMyHH+XQgz8EwPhxH+We+3771v4/uOJaTj7uGAZsNqAu8erPmpqGcMQRY7nq6uvqHYrWs2LFSubMbe/9rlmzlsWLH2fo0J3rHFUB9YVKJSL2jIgzs+e/XJa93qsngquH71z6Y77y+UlEtP+veenlV9hy8CAaG/sBsNMO27PyuecBWPj7FlasXMWHD9y/w/Op51x80Tc5++wLqFQ6u0FY9bbLLsMY9d59mDVrTr1DKZ6yVyoRcSZwPe0rAmZlWwBTI+Ks7g+vZ937m5lsu83WvHvP2mV5pVLhP37QzNdO/WwPRKZaxo0by8rnVjFnzu/qHYo6MWjQQKbdcAWnf/VcVq9eU/sA9Tq1Vn9NAt6dUvqLznREfA9YAFy4oYOyxwJMBvjRxd/in44/NodQu9+ceQu59/4H+fVvH+L1N9axdu2rXPj9/2L1mrW0trbR2NiPZ59bxY47bMfaV/9EyxNPc9IXzgBg1QsvcuqZ5/GD75zLPnu9q85fSd9z4Af248h/OJTDDxvD5ptvxlZbbck1V1/GiSd9sd6hKdPY2Mi0G65g6tTp/OIXt9U+oC8qwPRVV0X7irEOPoxYDByWUnp6vfFdgDtTSjW70+tWPdEr5yJmPTKPa6b+jB999zy+8o0L+OjBoxn30YM57z9+wB6778rEfzzyL/Y/8Qtn8NVT/qnXJZRBTQfVO4TcHXTQB/jylz/H0UefWO9Quqyzv5+9zdVXXcoLL7zE6V89t96h5GrdG8sir3P9adr5Xf6GbzHhX3OLZ1PU6ql8Cbg7Im6LiOZsux24Gzit26MriC//y8lce/10jphwMi+/8gr/eOSh9Q5J6lVGH7gfxx33ST7ykQOZ/dCdzH7oTg4/fIO3RvRtKXV9q7NOKxWAaO9Y78+fn0y5DHgoeyhZTb21UukryliplEmZKpWyyrVSmXpu1yuVY8+ra6VS8476lFIFeLAHYpEk9XI+pkWSiqIEjXqTiiQVRQHuM+kqk4okFUUJKhUf0yJJyo2ViiQVRQlW+5lUJKkoSjD9ZVKRpKIwqUiSclOC1V826iVJubFSkaSCSCX4XUAmFUkqCnsqkqTclKCnYlKRpKIowfSXjXpJUm6sVCSpKOypSJJyY1KRJOWmBM/+sqciScqNlYokFYXTX5Kk3JRgSbFJRZKKogQ3P9pTkaSiqKSub52IiM0jYlZEPBoRCyLivGx814iYGREtEXFDRAzIxjfL3rdkn4+o9SWYVCSp73gdGJNSei8wCjg8Ig4AvgNcklLaHXgRmJTtPwl4MRu/JNuvUyYVSSqIVKl0eev0/O3WZG/7Z1sCxgA3ZuNTgKOy1+Oz92Sfj42I6OwaJhVJKopunv4CiIh+ETEXWAncBfwBeCml1JrtshRoyl43AUsAss9fBrbr7PwmFUkqilTp8hYRkyNidtU2+S8ukVJbSmkUMAzYH9gzzy/B1V+SVCIppWageSP2eykiZgAfALaOiMasGhkGLMt2WwYMB5ZGRCPwDuD5zs5rpSJJRdH9q792iIits9dbAIcAi4AZwCez3U4Abspe35y9J/v8npQ6f5aMlYokFUX331E/BJgSEf1oLyqmpZRuiYiFwPUR8S1gDnBltv+VwP9ERAvwAjCx1gVMKpJUFN18R31KaR6w7wbGn6C9v7L++GvAMW/nGiYVSSoK76iXJOnPrFQkqSh8oKQkKS+17ojvDUwqklQUViqSpNyUIKnYqJck5cZKRZKKogRLik0qklQUJZj+MqlIUkGkEiQVeyqSpNxYqUhSUZSgUjGpSFJRePOjJCk3ViqSpNyUIKnYqJck5cZKRZIKosZv6u0VTCqSVBQlmP4yqUhSUZhUahs49EPdfQl1wSu3nVvvENSJkcdcVu8Q1IO8o16SpCpOf0lSUZSgUjGpSFJR9P4b6k0qklQU9lQkSapipSJJRVGCSsWkIklFYU9FkpSXMvRUTCqSVBQlqFRs1EuScmOlIkkFUYbpLysVSSqKSg5bJyJieETMiIiFEbEgIk7Lxr8ZEcsiYm62jas65uyIaImI30fEYbW+BCsVSSqI1P09lVbg9JTSIxGxJfBwRNyVfXZJSumi6p0jYm9gIvBuYCjwq4h4V0qpraMLWKlIUlF0c6WSUlqeUnoke70aWAQ0dXLIeOD6lNLrKaUngRZg/86uYVKRpD4oIkYA+wIzs6EvRMS8iLgqIrbJxpqAJVWHLaXzJGRSkaSiSJWubxExOSJmV22T179ORAwGfgZ8KaX0CnA5sBswClgOXLypX4M9FUkqihx6KimlZqC5o88joj/tCeUnKaWfZ8c8W/X5FcAt2dtlwPCqw4dlYx2yUpGkgsijUulMRARwJbAopfS9qvEhVbsdDczPXt8MTIyIzSJiV2AkMKuza1ipSFLfMRr4DPC7iJibjX0dODYiRgEJeAr4HEBKaUFETAMW0r5y7JTOVn6BSUWSCqO7lxSnlO4HYgMf3drJMRcAF2zsNUwqklQQPXCfSrczqUhSUaQNFRG9i0lFkgqiDJWKq78kSbmxUpGkgkgVp78kSTkpw/SXSUWSCiLZqJck5aUMlYqNeklSbqxUJKkgbNRLknKTev+vqDepSFJRlKFSsaciScqNlYokFUQZKhWTiiQVhD0VSVJurFQkSbkpwx31NuolSbmxUpGkgijDY1pMKpJUEJUSTH+ZVCSpIMrQUzGpSFJBlGH1l416SVJurFQkqSC8+VGSlJsyTH+ZVCSpIMqw+sueiiQpN1YqklQQLimWJOXGRn0fMmzYUK6+6lJ23Gl7Ukpc+d8/4Qc/vLLeYfU5r69r5eTv3cC61jZaKxU+uu9IPn/kaM659nYefnwJg7fYDIDzP3M4ew7f8a3j5j+1ghMuuo4LTz6SQ973rnqF36cMadqZS3/0bbbfcTtSSlw35Uau/PH/ste79+DC753DoEEDWfLHZzj1c2eyZvXaeodbCGXoqZhUNlJraytnnHEec+bOZ/DgQcyceTu/uvs+Fi16vN6h9SkDGvtxxWnHMHDzAaxra+Oki6/ng+/eFYAvH/3hDSaMtkqFS39xHwfsNaKHo+3b2lpbOf+c7zJ/3iIGDR7IbfdM4757H+C7l57Ht/71Ih58YDaf+vTR/POpJ3HRt39Y73ALoQzTXzbqN9KKFSuZM3c+AGvWrGXx4scZOnTnOkfV90QEAzcfAEBrW4XWtgpB538Rp947h7H7jmTbLQf2RIjKrHx2FfPnLQJg7ZpXefyxJ9h5yE68c/ddePCB2QDcd+9vGfexQ+oZpnK2yUklIk7KM5DeZJddhjHqvfswa9aceofSJ7VVKkz49rWMOfNyDthzF96z6xAAfnjz/RzzrSl898YZvLGuFYBnX1rNjLktTPjQqDpGrGHDh7LP3+7FnIfn8djiP3DYuDEAHDn+UP9xViWlrm+diYjhETEjIhZGxIKIOC0b3zYi7oqIx7M/t8nGIyIui4iWiJgXEe+r9TV0pVI5rwvH9lqDBg1k2g1XcPpXz2X16jX1DqdP6tfQwLSvH88dF0xm/lMraHlmFV8c/0F+ce5J/OTMT/Py2te4+q6HAPjuT+/ltKM/REND759W6K0GDtqC5imX8M2vf4c1q9dy+qnncPykidx6zw0MHjyIdevW1TvEwqik6PJWQytwekppb+AA4JSI2Bs4C7g7pTQSuDt7D3AEMDLbJgOX17pApz2ViJjX0UfATp0cNzkLgIZ+76ChYVCtOHqFxsZGpt1wBVOnTucXv7it3uH0eVsN3Jz99hjObxY8yQmH7AfAgP6NjP/APlz7q/bplYV/XMGZV/4SgJfW/on75z9Bv4ZgzKiRdYu7L2lsbKR5yveZfuMvue2WXwHwh8ef5NOfmAzArrvtwthDDqpniIXS3T2VlNJyYHn2enVELAKagPHAwdluU4B7gTOz8WtTSgl4MCK2jogh2Xk2qFajfifgMODF9cYDeKCTwJuBZoD+A5pKsEiu3RXNF7N4cQvfv7S53qH0WS+sfpXGfg1sNXBzXntjHQ8uepqTDt2P515eww7vGExKiRmPtrD70O0AuPXfPvvWsedcezsH7fNOE0oPuuiy82l57Amu+NG1b41tt/22PL/qBSKC007/HP9zzbQ6Rlgseaz+qv5HfaY5+5m8/n4jgH2BmcBOVYliBX8uGpqAJVWHLc3GNjmp3AIMTinN3UBA99Y4tlRGH7gfxx33SX73u4XMfuhOAL5xzoXcfvs9dY6sb1n18lrOufY2KpVEJSUO/bs9OOg9u/HZ70/jxTV/IqXEHsN25BvHfrTeofZ5+/39vnxy4sdZtOAx7vh/NwLwnX+7lF1324UTJk0E4LZbfsUNP5lezzBLp/of9R2JiMHAz4AvpZReifhzMksppYjY5GIgUjffbVOmSqWMXrnt3HqHoE6MPOayeoegGpa+MD+3OasHh/5jl39eHvDMzzuNJyL6014w3JFS+l429nvg4JTS8ogYAtybUtojIn6cvZ66/n4dnd8lxZJUEN3dqI/2kuRKYNGbCSVzM3BC9voE4Kaq8eOzVWAHAC93llDAmx8lqTB64ObH0cBngN9FxNxs7OvAhcC0iJgEPA1MyD67FRgHtACvAjVvJTGpSFIfkVK6Hzq8W3jsBvZPwClv5xomFUkqiEq9A8iBSUWSCiLVeORQb2BSkaSCqJRgraxJRZIKolKCSsUlxZKk3FipSFJB2FORJOXG1V+SpNyUoVKxpyJJyo2ViiQVhNNfkqTcmFQkSbkpQ0/FpCJJBVHp/TnFRr0kKT9WKpJUEGV4TItJRZIKogTPkzSpSFJRuPpLkpSbSvT+6S8b9ZKk3FipSFJB2FORJOXGnookKTfe/ChJUhUrFUkqCG9+lCTlxka9JCk3ZeipmFQkqSDKsPrLRr0kKTdWKpJUEPZUJEm5saciScqNPRVJUm4qOWy1RMRVEbEyIuZXjX0zIpZFxNxsG1f12dkR0RIRv4+Iw2qd36QiSX3LNcDhGxi/JKU0KttuBYiIvYGJwLuzY34UEf06O7lJRZIKIkXXt5rXSOk+4IWNDGk8cH1K6fWU0pNAC7B/ZweYVCSpIHpi+qsTX4iIedn02DbZWBOwpGqfpdlYh0wqklQQeSSViJgcEbOrtskbcenLgd2AUcBy4OJN/Rpc/SVJJZJSagaa3+Yxz775OiKuAG7J3i4DhlftOiwb65CViiQVRMph2xQRMaTq7dHAmyvDbgYmRsRmEbErMBKY1dm5rFQkqSB64ubHiJgKHAxsHxFLgXOBgyNiFO156SngcwAppQURMQ1YCLQCp6SU2jo7v0lFkgqiJ25+TCkdu4HhKzvZ/wLggo09v0lFkgrCO+olSapipSJJBeFTiiVJufEpxZKk3JShp2JSkaSCKMP0l416SVJuur1SKUPmLbN3jDu/3iGoEy9d9PF6h6AeVCnBT0ynvySpIOypSJJy0/vrFHsqkqQcWalIUkE4/SVJyo03P0qScuPqL0lSbnp/SrFRL0nKkZWKJBWEjXpJUm7sqUiSctP7U4pJRZIKowzTXzbqJUm5sVKRpIKwpyJJyk3vTykmFUkqDHsqkiRVsVKRpIJIJZgAM6lIUkGUYfrLpCJJBeHqL0lSbnp/SrFRL0nKkZWKJBVEGaa/rFQkqSAqOWy1RMRVEbEyIuZXjW0bEXdFxOPZn9tk4xERl0VES0TMi4j31Tq/SUWSCiLl8N9GuAY4fL2xs4C7U0ojgbuz9wBHACOzbTJwea2Tm1QkqSB6olJJKd0HvLDe8HhgSvZ6CnBU1fi1qd2DwNYRMaSz85tUJEk7pZSWZ69XADtlr5uAJVX7Lc3GOmRSkaSCyGP6KyImR8Tsqm3y24ohpUQXVje7+kuSCiKPO+pTSs1A89s87NmIGJJSWp5Nb63MxpcBw6v2G5aNdchKRZIKopJSl7dNdDNwQvb6BOCmqvHjs1VgBwAvV02TbZCViiT1IRExFTgY2D4ilgLnAhcC0yJiEvA0MCHb/VZgHNACvAqcVOv8JhVJKoieuPUxpXRsBx+N3cC+CTjl7ZzfpCJJBVGGO+pNKpJUEP4+FUlSbsrw+1Rc/SVJyo2ViiQVhD0VSVJu7KlIknJThp6KSUWSCiJt+h3xhWGjXpKUGysVSSoIG/WSpNzYU5Ek5aYMq7/sqUiScmOlIkkFYU9FkpSbMiwpNqlIUkHYqJck5cZGfR9z2KEHs2D+fSxeeD9nfO1t/TI09ZCGhgZmzbyd6dOvqXcofdLrrW0cN+0hJkydySeue5DLZz4BwPXzlvDx/3mAfX94Ny/+6Y2/Om7Bs6/w/v+8h7tanu3pkJUzK5WN1NDQwGWXXsDh445l6dLlPPjbW/m/W+5k0aLH6x2aqpx66iQWL25hy60G1zuUPmlAvwaaj9qXgQMaWddW4eSfP8zoXbZj1JCtOWjE9vzT9Ef+6pi2SuLSB1o44G+2rUPExVKGRn3NSiUi9oyIsRExeL3xw7svrOLZf799+cMfnuLJJ//IunXrmDbtJj7+scPqHZaqNDUN4YgjxnLV1dfVO5Q+KyIYOKD936qtlURrJRHAnjtsydCtttjgMdfPW8LY3XZg2y0G9GCkxZRS6vJWb50mlYj4InATcCowPyLGV3387e4MrGiGNu3MkqXPvPV+6bLlDB26cx0j0vouvuibnH32BVQq9f+L1Ze1VRKfun4mY6/6NQcM35b37PyODvddueY17nniOY55z7AejLC4KqQub/VWq1L5LPB3KaWjgIOBcyLitOyz6OigiJgcEbMjYnalsjaXQKXOjBs3lpXPrWLOnN/VO5Q+r19DcMPEv+eOE0cz/9mXaXl+TYf7fvfXj3PagbvTEB3+OFEvU6un0pBSWgOQUnoqIg4GboyIXegkqaSUmoFmgMYBTfVPnTl4ZtkKhg8b+tb7YU1DeOaZFXWMSNUO/MB+HPkPh3L4YWPYfPPN2GqrLbnm6ss48aQv1ju0PmvLzfrz/qZteODp59l9uw33uBaufIWz7pgPwEuvreP+p1fR2NDAR965Q0+GWhh9YfXXsxEx6s03WYI5EtgeeE83xlU4D82ey+6778qIEcPp378/EyaM5/9uubPeYSnzjXMu5J277ce79vgAx33mFGbc+xsTSh288Kc3WP36OgBea21j5pIXGLHNoA73/+UJo7k12z66246c/eE9+mxCAaik1OWt3mpVKscDrdUDKaVW4PiI+HG3RVVAbW1tnPalb3DrL6+jX0MD10y5gYULH6t3WFKhrFr7Ov/6q4VUUvsPyEN235GDdt2e6x5dwpRHnub5V99gwtSZfHDE9pw7Zq96h1s49U8JXRfdvVqgLNNfZeVcdrG9dNHH6x2Cahh46o9y+0s0umlMl39e/mbZPXX9S+3Nj5Kk3HjzoyQVRBGWBHeVSUWSCqIINy92lUlFkgrCSkWSlJu+cJ+KJEkbzUpFkgqiJ3oqEfEUsBpoA1pTSu+PiG2BG4ARwFPAhJTSi5tyfisVSSqIHnyg5EdSSqNSSu/P3p8F3J1SGgncnb3fJCYVSSqIOj76fjwwJXs9BThqU09kUpGkEql+Sny2TV5vlwTcGREPV322U0ppefZ6BbDTpl7fnookFUQeS4qrnxLfgQ+mlJZFxI7AXRGxeL3jU0RsciAmFUkqiJ5YUpxSWpb9uTIipgP70/5E+iEppeURMQRYuannd/pLkgqiux99HxGDImLLN18DhwLzgZuBE7LdTqD9N/5uEisVSSqIHqhUdgKmR/vTyRuB61JKt0fEQ8C0iJgEPA1M2NQLmFQkqY9IKT0BvHcD488DY/O4hklFkgqiCL+5satMKpJUEGV49pdJRZIKwkpFkpSbMlQqLimWJOXGSkWSCsLpL0lSbsow/WVSkaSCSKlS7xC6zJ6KJCk3ViqSVBB5PKW43kwqklQQPfHrhLubSUWSCsJKRZKUmzJUKjbqJUm5sVKRpILw5kdJUm68+VGSlJsy9FRMKpJUEGVY/WWjXpKUGysVSSoIp78kSblx9ZckKTdlqFTsqUiScmOlIkkFUYbVXyYVSSqIMkx/mVQkqSBs1EuSclOGx7TYqJck5cZKRZIKwukvSVJubNRLknJjT0WSlJuUUpe3WiLi8Ij4fUS0RMRZeX8NJhVJ6iMioh/wn8ARwN7AsRGxd57XcPpLkgqiB3oq+wMtKaUnACLiemA8sDCvC1ipSFJBpBy2GpqAJVXvl2Zjuen2SqX1jWXR3dfoSRExOaXUXO84tGF+f4rP71HH8vh5GRGTgclVQ809+f/bSuXtm1x7F9WR35/i83vUjVJKzSml91dt1QllGTC86v2wbCw3JhVJ6jseAkZGxK4RMQCYCNyc5wVs1EtSH5FSao2ILwB3AP2Aq1JKC/K8hknl7XMuuNj8/hSf36M6SindCtzaXeePMjwWQJJUDPZUJEm5Mam8Dd39eANtuoi4KiJWRsT8eseivxYRwyNiRkQsjIgFEXFavWNS93D6ayNljzd4DDiE9huGHgKOTSnldieqNl1EHASsAa5NKe1T73j0lyJiCDAkpfRIRGwJPAwc5d+f8rFS2XhvPd4gpfQG8ObjDVQAKaX7gBfqHYc2LKW0PKX0SPZ6NbCInO/kVjGYVDZetz/eQOoLImIEsC8ws86hqBuYVCT1mIgYDPwM+FJK6ZV6x6P8mVQ2Xrc/3kAqs4joT3tC+UlK6ef1jkfdw6Sy8br98QZSWUVEAFcCi1JK36t3POo+JpWNlFJqBd58vMEiYFrejzfQpouIqcBvgT0iYmlETKp3TPoLo4HPAGMiYm62jat3UMqfS4olSbmxUpEk5cakIknKjUlFkpQbk4okKTcmFUlSbkwqkqTcmFQkSbkxqUiScvP/AVplmVKXNqIBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Classification Report\n", - " precision recall f1-score support\n", - "\n", - " 0 1.00 0.99 0.99 410\n", - " 1 0.98 0.92 0.95 385\n", - " 2 0.91 0.99 0.95 318\n", - "\n", - " accuracy 0.96 1113\n", - " macro avg 0.96 0.96 0.96 1113\n", - "weighted avg 0.96 0.96 0.96 1113\n", - "\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "from sklearn.metrics import confusion_matrix, classification_report\n", - "\n", - "def print_confusion_matrix(y_true, y_pred, report=True):\n", - " labels = sorted(list(set(y_true)))\n", - " cmx_data = confusion_matrix(y_true, y_pred, labels=labels)\n", - " \n", - " df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels)\n", - " \n", - " fig, ax = plt.subplots(figsize=(7, 6))\n", - " sns.heatmap(df_cmx, annot=True, fmt='g' ,square=False)\n", - " ax.set_ylim(len(set(y_true)), 0)\n", - " plt.show()\n", - " \n", - " if report:\n", - " print('Classification Report')\n", - " print(classification_report(y_test, y_pred))\n", - "\n", - "Y_pred = model.predict(X_test)\n", - "y_pred = np.argmax(Y_pred, axis=1)\n", - "\n", - "print_confusion_matrix(y_test, y_pred)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tensorflow-Lite用のモデルへ変換" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# 推論専用のモデルとして保存\n", - "model.save(model_save_path, include_optimizer=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From d:\\00.envs\\20201208_mediapipe\\lib\\site-packages\\tensorflow\\python\\training\\tracking\\tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "This property should not be used in TensorFlow 2.0, as updates are applied automatically.\n", - "WARNING:tensorflow:From d:\\00.envs\\20201208_mediapipe\\lib\\site-packages\\tensorflow\\python\\training\\tracking\\tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "This property should not be used in TensorFlow 2.0, as updates are applied automatically.\n", - "INFO:tensorflow:Assets written to: C:\\Users\\sihit\\AppData\\Local\\Temp\\tmpy2l6ipxu\\assets\n" - ] - }, - { - "data": { - "text/plain": [ - "6224" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# モデルを変換(量子化)\n", - "tflite_save_path = 'model/keypoint_classifier/keypoint_classifier.tflite'\n", - "\n", - "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", - "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", - "tflite_quantized_model = converter.convert()\n", - "\n", - "open(tflite_save_path, 'wb').write(tflite_quantized_model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 推論テスト" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "interpreter = tf.lite.Interpreter(model_path=tflite_save_path)\n", - "interpreter.allocate_tensors()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# 入出力テンソルを取得\n", - "input_details = interpreter.get_input_details()\n", - "output_details = interpreter.get_output_details()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Wall time: 0 ns\n" - ] - } - ], - "source": [ - "%%time\n", - "# 推論実施\n", - "interpreter.invoke()\n", - "tflite_results = interpreter.get_tensor(output_details[0]['index'])" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.7729778 0.16973573 0.05728643]\n", - "0\n" - ] - } - ], - "source": [ - "print(np.squeeze(tflite_results))\n", - "print(np.argmax(np.squeeze(tflite_results)))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} +{ + "cells": [ + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:19.924935Z", + "start_time": "2025-04-06T15:09:19.920937Z" + } + }, + "source": [ + "import csv\n", + "\n", + "import numpy as np\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "RANDOM_SEED = 42" + ], + "outputs": [], + "execution_count": 23 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 各パス指定" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:19.940212Z", + "start_time": "2025-04-06T15:09:19.927609Z" + } + }, + "source": [ + "dataset = 'model/keypoint_classifier/keypoint.csv'\n", + "\n", + "# Define the path where the model checkpoint will be saved (with proper path format)\n", + "model_save_path = r'grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras'\n", + "\n", + "# モデルチェックポイントのコールバック\n", + "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", + " model_save_path, verbose=1, save_weights_only=False)\n", + "\n", + "# 早期打ち切り用コールバック\n", + "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)\n", + "\n", + "# You can now use these callbacks during model training:\n", + "# model.fit(X_train, y_train, epochs=100, callbacks=[cp_callback, es_callback])\n" + ], + "outputs": [], + "execution_count": 24 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 分類数設定" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:19.972212Z", + "start_time": "2025-04-06T15:09:19.957213Z" + } + }, + "source": "NUM_CLASSES = 6", + "outputs": [], + "execution_count": 25 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 学習データ読み込み" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.034998Z", + "start_time": "2025-04-06T15:09:19.989213Z" + } + }, + "source": [ + "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (21 * 2) + 1)))" + ], + "outputs": [], + "execution_count": 26 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.066452Z", + "start_time": "2025-04-06T15:09:20.051453Z" + } + }, + "source": "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))", + "outputs": [], + "execution_count": 27 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.097742Z", + "start_time": "2025-04-06T15:09:20.082910Z" + } + }, + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" + ], + "outputs": [], + "execution_count": 28 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# モデル構築" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.144382Z", + "start_time": "2025-04-06T15:09:20.114353Z" + } + }, + "source": [ + "model = tf.keras.models.Sequential([\n", + " tf.keras.layers.Input((21 * 2, )),\n", + " tf.keras.layers.Dropout(0.2),\n", + " tf.keras.layers.Dense(20, activation='relu'),\n", + " tf.keras.layers.Dropout(0.4),\n", + " tf.keras.layers.Dense(10, activation='relu'),\n", + " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", + "])" + ], + "outputs": [], + "execution_count": 29 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.175513Z", + "start_time": "2025-04-06T15:09:20.160513Z" + } + }, + "source": [ + "model.summary() # tf.keras.utils.plot_model(model, show_shapes=True)" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "\u001B[1mModel: \"sequential_1\"\u001B[0m\n" + ], + "text/html": [ + "
Model: \"sequential_1\"\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001B[1m \u001B[0m\u001B[1mLayer (type) \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1mOutput Shape \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1m Param #\u001B[0m\u001B[1m \u001B[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dropout_2 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m42\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_3 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m860\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_3 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_4 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m10\u001B[0m) │ \u001B[38;5;34m210\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_5 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m6\u001B[0m) │ \u001B[38;5;34m66\u001B[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ dropout_2 (Dropout)             │ (None, 42)             │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_3 (Dense)                 │ (None, 20)             │           860 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_3 (Dropout)             │ (None, 20)             │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_4 (Dense)                 │ (None, 10)             │           210 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_5 (Dense)                 │ (None, 6)              │            66 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Total params: \u001B[0m\u001B[38;5;34m1,136\u001B[0m (4.44 KB)\n" + ], + "text/html": [ + "
 Total params: 1,136 (4.44 KB)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Trainable params: \u001B[0m\u001B[38;5;34m1,136\u001B[0m (4.44 KB)\n" + ], + "text/html": [ + "
 Trainable params: 1,136 (4.44 KB)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Non-trainable params: \u001B[0m\u001B[38;5;34m0\u001B[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 30 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.205753Z", + "start_time": "2025-04-06T15:09:20.191513Z" + } + }, + "source": [ + "# モデルチェックポイントのコールバック\n", + "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", + " model_save_path, verbose=1, save_weights_only=False)\n", + "# 早期打ち切り用コールバック\n", + "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" + ], + "outputs": [], + "execution_count": 31 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:09:20.236662Z", + "start_time": "2025-04-06T15:09:20.221662Z" + } + }, + "source": [ + "# モデルコンパイル\n", + "model.compile(\n", + " optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")" + ], + "outputs": [], + "execution_count": 32 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# モデル訓練" + ] + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "ExecuteTime": { + "end_time": "2025-04-06T15:09:41.367793Z", + "start_time": "2025-04-06T15:09:20.252911Z" + } + }, + "source": [ + "model.fit(\n", + " X_train,\n", + " y_train,\n", + " epochs=1000,\n", + " batch_size=128,\n", + " validation_data=(X_test, y_test),\n", + " callbacks=[cp_callback, es_callback]\n", + ")" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m9s\u001B[0m 349ms/step - accuracy: 0.0625 - loss: 2.0222\n", + "Epoch 1: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 5ms/step - accuracy: 0.0773 - loss: 1.9791 - val_accuracy: 0.2572 - val_loss: 1.7389\n", + "Epoch 2/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.2109 - loss: 1.7578\n", + "Epoch 2: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.2342 - loss: 1.7574 - val_accuracy: 0.4045 - val_loss: 1.6213\n", + "Epoch 3/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.3438 - loss: 1.6719\n", + "Epoch 3: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.3428 - loss: 1.6372 - val_accuracy: 0.4080 - val_loss: 1.5256\n", + "Epoch 4/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.2734 - loss: 1.5504\n", + "Epoch 4: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.3527 - loss: 1.5440 - val_accuracy: 0.4568 - val_loss: 1.4422\n", + "Epoch 5/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.4219 - loss: 1.5022\n", + "Epoch 5: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4197 - loss: 1.4810 - val_accuracy: 0.5283 - val_loss: 1.3709\n", + "Epoch 6/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4062 - loss: 1.4479\n", + "Epoch 6: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4316 - loss: 1.4221 - val_accuracy: 0.5388 - val_loss: 1.3062\n", + "Epoch 7/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.3906 - loss: 1.4662\n", + "Epoch 7: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4453 - loss: 1.3788 - val_accuracy: 0.5632 - val_loss: 1.2367\n", + "Epoch 8/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.4688 - loss: 1.3573\n", + "Epoch 8: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4599 - loss: 1.3226 - val_accuracy: 0.5859 - val_loss: 1.1669\n", + "Epoch 9/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4609 - loss: 1.2706\n", + "Epoch 9: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4964 - loss: 1.2402 - val_accuracy: 0.6085 - val_loss: 1.0906\n", + "Epoch 10/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5234 - loss: 1.2300\n", + "Epoch 10: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5111 - loss: 1.1958 - val_accuracy: 0.6173 - val_loss: 1.0209\n", + "Epoch 11/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5391 - loss: 1.1013\n", + "Epoch 11: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5180 - loss: 1.1655 - val_accuracy: 0.6460 - val_loss: 0.9645\n", + "Epoch 12/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5625 - loss: 1.1091\n", + "Epoch 12: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5249 - loss: 1.1306 - val_accuracy: 0.6879 - val_loss: 0.9138\n", + "Epoch 13/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5469 - loss: 1.0677\n", + "Epoch 13: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5443 - loss: 1.1049 - val_accuracy: 0.7306 - val_loss: 0.8627\n", + "Epoch 14/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4766 - loss: 1.1436\n", + "Epoch 14: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5409 - loss: 1.0798 - val_accuracy: 0.7384 - val_loss: 0.8244\n", + "Epoch 15/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6328 - loss: 0.9176\n", + "Epoch 15: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5931 - loss: 1.0027 - val_accuracy: 0.7515 - val_loss: 0.7856\n", + "Epoch 16/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5547 - loss: 1.0661\n", + "Epoch 16: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5589 - loss: 1.0331 - val_accuracy: 0.7454 - val_loss: 0.7571\n", + "Epoch 17/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6797 - loss: 0.9360\n", + "Epoch 17: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5960 - loss: 0.9712 - val_accuracy: 0.7733 - val_loss: 0.7259\n", + "Epoch 18/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6406 - loss: 0.9400\n", + "Epoch 18: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5959 - loss: 0.9798 - val_accuracy: 0.7951 - val_loss: 0.6978\n", + "Epoch 19/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5547 - loss: 1.0904\n", + "Epoch 19: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6070 - loss: 0.9680 - val_accuracy: 0.8073 - val_loss: 0.6693\n", + "Epoch 20/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6641 - loss: 0.8054\n", + "Epoch 20: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6246 - loss: 0.9202 - val_accuracy: 0.8152 - val_loss: 0.6566\n", + "Epoch 21/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6328 - loss: 0.8654\n", + "Epoch 21: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6358 - loss: 0.8990 - val_accuracy: 0.8204 - val_loss: 0.6292\n", + "Epoch 22/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6484 - loss: 0.8508\n", + "Epoch 22: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6250 - loss: 0.9057 - val_accuracy: 0.8387 - val_loss: 0.6121\n", + "Epoch 23/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7031 - loss: 0.8454\n", + "Epoch 23: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6503 - loss: 0.8875 - val_accuracy: 0.8370 - val_loss: 0.5931\n", + "Epoch 24/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6328 - loss: 0.9711\n", + "Epoch 24: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6464 - loss: 0.8882 - val_accuracy: 0.8439 - val_loss: 0.5758\n", + "Epoch 25/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5938 - loss: 1.0014\n", + "Epoch 25: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6365 - loss: 0.9033 - val_accuracy: 0.8457 - val_loss: 0.5629\n", + "Epoch 26/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.8698\n", + "Epoch 26: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6581 - loss: 0.8625 - val_accuracy: 0.8527 - val_loss: 0.5412\n", + "Epoch 27/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6719 - loss: 0.7902\n", + "Epoch 27: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6539 - loss: 0.8377 - val_accuracy: 0.8596 - val_loss: 0.5299\n", + "Epoch 28/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6250 - loss: 0.8936\n", + "Epoch 28: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6500 - loss: 0.8674 - val_accuracy: 0.8666 - val_loss: 0.5235\n", + "Epoch 29/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7589\n", + "Epoch 29: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6793 - loss: 0.8141 - val_accuracy: 0.8684 - val_loss: 0.5123\n", + "Epoch 30/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6250 - loss: 0.8867\n", + "Epoch 30: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6680 - loss: 0.8343 - val_accuracy: 0.8710 - val_loss: 0.4999\n", + "Epoch 31/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.9109\n", + "Epoch 31: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6822 - loss: 0.8166 - val_accuracy: 0.8718 - val_loss: 0.4865\n", + "Epoch 32/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 19ms/step - accuracy: 0.7266 - loss: 0.7984\n", + "Epoch 32: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6785 - loss: 0.8232 - val_accuracy: 0.8666 - val_loss: 0.4868\n", + "Epoch 33/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7727\n", + "Epoch 33: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6978 - loss: 0.7922 - val_accuracy: 0.8701 - val_loss: 0.4778\n", + "Epoch 34/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.7798\n", + "Epoch 34: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7039 - loss: 0.7837 - val_accuracy: 0.8745 - val_loss: 0.4668\n", + "Epoch 35/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6172 - loss: 0.8736\n", + "Epoch 35: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6690 - loss: 0.8212 - val_accuracy: 0.8771 - val_loss: 0.4574\n", + "Epoch 36/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m2s\u001B[0m 78ms/step - accuracy: 0.6953 - loss: 0.6885\n", + "Epoch 36: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6829 - loss: 0.7829 - val_accuracy: 0.8858 - val_loss: 0.4441\n", + "Epoch 37/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.9419\n", + "Epoch 37: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6929 - loss: 0.8005 - val_accuracy: 0.8788 - val_loss: 0.4418\n", + "Epoch 38/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6905\n", + "Epoch 38: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7031 - loss: 0.7612 - val_accuracy: 0.8788 - val_loss: 0.4334\n", + "Epoch 39/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6797 - loss: 0.8182\n", + "Epoch 39: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6940 - loss: 0.7918 - val_accuracy: 0.9024 - val_loss: 0.4231\n", + "Epoch 40/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.8019\n", + "Epoch 40: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6839 - loss: 0.7694 - val_accuracy: 0.9032 - val_loss: 0.4128\n", + "Epoch 41/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6641 - loss: 0.9634\n", + "Epoch 41: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6943 - loss: 0.7897 - val_accuracy: 0.8858 - val_loss: 0.4184\n", + "Epoch 42/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5583\n", + "Epoch 42: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7236 - loss: 0.7259 - val_accuracy: 0.8963 - val_loss: 0.4082\n", + "Epoch 43/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6077\n", + "Epoch 43: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7190 - loss: 0.7192 - val_accuracy: 0.8971 - val_loss: 0.4047\n", + "Epoch 44/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7500 - loss: 0.6481\n", + "Epoch 44: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7204 - loss: 0.7467 - val_accuracy: 0.8875 - val_loss: 0.3997\n", + "Epoch 45/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6998\n", + "Epoch 45: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7163 - loss: 0.7389 - val_accuracy: 0.8945 - val_loss: 0.3954\n", + "Epoch 46/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.7393\n", + "Epoch 46: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7241 - loss: 0.7325 - val_accuracy: 0.9058 - val_loss: 0.3874\n", + "Epoch 47/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6875 - loss: 0.7247\n", + "Epoch 47: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7255 - loss: 0.7239 - val_accuracy: 0.9058 - val_loss: 0.3832\n", + "Epoch 48/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7031 - loss: 0.8094\n", + "Epoch 48: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7219 - loss: 0.7399 - val_accuracy: 0.8989 - val_loss: 0.3788\n", + "Epoch 49/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.7648\n", + "Epoch 49: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7165 - loss: 0.7276 - val_accuracy: 0.9067 - val_loss: 0.3711\n", + "Epoch 50/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7365\n", + "Epoch 50: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7138 - loss: 0.7280 - val_accuracy: 0.9102 - val_loss: 0.3631\n", + "Epoch 51/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.6953\n", + "Epoch 51: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7216 - loss: 0.7328 - val_accuracy: 0.9224 - val_loss: 0.3581\n", + "Epoch 52/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.8351\n", + "Epoch 52: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7119 - loss: 0.7598 - val_accuracy: 0.9198 - val_loss: 0.3601\n", + "Epoch 53/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 32ms/step - accuracy: 0.6172 - loss: 0.8963\n", + "Epoch 53: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7344 - loss: 0.7193 - val_accuracy: 0.9128 - val_loss: 0.3577\n", + "Epoch 54/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.9208\n", + "Epoch 54: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7072 - loss: 0.7303 - val_accuracy: 0.9180 - val_loss: 0.3552\n", + "Epoch 55/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6616\n", + "Epoch 55: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7326 - loss: 0.6984 - val_accuracy: 0.9250 - val_loss: 0.3499\n", + "Epoch 56/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6953 - loss: 0.7095\n", + "Epoch 56: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7316 - loss: 0.7040 - val_accuracy: 0.9085 - val_loss: 0.3502\n", + "Epoch 57/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7031 - loss: 0.6687\n", + "Epoch 57: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7242 - loss: 0.7037 - val_accuracy: 0.9276 - val_loss: 0.3347\n", + "Epoch 58/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5950\n", + "Epoch 58: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7249 - loss: 0.7049 - val_accuracy: 0.9224 - val_loss: 0.3354\n", + "Epoch 59/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6875 - loss: 0.7105\n", + "Epoch 59: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7245 - loss: 0.6898 - val_accuracy: 0.9076 - val_loss: 0.3374\n", + "Epoch 60/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.7135\n", + "Epoch 60: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7400 - loss: 0.6977 - val_accuracy: 0.9224 - val_loss: 0.3325\n", + "Epoch 61/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.7222\n", + "Epoch 61: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7408 - loss: 0.6716 - val_accuracy: 0.9303 - val_loss: 0.3204\n", + "Epoch 62/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.7629\n", + "Epoch 62: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7210 - loss: 0.7136 - val_accuracy: 0.9215 - val_loss: 0.3329\n", + "Epoch 63/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7956\n", + "Epoch 63: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7465 - loss: 0.6779 - val_accuracy: 0.9346 - val_loss: 0.3217\n", + "Epoch 64/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6471\n", + "Epoch 64: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7539 - loss: 0.6725 - val_accuracy: 0.9381 - val_loss: 0.3256\n", + "Epoch 65/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7500 - loss: 0.7264\n", + "Epoch 65: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7441 - loss: 0.7074 - val_accuracy: 0.9364 - val_loss: 0.3285\n", + "Epoch 66/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.7449\n", + "Epoch 66: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7395 - loss: 0.6798 - val_accuracy: 0.9364 - val_loss: 0.3282\n", + "Epoch 67/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7946\n", + "Epoch 67: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7326 - loss: 0.6987 - val_accuracy: 0.9268 - val_loss: 0.3246\n", + "Epoch 68/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.7638\n", + "Epoch 68: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7447 - loss: 0.6932 - val_accuracy: 0.9381 - val_loss: 0.3191\n", + "Epoch 69/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7415\n", + "Epoch 69: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7433 - loss: 0.6551 - val_accuracy: 0.9390 - val_loss: 0.3144\n", + "Epoch 70/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6711\n", + "Epoch 70: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7574 - loss: 0.6524 - val_accuracy: 0.9329 - val_loss: 0.3120\n", + "Epoch 71/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6528\n", + "Epoch 71: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7535 - loss: 0.6642 - val_accuracy: 0.9355 - val_loss: 0.3092\n", + "Epoch 72/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.7630\n", + "Epoch 72: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7539 - loss: 0.6652 - val_accuracy: 0.9416 - val_loss: 0.3094\n", + "Epoch 73/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.6481\n", + "Epoch 73: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7373 - loss: 0.6876 - val_accuracy: 0.9337 - val_loss: 0.3103\n", + "Epoch 74/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.7056\n", + "Epoch 74: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7349 - loss: 0.6759 - val_accuracy: 0.9425 - val_loss: 0.3064\n", + "Epoch 75/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6441\n", + "Epoch 75: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7595 - loss: 0.6500 - val_accuracy: 0.9547 - val_loss: 0.2963\n", + "Epoch 76/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5595\n", + "Epoch 76: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7595 - loss: 0.6330 - val_accuracy: 0.9538 - val_loss: 0.2915\n", + "Epoch 77/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.5877\n", + "Epoch 77: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7503 - loss: 0.6423 - val_accuracy: 0.9529 - val_loss: 0.2879\n", + "Epoch 78/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6448\n", + "Epoch 78: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7581 - loss: 0.6498 - val_accuracy: 0.9582 - val_loss: 0.2861\n", + "Epoch 79/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.7513\n", + "Epoch 79: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7631 - loss: 0.6580 - val_accuracy: 0.9529 - val_loss: 0.2934\n", + "Epoch 80/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 20ms/step - accuracy: 0.7422 - loss: 0.6293\n", + "Epoch 80: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7506 - loss: 0.6667 - val_accuracy: 0.9390 - val_loss: 0.2949\n", + "Epoch 81/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6252\n", + "Epoch 81: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7688 - loss: 0.6295 - val_accuracy: 0.9538 - val_loss: 0.2898\n", + "Epoch 82/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.6518\n", + "Epoch 82: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7460 - loss: 0.6422 - val_accuracy: 0.9573 - val_loss: 0.2781\n", + "Epoch 83/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.6937\n", + "Epoch 83: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7439 - loss: 0.6609 - val_accuracy: 0.9503 - val_loss: 0.2829\n", + "Epoch 84/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5661\n", + "Epoch 84: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7619 - loss: 0.6163 - val_accuracy: 0.9660 - val_loss: 0.2658\n", + "Epoch 85/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.5787\n", + "Epoch 85: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7615 - loss: 0.6401 - val_accuracy: 0.9660 - val_loss: 0.2697\n", + "Epoch 86/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.5988\n", + "Epoch 86: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7484 - loss: 0.6443 - val_accuracy: 0.9590 - val_loss: 0.2783\n", + "Epoch 87/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7500 - loss: 0.6345\n", + "Epoch 87: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7585 - loss: 0.6592 - val_accuracy: 0.9538 - val_loss: 0.2806\n", + "Epoch 88/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.7078\n", + "Epoch 88: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7586 - loss: 0.6501 - val_accuracy: 0.9582 - val_loss: 0.2738\n", + "Epoch 89/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6031\n", + "Epoch 89: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7550 - loss: 0.6698 - val_accuracy: 0.9564 - val_loss: 0.2767\n", + "Epoch 90/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6736\n", + "Epoch 90: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7487 - loss: 0.6666 - val_accuracy: 0.9564 - val_loss: 0.2798\n", + "Epoch 91/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6264\n", + "Epoch 91: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7578 - loss: 0.6019 - val_accuracy: 0.9520 - val_loss: 0.2776\n", + "Epoch 92/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6732\n", + "Epoch 92: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7549 - loss: 0.6583 - val_accuracy: 0.9643 - val_loss: 0.2647\n", + "Epoch 93/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.5483\n", + "Epoch 93: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7742 - loss: 0.6153 - val_accuracy: 0.9547 - val_loss: 0.2792\n", + "Epoch 94/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.7038\n", + "Epoch 94: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7667 - loss: 0.6522 - val_accuracy: 0.9538 - val_loss: 0.2709\n", + "Epoch 95/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6660\n", + "Epoch 95: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7662 - loss: 0.6430 - val_accuracy: 0.9582 - val_loss: 0.2694\n", + "Epoch 96/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5784\n", + "Epoch 96: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7763 - loss: 0.6094 - val_accuracy: 0.9625 - val_loss: 0.2579\n", + "Epoch 97/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.7181\n", + "Epoch 97: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7669 - loss: 0.6159 - val_accuracy: 0.9564 - val_loss: 0.2700\n", + "Epoch 98/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5916\n", + "Epoch 98: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7673 - loss: 0.6355 - val_accuracy: 0.9590 - val_loss: 0.2620\n", + "Epoch 99/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5287\n", + "Epoch 99: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7845 - loss: 0.6140 - val_accuracy: 0.9608 - val_loss: 0.2598\n", + "Epoch 100/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6493\n", + "Epoch 100: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7731 - loss: 0.6279 - val_accuracy: 0.9582 - val_loss: 0.2605\n", + "Epoch 101/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.8103\n", + "Epoch 101: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7497 - loss: 0.6695 - val_accuracy: 0.9582 - val_loss: 0.2614\n", + "Epoch 102/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.6126\n", + "Epoch 102: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7838 - loss: 0.6041 - val_accuracy: 0.9608 - val_loss: 0.2557\n", + "Epoch 103/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.7509\n", + "Epoch 103: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7654 - loss: 0.6345 - val_accuracy: 0.9625 - val_loss: 0.2576\n", + "Epoch 104/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5592\n", + "Epoch 104: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7920 - loss: 0.5897 - val_accuracy: 0.9634 - val_loss: 0.2491\n", + "Epoch 105/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8281 - loss: 0.4830\n", + "Epoch 105: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7775 - loss: 0.6139 - val_accuracy: 0.9599 - val_loss: 0.2533\n", + "Epoch 106/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.7242\n", + "Epoch 106: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7698 - loss: 0.6416 - val_accuracy: 0.9625 - val_loss: 0.2566\n", + "Epoch 107/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5654\n", + "Epoch 107: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7763 - loss: 0.6012 - val_accuracy: 0.9634 - val_loss: 0.2449\n", + "Epoch 108/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.6409\n", + "Epoch 108: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7752 - loss: 0.6369 - val_accuracy: 0.9651 - val_loss: 0.2491\n", + "Epoch 109/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.4575\n", + "Epoch 109: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7760 - loss: 0.6142 - val_accuracy: 0.9704 - val_loss: 0.2486\n", + "Epoch 110/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.5242\n", + "Epoch 110: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7705 - loss: 0.6172 - val_accuracy: 0.9686 - val_loss: 0.2460\n", + "Epoch 111/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8281 - loss: 0.5177\n", + "Epoch 111: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7850 - loss: 0.5857 - val_accuracy: 0.9669 - val_loss: 0.2394\n", + "Epoch 112/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5381\n", + "Epoch 112: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7873 - loss: 0.5639 - val_accuracy: 0.9721 - val_loss: 0.2352\n", + "Epoch 113/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5871\n", + "Epoch 113: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7702 - loss: 0.6352 - val_accuracy: 0.9634 - val_loss: 0.2433\n", + "Epoch 114/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5980\n", + "Epoch 114: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7894 - loss: 0.5816 - val_accuracy: 0.9669 - val_loss: 0.2301\n", + "Epoch 115/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5700\n", + "Epoch 115: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7765 - loss: 0.5956 - val_accuracy: 0.9721 - val_loss: 0.2284\n", + "Epoch 116/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5322\n", + "Epoch 116: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7893 - loss: 0.5923 - val_accuracy: 0.9616 - val_loss: 0.2418\n", + "Epoch 117/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6899\n", + "Epoch 117: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7638 - loss: 0.6227 - val_accuracy: 0.9555 - val_loss: 0.2467\n", + "Epoch 118/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7812 - loss: 0.5865\n", + "Epoch 118: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7773 - loss: 0.5944 - val_accuracy: 0.9677 - val_loss: 0.2354\n", + "Epoch 119/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5463\n", + "Epoch 119: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7695 - loss: 0.6114 - val_accuracy: 0.9677 - val_loss: 0.2298\n", + "Epoch 120/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.6110\n", + "Epoch 120: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7693 - loss: 0.6375 - val_accuracy: 0.9686 - val_loss: 0.2340\n", + "Epoch 121/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5587\n", + "Epoch 121: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7871 - loss: 0.5946 - val_accuracy: 0.9643 - val_loss: 0.2286\n", + "Epoch 122/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.7024\n", + "Epoch 122: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7688 - loss: 0.6131 - val_accuracy: 0.9677 - val_loss: 0.2359\n", + "Epoch 123/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5494\n", + "Epoch 123: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7797 - loss: 0.5854 - val_accuracy: 0.9651 - val_loss: 0.2450\n", + "Epoch 124/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5866\n", + "Epoch 124: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7832 - loss: 0.5969 - val_accuracy: 0.9651 - val_loss: 0.2334\n", + "Epoch 125/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8359 - loss: 0.4527\n", + "Epoch 125: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7991 - loss: 0.5792 - val_accuracy: 0.9704 - val_loss: 0.2312\n", + "Epoch 126/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.6996\n", + "Epoch 126: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7721 - loss: 0.6165 - val_accuracy: 0.9669 - val_loss: 0.2352\n", + "Epoch 127/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.6257\n", + "Epoch 127: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7860 - loss: 0.5916 - val_accuracy: 0.9695 - val_loss: 0.2305\n", + "Epoch 128/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.7016\n", + "Epoch 128: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7817 - loss: 0.5928 - val_accuracy: 0.9643 - val_loss: 0.2326\n", + "Epoch 129/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6301\n", + "Epoch 129: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7720 - loss: 0.6227 - val_accuracy: 0.9634 - val_loss: 0.2300\n", + "Epoch 130/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5741\n", + "Epoch 130: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7778 - loss: 0.6205 - val_accuracy: 0.9643 - val_loss: 0.2281\n", + "Epoch 131/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5895\n", + "Epoch 131: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7834 - loss: 0.5788 - val_accuracy: 0.9686 - val_loss: 0.2241\n", + "Epoch 132/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6158\n", + "Epoch 132: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7946 - loss: 0.5877 - val_accuracy: 0.9686 - val_loss: 0.2217\n", + "Epoch 133/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5522\n", + "Epoch 133: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7835 - loss: 0.6043 - val_accuracy: 0.9669 - val_loss: 0.2245\n", + "Epoch 134/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.6516\n", + "Epoch 134: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7921 - loss: 0.5971 - val_accuracy: 0.9677 - val_loss: 0.2298\n", + "Epoch 135/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5581\n", + "Epoch 135: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7910 - loss: 0.5781 - val_accuracy: 0.9686 - val_loss: 0.2268\n", + "Epoch 136/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5913\n", + "Epoch 136: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7888 - loss: 0.5802 - val_accuracy: 0.9651 - val_loss: 0.2260\n", + "Epoch 137/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5728\n", + "Epoch 137: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7920 - loss: 0.5850 - val_accuracy: 0.9712 - val_loss: 0.2189\n", + "Epoch 138/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6518\n", + "Epoch 138: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7768 - loss: 0.6069 - val_accuracy: 0.9616 - val_loss: 0.2280\n", + "Epoch 139/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.6347\n", + "Epoch 139: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7782 - loss: 0.6206 - val_accuracy: 0.9677 - val_loss: 0.2307\n", + "Epoch 140/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5122\n", + "Epoch 140: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7862 - loss: 0.5758 - val_accuracy: 0.9721 - val_loss: 0.2253\n", + "Epoch 141/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.5543\n", + "Epoch 141: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7889 - loss: 0.5646 - val_accuracy: 0.9686 - val_loss: 0.2281\n", + "Epoch 142/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5501\n", + "Epoch 142: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7812 - loss: 0.5992 - val_accuracy: 0.9721 - val_loss: 0.2231\n", + "Epoch 143/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5760\n", + "Epoch 143: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7969 - loss: 0.5820 - val_accuracy: 0.9634 - val_loss: 0.2256\n", + "Epoch 144/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7812 - loss: 0.6266\n", + "Epoch 144: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7913 - loss: 0.5928 - val_accuracy: 0.9669 - val_loss: 0.2318\n", + "Epoch 145/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5853\n", + "Epoch 145: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7865 - loss: 0.5908 - val_accuracy: 0.9677 - val_loss: 0.2295\n", + "Epoch 146/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5663\n", + "Epoch 146: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7903 - loss: 0.5989 - val_accuracy: 0.9677 - val_loss: 0.2338\n", + "Epoch 147/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6402\n", + "Epoch 147: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8003 - loss: 0.5763 - val_accuracy: 0.9677 - val_loss: 0.2298\n", + "Epoch 148/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5296\n", + "Epoch 148: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7952 - loss: 0.5684 - val_accuracy: 0.9686 - val_loss: 0.2288\n", + "Epoch 149/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5079\n", + "Epoch 149: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8098 - loss: 0.5733 - val_accuracy: 0.9660 - val_loss: 0.2221\n", + "Epoch 150/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5778\n", + "Epoch 150: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7880 - loss: 0.5866 - val_accuracy: 0.9712 - val_loss: 0.2232\n", + "Epoch 151/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5207\n", + "Epoch 151: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7791 - loss: 0.5876 - val_accuracy: 0.9712 - val_loss: 0.2222\n", + "Epoch 152/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5847\n", + "Epoch 152: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7905 - loss: 0.5643 - val_accuracy: 0.9721 - val_loss: 0.2134\n", + "Epoch 153/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.5806\n", + "Epoch 153: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7878 - loss: 0.5723 - val_accuracy: 0.9730 - val_loss: 0.2110\n", + "Epoch 154/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.4988\n", + "Epoch 154: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7963 - loss: 0.5629 - val_accuracy: 0.9704 - val_loss: 0.2186\n", + "Epoch 155/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5500\n", + "Epoch 155: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7978 - loss: 0.5776 - val_accuracy: 0.9730 - val_loss: 0.2155\n", + "Epoch 156/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.4869\n", + "Epoch 156: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7828 - loss: 0.6050 - val_accuracy: 0.9695 - val_loss: 0.2208\n", + "Epoch 157/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7578 - loss: 0.6877\n", + "Epoch 157: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7981 - loss: 0.5727 - val_accuracy: 0.9695 - val_loss: 0.2170\n", + "Epoch 158/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5425\n", + "Epoch 158: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7884 - loss: 0.5843 - val_accuracy: 0.9704 - val_loss: 0.2182\n", + "Epoch 159/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5415\n", + "Epoch 159: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7896 - loss: 0.5767 - val_accuracy: 0.9721 - val_loss: 0.2196\n", + "Epoch 160/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.6685\n", + "Epoch 160: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7913 - loss: 0.5859 - val_accuracy: 0.9738 - val_loss: 0.2158\n", + "Epoch 161/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5529\n", + "Epoch 161: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7805 - loss: 0.5922 - val_accuracy: 0.9695 - val_loss: 0.2194\n", + "Epoch 162/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.4853\n", + "Epoch 162: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7974 - loss: 0.5612 - val_accuracy: 0.9712 - val_loss: 0.2151\n", + "Epoch 163/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.5796\n", + "Epoch 163: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8022 - loss: 0.5668 - val_accuracy: 0.9677 - val_loss: 0.2146\n", + "Epoch 164/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6269\n", + "Epoch 164: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7851 - loss: 0.5766 - val_accuracy: 0.9704 - val_loss: 0.2156\n", + "Epoch 165/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6097\n", + "Epoch 165: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7952 - loss: 0.5745 - val_accuracy: 0.9721 - val_loss: 0.2215\n", + "Epoch 166/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8516 - loss: 0.4536\n", + "Epoch 166: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8142 - loss: 0.5531 - val_accuracy: 0.9686 - val_loss: 0.2156\n", + "Epoch 167/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8438 - loss: 0.5172\n", + "Epoch 167: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8020 - loss: 0.5605 - val_accuracy: 0.9730 - val_loss: 0.2079\n", + "Epoch 168/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8203 - loss: 0.5927\n", + "Epoch 168: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8056 - loss: 0.5605 - val_accuracy: 0.9695 - val_loss: 0.2079\n", + "Epoch 169/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 20ms/step - accuracy: 0.8047 - loss: 0.6494\n", + "Epoch 169: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7937 - loss: 0.5838 - val_accuracy: 0.9695 - val_loss: 0.2152\n", + "Epoch 170/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5463\n", + "Epoch 170: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8001 - loss: 0.5745 - val_accuracy: 0.9669 - val_loss: 0.2130\n", + "Epoch 171/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.5899\n", + "Epoch 171: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7972 - loss: 0.5781 - val_accuracy: 0.9677 - val_loss: 0.2113\n", + "Epoch 172/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.4425\n", + "Epoch 172: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7996 - loss: 0.5530 - val_accuracy: 0.9695 - val_loss: 0.2084\n", + "Epoch 173/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5852\n", + "Epoch 173: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7948 - loss: 0.5861 - val_accuracy: 0.9721 - val_loss: 0.2094\n", + "Epoch 174/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.6026\n", + "Epoch 174: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7899 - loss: 0.5752 - val_accuracy: 0.9730 - val_loss: 0.2062\n", + "Epoch 175/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8203 - loss: 0.4570\n", + "Epoch 175: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8049 - loss: 0.5561 - val_accuracy: 0.9730 - val_loss: 0.2061\n", + "Epoch 176/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.4919\n", + "Epoch 176: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8105 - loss: 0.5427 - val_accuracy: 0.9747 - val_loss: 0.1993\n", + "Epoch 177/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4823\n", + "Epoch 177: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7987 - loss: 0.5707 - val_accuracy: 0.9721 - val_loss: 0.2064\n", + "Epoch 178/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.4889\n", + "Epoch 178: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7993 - loss: 0.5592 - val_accuracy: 0.9747 - val_loss: 0.2077\n", + "Epoch 179/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5535\n", + "Epoch 179: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7976 - loss: 0.5620 - val_accuracy: 0.9738 - val_loss: 0.2032\n", + "Epoch 180/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5824\n", + "Epoch 180: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7998 - loss: 0.5565 - val_accuracy: 0.9704 - val_loss: 0.2099\n", + "Epoch 181/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.4362\n", + "Epoch 181: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8115 - loss: 0.5441 - val_accuracy: 0.9730 - val_loss: 0.2129\n", + "Epoch 182/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8672 - loss: 0.4783\n", + "Epoch 182: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8001 - loss: 0.5569 - val_accuracy: 0.9721 - val_loss: 0.2149\n", + "Epoch 183/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5520\n", + "Epoch 183: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7988 - loss: 0.5608 - val_accuracy: 0.9712 - val_loss: 0.2111\n", + "Epoch 184/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8516 - loss: 0.4611\n", + "Epoch 184: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8002 - loss: 0.5642 - val_accuracy: 0.9712 - val_loss: 0.2075\n", + "Epoch 185/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5170\n", + "Epoch 185: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7906 - loss: 0.5788 - val_accuracy: 0.9686 - val_loss: 0.2076\n", + "Epoch 186/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.6221\n", + "Epoch 186: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7828 - loss: 0.5824 - val_accuracy: 0.9738 - val_loss: 0.2102\n", + "Epoch 187/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5062\n", + "Epoch 187: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7874 - loss: 0.5760 - val_accuracy: 0.9738 - val_loss: 0.2071\n", + "Epoch 188/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.7137\n", + "Epoch 188: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7996 - loss: 0.5999 - val_accuracy: 0.9765 - val_loss: 0.1995\n", + "Epoch 189/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.6855\n", + "Epoch 189: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7843 - loss: 0.5840 - val_accuracy: 0.9738 - val_loss: 0.2051\n", + "Epoch 190/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8594 - loss: 0.4604\n", + "Epoch 190: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8124 - loss: 0.5375 - val_accuracy: 0.9730 - val_loss: 0.2084\n", + "Epoch 191/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8359 - loss: 0.5506\n", + "Epoch 191: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8139 - loss: 0.5482 - val_accuracy: 0.9730 - val_loss: 0.2033\n", + "Epoch 192/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5925\n", + "Epoch 192: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8040 - loss: 0.5540 - val_accuracy: 0.9738 - val_loss: 0.2073\n", + "Epoch 193/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.5939\n", + "Epoch 193: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7946 - loss: 0.5501 - val_accuracy: 0.9730 - val_loss: 0.2028\n", + "Epoch 194/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5613\n", + "Epoch 194: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8188 - loss: 0.5278 - val_accuracy: 0.9747 - val_loss: 0.1980\n", + "Epoch 195/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.4923\n", + "Epoch 195: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7967 - loss: 0.5564 - val_accuracy: 0.9704 - val_loss: 0.2058\n", + "Epoch 196/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4770\n", + "Epoch 196: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8013 - loss: 0.5379 - val_accuracy: 0.9738 - val_loss: 0.2090\n", + "Epoch 197/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5925\n", + "Epoch 197: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8057 - loss: 0.5529 - val_accuracy: 0.9738 - val_loss: 0.2016\n", + "Epoch 198/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5831\n", + "Epoch 198: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8131 - loss: 0.5349 - val_accuracy: 0.9738 - val_loss: 0.1982\n", + "Epoch 199/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.4914\n", + "Epoch 199: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8042 - loss: 0.5477 - val_accuracy: 0.9747 - val_loss: 0.2021\n", + "Epoch 200/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4765\n", + "Epoch 200: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8212 - loss: 0.5181 - val_accuracy: 0.9756 - val_loss: 0.1932\n", + "Epoch 201/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.4399\n", + "Epoch 201: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7886 - loss: 0.5582 - val_accuracy: 0.9686 - val_loss: 0.2054\n", + "Epoch 202/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8438 - loss: 0.5077\n", + "Epoch 202: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7797 - loss: 0.6027 - val_accuracy: 0.9712 - val_loss: 0.2037\n", + "Epoch 203/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.5925\n", + "Epoch 203: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7958 - loss: 0.5549 - val_accuracy: 0.9721 - val_loss: 0.2013\n", + "Epoch 204/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5804\n", + "Epoch 204: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8199 - loss: 0.5386 - val_accuracy: 0.9712 - val_loss: 0.2010\n", + "Epoch 205/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5225\n", + "Epoch 205: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7965 - loss: 0.5663 - val_accuracy: 0.9721 - val_loss: 0.2024\n", + "Epoch 206/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5693\n", + "Epoch 206: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8049 - loss: 0.5511 - val_accuracy: 0.9704 - val_loss: 0.2048\n", + "Epoch 207/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4656\n", + "Epoch 207: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8151 - loss: 0.5216 - val_accuracy: 0.9756 - val_loss: 0.1941\n", + "Epoch 208/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8281 - loss: 0.4725\n", + "Epoch 208: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8062 - loss: 0.5431 - val_accuracy: 0.9782 - val_loss: 0.1922\n", + "Epoch 209/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5688\n", + "Epoch 209: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7842 - loss: 0.5888 - val_accuracy: 0.9686 - val_loss: 0.2042\n", + "Epoch 210/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8672 - loss: 0.3775\n", + "Epoch 210: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8099 - loss: 0.5346 - val_accuracy: 0.9712 - val_loss: 0.2106\n", + "Epoch 211/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5993\n", + "Epoch 211: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8200 - loss: 0.5330 - val_accuracy: 0.9669 - val_loss: 0.2067\n", + "Epoch 212/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8828 - loss: 0.3879\n", + "Epoch 212: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8207 - loss: 0.5247 - val_accuracy: 0.9686 - val_loss: 0.2023\n", + "Epoch 213/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5587\n", + "Epoch 213: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8088 - loss: 0.5496 - val_accuracy: 0.9712 - val_loss: 0.2021\n", + "Epoch 214/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8359 - loss: 0.4606\n", + "Epoch 214: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8054 - loss: 0.5312 - val_accuracy: 0.9756 - val_loss: 0.1850\n", + "Epoch 215/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6467\n", + "Epoch 215: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7851 - loss: 0.5892 - val_accuracy: 0.9730 - val_loss: 0.1966\n", + "Epoch 216/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7488\n", + "Epoch 216: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7757 - loss: 0.6108 - val_accuracy: 0.9669 - val_loss: 0.2035\n", + "Epoch 217/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 15ms/step - accuracy: 0.8125 - loss: 0.5911\n", + "Epoch 217: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8046 - loss: 0.5562 - val_accuracy: 0.9704 - val_loss: 0.1994\n", + "Epoch 218/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8750 - loss: 0.4520\n", + "Epoch 218: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8013 - loss: 0.5472 - val_accuracy: 0.9712 - val_loss: 0.2020\n", + "Epoch 219/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5736\n", + "Epoch 219: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8099 - loss: 0.5462 - val_accuracy: 0.9686 - val_loss: 0.2029\n", + "Epoch 220/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4038\n", + "Epoch 220: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8003 - loss: 0.5340 - val_accuracy: 0.9773 - val_loss: 0.1938\n", + "Epoch 221/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8359 - loss: 0.5431\n", + "Epoch 221: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7956 - loss: 0.5731 - val_accuracy: 0.9695 - val_loss: 0.2046\n", + "Epoch 222/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5285\n", + "Epoch 222: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7972 - loss: 0.5681 - val_accuracy: 0.9669 - val_loss: 0.2058\n", + "Epoch 223/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.4823\n", + "Epoch 223: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8122 - loss: 0.5155 - val_accuracy: 0.9712 - val_loss: 0.1965\n", + "Epoch 224/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.5541\n", + "Epoch 224: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8056 - loss: 0.5680 - val_accuracy: 0.9677 - val_loss: 0.1991\n", + "Epoch 225/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5274\n", + "Epoch 225: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8088 - loss: 0.5392 - val_accuracy: 0.9747 - val_loss: 0.1946\n", + "Epoch 226/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7812 - loss: 0.6112\n", + "Epoch 226: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7956 - loss: 0.5639 - val_accuracy: 0.9695 - val_loss: 0.2017\n", + "Epoch 227/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5353\n", + "Epoch 227: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7965 - loss: 0.5624 - val_accuracy: 0.9660 - val_loss: 0.2044\n", + "Epoch 228/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6194\n", + "Epoch 228: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8034 - loss: 0.5514 - val_accuracy: 0.9730 - val_loss: 0.1976\n", + "Epoch 229/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8750 - loss: 0.4060\n", + "Epoch 229: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8203 - loss: 0.5072 - val_accuracy: 0.9695 - val_loss: 0.2029\n", + "Epoch 230/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5064\n", + "Epoch 230: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8003 - loss: 0.5466 - val_accuracy: 0.9738 - val_loss: 0.1990\n", + "Epoch 231/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5423\n", + "Epoch 231: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7937 - loss: 0.5568 - val_accuracy: 0.9712 - val_loss: 0.1984\n", + "Epoch 232/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6099\n", + "Epoch 232: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8091 - loss: 0.5300 - val_accuracy: 0.9747 - val_loss: 0.1860\n", + "Epoch 233/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6119\n", + "Epoch 233: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8058 - loss: 0.5446 - val_accuracy: 0.9730 - val_loss: 0.1926\n", + "Epoch 234/1000\n", + "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.5648\n", + "Epoch 234: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", + "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8114 - loss: 0.5478 - val_accuracy: 0.9677 - val_loss: 0.2020\n", + "Epoch 234: early stopping\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 33 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:26.710697Z", + "start_time": "2025-04-06T15:10:26.649490Z" + } + }, + "source": [ + "# モデル評価\n", + "val_loss, val_acc = model.evaluate(X_test, y_test, batch_size=128)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001B[1m9/9\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.9692 - loss: 0.2051 \n" + ] + } + ], + "execution_count": 34 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:26.772708Z", + "start_time": "2025-04-06T15:10:26.726968Z" + } + }, + "source": [ + "# 保存したモデルのロード\n", + "model = tf.keras.models.load_model(model_save_path)" + ], + "outputs": [], + "execution_count": 35 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:26.850307Z", + "start_time": "2025-04-06T15:10:26.789232Z" + } + }, + "source": [ + "# 推論テスト\n", + "predict_result = model.predict(np.array([X_test[0]]))\n", + "print(np.squeeze(predict_result))\n", + "print(np.argmax(np.squeeze(predict_result)))" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001B[1m1/1\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 30ms/step\n", + "[4.1954637e-02 7.1722388e-02 8.7705678e-01 8.6475220e-03 5.7122717e-04\n", + " 4.7421348e-05]\n", + "2\n" + ] + } + ], + "execution_count": 36 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 混同行列" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.038162Z", + "start_time": "2025-04-06T15:10:26.866818Z" + } + }, + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import confusion_matrix, classification_report\n", + "\n", + "def print_confusion_matrix(y_true, y_pred, report=True):\n", + " labels = sorted(list(set(y_true)))\n", + " cmx_data = confusion_matrix(y_true, y_pred, labels=labels)\n", + " \n", + " df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels)\n", + " \n", + " fig, ax = plt.subplots(figsize=(7, 6))\n", + " sns.heatmap(df_cmx, annot=True, fmt='g' ,square=False)\n", + " ax.set_ylim(len(set(y_true)), 0)\n", + " plt.show()\n", + " \n", + " if report:\n", + " print('Classification Report')\n", + " print(classification_report(y_test, y_pred))\n", + "\n", + "Y_pred = model.predict(X_test)\n", + "y_pred = np.argmax(Y_pred, axis=1)\n", + "\n", + "print_confusion_matrix(y_test, y_pred)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001B[1m36/36\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 680us/step\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAH6CAYAAAAZanYgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASJxJREFUeJzt3QmczfX+x/H3hBmDCsPYS1HWkiXL1YKSvyKlVTdFRNkKbZYiZC1JIxF1k6JL0XorqqssZSdLZSlrg8mWzIJz/o/vtzvHHDSGGr/fd87reR+/x5nf73eW7/32M/M5n+/n+/1FBYPBoAAAABxyltcNAAAAOFUEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDm55ROHkjZ63QRfiy15pddN8LWzoqK8boLvBVh0G8hWh9O25Yi/mXmKXHhar+vQoYMKFy6soUOH2v01a9aoX79++vHHH1W+fHk9/fTTqlq1auj5H374oUaNGqVdu3bpiiuu0MCBA+3rs4oMDAAA+Es++ugjzZkzJ7R/8OBBG9DUqlVL7777rqpXr66OHTva48bKlSvVp08fdenSRW+//bb279+vXr16ndJnEsAAAOCawJHs207R3r17NXz4cF1yySWhYx9//LFiYmL02GOPqVy5cjZYyZ8/vz755BN7fvLkyWratKluuukmVaxY0b7eBEBbtmzJ8ucSwAAAgNM2bNgwtWjRwg4TpVuxYoVq1qypqP8N75vHGjVqaPny5aHzJjuTrkSJEipZsqQ9nlUEMAAAuCYYyLYtLS1NBw4cCNvMsRNZsGCBFi9erE6dOoUdN3Ut8fHxYcfi4uKUmJhof965c2em57OCAAYAAISMGzfOZk8ybubYsVJTU22R7lNPPaW8efOGnUtOTlZ0dHTYMbOfHgilpKRket6pWUgAACCLAoFse2tTbNu2bduwY8cGG0ZCQoKdVXTllcfPkjX1L8cGI2Y/PdD5s/OxsbFZbicBDAAAjgma4Z5sYoKVEwUsJ5p5lJSUZGcYGekByaeffqpmzZrZcxmZ/fRho2LFip3wfNGiRbPcTgIYAABwyt544w0dPnw4tP/ss8/ax0ceeUSLFi3SK6+8omAwaAt4zePSpUv1wAMP2OdUq1ZNS5YsUcuWLe3+L7/8YjdzPKsIYAAAcE0g+zIwWVWqVKmwfTNN2jj//PNtQe5zzz2nZ555RnfeeaemTp1q62LM1GmjVatWat26tS677DI7/do8r0GDBipTpkyWP58iXgAA8LcqUKCALfxNz7KY6dHjx49Xvnz57Hkz7DRgwACNGTPGBjPnnnuuhgwZckqfERU0eR0f4FYCmeNWApnjVgInx60EgJxzK4G0LVlfL+VURZfJ+jCOl8jAAAAA51ADAwCAawKnvuR/TkMGBgAAOIcMDAAArgl6PwvJa2RgAACAc8jAAADgmgAZGAIYAAAcE2QIiSEkAADgHjIwAAC4JkAGhgwMAABwDhkYAABcEyQDQwYGAAA4hwwMAACuCXArATIwAADAOWRgAABwTZAaGAIYAABcEyCAYQgJAAA4hwwMAACuCZKBIQMDAACcQwYGAADXBMjARHQG5sFHnlKfQc+F9tf+uF6t7n9YtRrdpDvaddPq79ed8HWffvG1qtZvqkgUExOj8eOeVdLONdqyaam6P9zR6yb51syZr2vCKyO9bobvcA1ljv7JHP0DRXoA8/Hs/+rrBYtC+weTU2xAU6NaFb396mhddklldXq0nz2e0f7fDmjIqLGKVMOG9lXNmtXU+Lrb1aVbbz3Zt7tatrzB62b5zu233ajrm17jdTN8iWsoc/RP5uifPwSDR7Jtc0VEBjD79v+m58ZMVNVKF4eOffL5HOWNidEjndurXNnz9MRDHZU/X6w+++LrsNea15UpVUKRKF++WLW7r5V69HhKy5av0nvvfaJnnxurzg+28bppvlKoUEENGdJXixYt97opvsM1lDn6J3P0DxTpAcyIhFfUvMk1NlBJt3L196p+aRVFRUXZffNY/ZLKWrF6beg5i5attFuHe+5UJKp2aRXlyZNH8xcsDh2bN2+hateuHuo3/PEN8a233tHatT963RTf4RrKHP2TOfrnmFlIwWzacnoAs2fPHu3YsUP79++XS75dslxLlq/SA21bhR3f9etuxRcpHHYsrnBBJe5Msj+npaXp6WGj1adHJzsGG4mKl4hXUtJuHTp0KHRsx85dio2NVVxcIU/b5hcNGvxDV1xZV88MfsHrpvgS11Dm6J/M0T/HFPEGsmnLibOQPvvsM02ePFkrV65Uampq6HjevHlVtWpV3Xvvvbr22mvlV6mpaXp6+Ivq27OzHS7KKCUl1Ub2GUXnyRP6h/Lyv6aoUoXyql+nphYuXalITd+aPswofT9Sg7qMTB+MGTNMDz3URykp4bVT+APXUObon8zRPzitAOa1115TQkKC2rdvry5duiguLk7R0dE2M5GUlKTFixfriSee0EMPPaTWrVvLj1569U1VqXiRDUKOZf6/ZIzqjbRDh2ygs27jz5r+3n/07huRW7ybHuTFxESHHUvfP3gwWZHOFBMuXbJCs2bN8bopvsU1lDn6J3P0TwZBdzIlngcwr776qoYNG3bCDEu5cuVUp04dVahQQQMHDvRtAGMKdZN+3aPLr73Z7h9K+yNg+ey/c3VD4wb2XEZmv2iRwpr133na99tvanr7ffZ44MgfF455n36PdlWzJo0UCbZvS1SRIoWVK1cuHTnyR6V68WLx9hfH3r37FOluu/1G2x+7f/0h7BermSFROK6Cx63zB66hzNE/maN/cFoBjEmJly5dOtPnFCtWTL/99pv86rWEYTp8+OgUsZEvvWofe3S6T4uXf6eJk6cpGAzaYjDzuOy7Nepw751qdGU9NbuuYVjB7xMDRuidf41RXKGCihTLV6yyWaq6dWpo3vw/pqDXr19bixcvt/0V6Ro3vi1sGHLwM73tY+8+gz1slb9wDWWO/skc/ZNBwJ3pzp4HMI0bN7ZDRH379tVll12m3LmPvjQQCGj58uXq16+fmjRpIr8qWbxY2L6ZJm2cV7qkChc6V6PGvqahL4zT7S2a6t/v/UfJKSlq0ugq5YvNq3PPOTv0uvTCXvO6SJKcnKJJb0zXmDFD1b59D5UsVVw9undUu/t7eN00X9i8eVvY/m+/HbCPGzb87FGL/IdrKHP0T+boH5xWANO/f387hNSuXTubuitYsGCoBmbv3r02oGnRooV69eolFxXIn19jRjytASNetPUuF5e/QGOfHWCDFxz1yKP9NSZhqGbPmqZ9+/br6QHPaebM/3jdLDiEayhz9E/m6J//CVIDExU8xbxbcnKyvv/+e+3atcv+bCq/zdBRpUqV7Gyk03UoaeNpvzYSxJa80usm+NpZkbYGxGkIRFqKHTjDDqeFZ2GzU8rCadn23nlr36YceTNHM9++evXq2dMaAABwcgEyMNyNGgAA1wQJYCLyVgIAAMBtZGAAAHBNgAwMGRgAAOAcMjAAALgmQAaGDAwAAHAOGRgAABwTDHIrATIwAADAOWRgAABwTYAaGAIYAABcEySAYQgJAAA4hwwMAACuCZCBIQMDAABOy6ZNm9SuXTt7k+cGDRpowoQJoXODBg1ShQoVwrbJkyeHzn/44Ye69tprVa1aNXXu3Fm7d+8+pc8mAwMAgGuC3mdgAoGAOnTooEsuuUQzZsywwUyPHj1UrFgxNW/eXBs2bFDPnj118803h15ToEAB+7hy5Ur16dNHTz/9tCpWrKhnnnlGvXr10rhx47L8+WRgAADAKUtKSlKlSpXUv39/lS1bVldffbXq1aunJUuW2PMmgKlcubKKFi0a2mJjY+05k4lp2rSpbrrpJhvADB8+XHPmzNGWLVuy/PkEMAAAuFgDE8imLYvi4+M1atQom1UJBoM2cFm0aJFq166tAwcOaMeOHTawOZEVK1aoVq1aof0SJUqoZMmS9nhWMYQEAABC0tLS7JZRdHS03f5Mo0aNtH37djVs2FBNmjTRqlWrFBUVpZdffllfffWVChYsqLZt24aGk3bu3GkDoIzi4uKUmJiorCKAAQDANcHsq4ExdSgJCQlhx7p06aKuXbv+6WtGjx5th5TMcNKQIUNUpUoVG8BceOGFuvvuu21m5sknn7TZmsaNGyslJeW4gMjsHxs4ZYYABgAA1wSyL4Dp2PEBmy3JKLPsi2EKeY3U1FQ98sgjWrp0qc3GmMyLYepcfv75Z02ZMsUGMDExMccFK2Y/vUYmK6iBAQAAYcGKyZRk3E4UwJiMy+zZs8OOlS9fXocOHbI1MOnBSzqTjTF1MYaZqWRef+z7mULfrCKAAQDANQHvi3i3bt1qh5bSgxLD1L4ULlxYb7zxhtq0aRP2/O+//94GMYZZ+yV9tpLxyy+/2M0czyoCGAAAcMrMsJGpdendu7fWr19vp0GPGDFCDzzwgB0+MnUvEydO1ObNm/XWW29p5syZuu++++xrW7Vqpffee0/Tpk2zgc1jjz1mF8IrU6ZMlj8/KmjmPvnAoaSNXjfB12JLXul1E3ztrKgor5vgewF//FMHcqzDadvO2Gclfzgy2947tlmPLD/XZF8GDhyoBQsW2PoVU7DbsWNHW8BrhpdMca+pfSlVqpS6d++u6667LvTad999157ft2+f6tevb9+nUKFCWf5sAhhHEMBkjgDm5AhggOwViQGMl5iFBACAawLe30rAa9TAAAAA55CBAQDANUEyMAQwAAC4JkAAwxASAABwDhkYAABcEyQDQwYGAAA4hwwMAACuCZCB8U0Ak4+F2jK1rFQNr5vga433rPe6Cb6XdHC/100AgJwXwAAAgCwKkIGhBgYAADiHDAwAAK4Jcm8zAhgAAFwTYAiJISQAAOAcMjAAALgmQAaGDAwAAHAOGRgAAFwTJANDBgYAADiHDAwAAK4JkIEhAwMAAJxDBgYAANcEWciODAwAAHAOGRgAAFwToAaGAAYAANcECGAYQgIAAM4hAwMAgGuCZGDIwAAAAOeQgQEAwDHBANOoycAAAADnkIEBAMA1AWpgyMAAAADnkIEBAMA1QTIwBDAAALgmQBEvQ0gAAMA5ZGAAAHBNgCEkMjAAAMA5ZGAAAHBNgAwMGRgAAOAcMjAAALgmyCwkMjAAAMA5BDAZlCxZXFOnjteOxFX6+afFGjG8n2JiYhRJchcrrPNeekKVlr2ligv+pRJ92ikqOk/Yc6LPL6Eqa6cf99r89avpok8SVGXNdF3w5iDlKVNMOV3xEvGa8Poorf1pgZat+a/6P/O4YmKi7bmBQ3spce/asO2+++9SpDP/psaPe1ZJO9doy6al6v5wR6+b5Cv0T+bonww1MIFs2hzBEFIGb08drz179qpho5YqVKigXhk/UkeOHNETvQYpUpz/Ui8d2XdAG29/QrkKFlDpYQ8pGAgocchr9nyeEkV0/sSndFbe8MAuT8miOn9cH+0c9ZZ+m7NU8d3u1Pnj+2h9027KySa8/oL27d2vm5q2VsFC5+r5hGcUOHJEA556VhdXKK9B/Z/T22/NDD3/wG8HFOmGDe2rmjWrqfF1t+u880vrtYmjtGnzVr377kdeN80X6J/M0T//E2AIKSoY9MdAWp7oUp5+foUK5bTqu69UqnQ17dyZZI/dcUcLDRv6pMpeUEteW1qqRrZ/RsyFpXXx52O19vLWOpy01x47t/lVKtH7Pn1fr43OaVxXpQZ31qFdexRb6QJ9d0Hz0Gvju/9T+WtX0U+tetv9qLwxqrRwkjbdP1C/f7sq29veeM96nWnlL7pAcxd9rKoXXaGkXb/aYzfdcr36DXxM1Ss30NLVX6p7lz6a8+V8+UHSwf1eN0H58sVqxy/fqVnz1prz1QJ7rHevh3RNoyt0TePbFOnoH7f753DatjP2WQefbZ9t753vkQlyAUNI/5OYuEvX33BXKHhJd+655yhSmMDkp3ufCgUv6c46O599PLtRLe0Y+aZ+eXr8ca/NV72Cfl+4OrQfTElV8uoNylejonIqc63c2bJ9KHhJd845BVTg7PwqWaq4Nm742bP2+VG1S6soT548mr9gcejYvHkLVbt2dUVFRSnS0T+Zo3+OuRdSMJs2RxDA/M++ffs1a9ac0L75x9Dpwbb64su5ihSB337Xga+WHT0QFaW4e27Q7/NX2N1tvRK0e8onJ3xtnqKFdHhH+B9yEwiZIaecav++3/TfL+aFXTP33f9Pff3VN7ro4nIKBAJ6qOcDNhPz+dwZur1VC0U6UzOUlLRbhw4dCh3bsXOXYmNjFRdXSJGO/skc/YOMCGD+xNAhfVW9elU99dQwRarivdoqtmo5JT77xkmfGxUbo2Da0V8qhtk/tgA4J3tqwCO6pFplDR34gi66+AKZ0dn16zbqn7d31FuTpmvEqAFq2uxaRfoQQGpqWtix9P1IK5g/Efonc/TPMTUwgWzaTsGmTZvUrl07Va9eXQ0aNNCECUeHn7Zs2aI2bdrosssu0/XXX6+5c8MTAvPnz1ezZs1UrVo13XPPPfb5p4IA5gQGD+6tbt3a69423bR69Q+KRMUfv1dF2t6oLd1HKvXHzSd9fjD1+GDF7AeSUxUJ+vbvqfsfvEddOj6m79eu07+nvKcq5err5YR/ae3qHzVx/Jua/Pq/de99dyqSpaSkhmZppUvfP3gwWZGO/skc/eMvgUBAHTp0UKFChTRjxgw9/fTTGjt2rD744AP7Ba5z584qUqSI3nnnHbVo0UJdunTR9u3b7WvNoznfsmVLTZ8+XYULF1anTp3s67JlFtKiRYuy/NzLL79cLhr1/EB17HiP7m3TVTNmfKxIVKJ/B8X983pt6f6c9n+StQLUQzt+Ve6i4Slcs5+yZqNyumeG97GBSecOj+uj92eFju/duy/seet+2KgrrqyrSLZ9W6KKFCmsXLly2Rl+RvFi8faPz7H9FYnon8zRP0cFfTDdOSkpSZUqVVL//v1VoEABlS1bVvXq1dOSJUts4GIyKlOnTlW+fPlUrlw5LViwwAYzXbt21bRp01S1alXdd9999r2GDBmi+vXra+HChapTp87fH8AMGDBA69f/MdsjsyjJ1AKsXbtWrunbt7s6dGitf97dKfKm5P2Pmf4cd1dTbe42XPv/k/XZMweX/aD8tSqH9s0spNjKF9pp1TlZz8c76Z62d+iB+3rqw/c/Cx1/rHdX1apdXbff9Mc/TqPKJRW1bl3OD+gys3zFKlu/ULdODc2b/8cXovr1a2vx4uWn9M0rp6J/Mkf/+Et8fLxGjRplfzb9v3TpUpvo6Nevn1asWKHKlSvb4CVdzZo1tXz5cvuzOV+r1tEZvqaOqUqVKvZ8tgQwJnLq0aOHtm7dqrfffjtHjTlWrFhefXo/rGHDE2xVe7FiRUPnduzYpUgQU6604rveqV1jp+ngojXKXaRg6NyxM5OOteffs1S0w80q+sCt2v/5QhsIpW3dod+/+U451UUXX6jujz6o0c+/om+/Waqi8UcLlj/7z5fq2v1+PdilrT7+cLYaNKqv2+5soVuat1EkS05O0aQ3pmvMmKFq376HnanVo3tHtbu/h9dN8wX6J3P0z5lZByYtLc1uGUVHR9vtzzRq1MgOCzVs2FBNmjTR4MGDbYCTUVxcnBITE+3Pu3btyvT83x7AmMaPHDlSt99+u426Hn/8ceUUzZs3Ue7cuW0QYzY/rVFzpph1XqJy57JBjNkyyrjmy4kc2rZTmx4YopJPtbfBy8Ela7WpwzPKyZpc38heMz0efdBuGRUvWEnt733YZmIe69NNWzZvU6f7H9WSRX98+4hkjzzaX2MShmr2rGl29t/TA57TzJn/8bpZvkH/ZI7++Z9g9g0hjRs3TgkJCWHHTP2KGfr5M6NHj7ZDSmY4yQwHJScnHxfwmP30wOhk57NtIbsNGzbYcapWrVrp7xIpQYKfF7JzmRcL2bnGDwvZATnZmVzI7vdBd2fbe+d57NVTzsCk++STT/TII4/olltu0f79+/X888+Hzr311luaMmWKLfK94YYbdPfdd4fFEQ8//LCtnenbt2/23UrAFOOYDQAA5KwhpOgsBism42JqVq699ujyEOXLl7d1SkWLFtXGjRuPe376sFGxYsXs/omKgrOKadQAAOCUmXpYM7S0Y8eO0LFVq1bZKdGmYHf16tVKSUkJnTOzk8yaL4Z5NPvpzJDSmjVrQuezggAGAADXBLy/G/Ull1xiZw717t3bzlCeM2eORowYoQceeEC1a9dWiRIl1KtXL61bt07jx4/XypUrdeutt9rXmiEmM2vJHDfnzfNKly6d5RlIBgEMAAA4ZWY9npdeeslOgb7jjjvUp08ftW7d2q6qm37OzDYyi9W9//77GjNmjEqWLGlfa4KVF1980c5uNkHN3r177flTuacVd6N2BEW8maOI9+Qo4gVyUBHvU9m3qnf+AVPlAjIwAADAOac1CwkAAOTMdWBcQQADAIBrAr6o/vAUQ0gAAMA5ZGAAAHBM0Ad3o/YaGRgAAOAcMjAAALgmQA0MGRgAAOAcMjAAALgmQAaGDAwAAHAOGRgAAFwTZBYSAQwAAK4JMITEEBIAAHAOGRgAABwTJANDBgYAALiHDAwAAK4JkIEhAwMAAJxDBgYAANcEmEZNBgYAADiHDAwAAK4JUANDAAMAgGsCBDAMIQEAAOeQgQEAwDHBIBkYMjAAAMA5ZGAAAHBNgAwMGRgAAOAcMjAAALgmQAaGDAwAAHAOGRhHVN+21Osm+NpvE+7xugm+d3b7SV43AcDfJEgGhgAGAADnBAhgGEICAADOIQMDAIBrAl43wHtkYAAAgHPIwAAA4JggNTBkYAAAgHvIwAAA4JoAGRgyMAAAwDlkYAAAcE3A6wZ4jwwMAABwDhkYAAAcE6QGhgAGAADnBLxugPcYQgIAAM4hAwMAgGOCDCGRgQEAAO4hAwMAgGsCXjfAe2RgAACAcwhgAABwTDCQfdup2LFjh7p166batWvryiuv1JAhQ5SammrPDRo0SBUqVAjbJk+eHHrthx9+qGuvvVbVqlVT586dtXv37lP6bIaQAADAKQsGgzZ4Oeecc/Tmm29q37596t27t8466yw9/vjj2rBhg3r27Kmbb7459JoCBQrYx5UrV6pPnz56+umnVbFiRT3zzDPq1auXxo0bl+XPJwMDAIBrAtm4ZdHGjRu1fPlym3W56KKLVKtWLRvQmMyKYQKYypUrq2jRoqEtNjbWnjOZmKZNm+qmm26yAczw4cM1Z84cbdmyJcufTwADAIBjgtk4hJSWlqYDBw6EbebYsUxAMmHCBBUpUiTsePprzPBS2bJlT9j+FStW2IAnXYkSJVSyZEl7PKsIYAAAQIgZxqlZs2bYdqKhHTN0ZOpe0gUCAZtZqVu3rs2+REVF6eWXX9ZVV12lG2+8UTNmzAg9d+fOnYqPjw97v7i4OCUmJiqrqIEBAMA1gex7644dO6pt27Zhx6Kjo0/6uhEjRmjNmjWaPn26Vq9ebQOYCy+8UHfffbcWLVqkJ5980tbANG7cWCkpKce9p9k/UabnzxDAAACAsEAiKwHLscHL66+/rueff14XX3yxrYlp2LChChYsaM+bOpeff/5ZU6ZMsQFMTEzMccGK2U+vkckKhpAAAHBM0CfTqI2BAwfqtddes0FMkyZN7DGTfUkPXtKZbIypizGKFSumpKSksPNm39TVZBUBDAAAOC0JCQmaOnWqRo4cqRtuuCF0/IUXXlCbNm3Cnvv999/bIMYwa78sWbIkdO6XX36xmzmeVQwhAQDgmKAPbiVgCnVfeukldejQwRb67tq1K3TODB+NHz9eEydOtENGc+fO1cyZMzVp0iR7vlWrVmrdurUuu+wyXXLJJXYdmAYNGqhMmTJZ/nwCGAAAcMo+//xzHTlyRGPHjrVbRj/88IPNwowePdo+lipVSs8995yqV69uz5vHAQMG2PNmAbz69evboahTERU0S+n5QJ7oUl43wdd88R/Jx36bcI/XTfC9s9v/8c0HQPY4nLbtjH3WjoZXZ9t7F/tyjlxABgYAANcEoxTpKOIFAADOIYDJoGTJ4po6dbx2JK7Szz8t1ojh/excdRxl+mP8uGeVtHONtmxaqu4Pd1Sk2bz7gB6cMlf1hr+n/3vxP/rXgh9D51Zu2617/vVfe67F2M/07rKfQueaJnyiy55597ht3NdrFUm4hjJH/2SO/vHfNGqvMISUwdtTx2vPnr1q2KilChUqqFfGj7QFSk/0GuR103xj2NC+qlmzmhpfd7vOO7+0Xps4Sps2b9W7736kSBAIBtX17fmqUrKQpra/xgYzvWYuVPzZsapdtqg6T52n22pcoIE31tLaX/ao34dLVKRAXl11UQm92bahfX262Wu3KWHOGjW/9HxFkki/hk6G/skc/YN0FPH+T4UK5bTqu69UqnQ17dz5x+I6d9zRQsOGPqmyFxy94ZRX/PAfKV++WO345Ts1a95ac75aYI/17vWQrml0ha5pfFtEFPHu+i1ZI2atVL8baih/TB57rMf0bxSXP0YXx5+rtxZt0IwHGoeeP/DjpTqYdkRDbro8vL0ph3Tj2M/UrWEV3XzZiW92lhOLeP18DfkB/eN2/5zJIt5frmiYbe9dYu6XcgFDSP+TmLhL199wVyh4SXfuued41ia/qXZpFeXJk0fzFywOHZs3b6Fq165uV12MBEXPjtXwlnVs8GJi/2VbftXSzUmqdX5R/aNcMT3dvOZxrzmQeui4Y5O++VFFC+RVi2qRlX3hGsoc/ZM5+gcZEcD8z759+zVr1tGpY+YfQ6cH2+qLL+d62i4/KV4iXklJu3Xo0NE/yDt27rL3roiLK6RIc33CJ2o7aY4uLVVY11YspVIF89uf0+3+PUWfrtlqh5YySj50WFMWb1S7+hV0VoT90uUayhz9kzn656ggNTBZC2DMDZbMPQ6uvvpq1ahRQ126dLEr8B17D4NKlSoppxg6pK+qV6+qp54a5nVTfJW+TU0Nv/lW+n4kFjs/e0tdjb69nn7YsU/PzloZdi7l0BH1fOdbxeXPq1trXBB2zgQ1+aJz6ZqKJRVpuIYyR/9kjv7BKQcw5h4Hs2fP1mOPPWZXzjPByi233GKPZeSTcpq/bPDg3urWrb3ubdNNq1f/4HVzfCMlJVUxMeF3KE3fP3gwWZHGFPKa4txHGl+q6ct+0qEjf3x1OZh2WN3+PV+bdh/Q6Dv+odg84bXypni3SeXSyn1W5CVAuYYyR/9kjv45KhiMyrbNFVn6Dfqf//xHgwcPtjdqatasmb0dtrmPwcMPP2zPpcsJY5Cjnh9op+Xd26arZsz42Ovm+Mr2bYkqUqSwcuXKFTpWvFi8/cWxd+8+RYJfD6Toix+2hx27sMjZNngxtS5mM1Os1+/ar/H/vFLnFy4Q9ty0w0e0eHOSGl4cedkXg2soc/RP5uifo4IMIWUtgElJSQm7LbYJVB5//HHde++9evTRRzVr1izlBH37dleHDq31z7s76d//ft/r5vjO8hWr7Nhz3To1Qsfq16+txYuX55js28ls23dQPad/ox37j37bW5u4V4Xyxejc2Gh7btue3zXx7qtUvujxBeDrdu7X4SMBVS0ZWeP16biGMkf/ZI7+wSkHMHXq1NHw4cO1e/fusOMmeLnjjjvUvXt3vfXWW3JZxYrl1af3wxo+Yoytai9WrGhowx+Sk1M06Y3pGjNmqGrVrKYbb2yiHt07anTCREWKKiUKqVKJgur/0RJt2LVfX69P1POff6f29StoxvKftWjTLj11Qw2dnTePkg6k2G1f8tExe5OZKV0ov6JzH/0GGUm4hjJH/2SO/jkqGIjKti1HrQOzY8cOdevWTStXrtSECRPsXSMzSkhIsHeiDAQCWrt2rZPrwDz6aGcNfqa3L9tm+OW7RWxsXo1JGKqWN19vZ249N/JljX5xQkTdzHHnb8ka+ukKLfx5p61vuaPWhWr3jwp2Ebv5G3ce9/ya5xXRxNZX2Z9fm/+DvvzxF01q00Bnmh/WgfHzNeQX9I+7/XMm14HZcvk12fbeZRZ9rhy3kN3GjRtVtGhRnX322cedM7OSzK21O3TocFoN8UOQ4Gd+CWD8irtRuxPAADnVmQxgNtfKvgDmvMWf57xbCVx44YV/eq5cuXJ2AwAAyG7cCwkAAMcEHapVyS6RtxAFAABwHhkYAAAcEyQDQwADAIBrgszsYAgJAAC4hwwMAACOCTKERAYGAAC4hwwMAACOCTp01+jsQgYGAAA4hwwMAACOCQa8boH3yMAAAADnkIEBAMAxAWpgCGAAAHBNkACGISQAAOAeMjAAADgmyEJ2ZGAAAIB7yMAAAOCYIDdzJAMDAADcQwYGAADHBKmBIQMDAADcQwYGAADHBFgHhgAGAADXBAlgGEICAADuIQMDAIBjgkyjJgMDAADcQwYGAADHBKiBIQMDAADcQwYGAADHBMnAkIEBAADuIQMDAIBjgsxCIgMDAICLRbyBbNpOxY4dO9StWzfVrl1bV155pYYMGaLU1FR7bsuWLWrTpo0uu+wyXX/99Zo7d27Ya+fPn69mzZqpWrVquueee+zzTwUBDAAAOGXBYNAGL8nJyXrzzTf1/PPP68svv9SoUaPsuc6dO6tIkSJ655131KJFC3Xp0kXbt2+3rzWP5nzLli01ffp0FS5cWJ06dbKvc24IiWwY/oqz20/yugm+d3V8Fa+b4Gtzdq72ugmAU0W8Gzdu1PLlyzVv3jwbqBgmoBk2bJiuuuoqm1GZOnWq8uXLp3LlymnBggU2mOnataumTZumqlWr6r777rOvM5mb+vXra+HChapTp06WPp8MDAAAOGVFixbVhAkTQsFLugMHDmjFihWqXLmyDV7S1axZ0wY8hjlfq1at0LnY2FhVqVIldN6pDAwAAPB+Ibu0tDS7ZRQdHW23jM455xxb9xJqUyCgyZMnq27dutq1a5fi4+PDnh8XF6fExET788nOZwUZGAAAEDJu3DibLcm4mWMnM2LECK1Zs0bdu3e3dTHHBjxmPz0wOtn5rCADAwCAY4LZ+N4dO3ZU27Ztw44dG2ycKHh5/fXXbSHvxRdfrJiYGO3duzfsOSY4yZs3r/3ZnD82WDH7JquTVQQwAAAg0+GizAwcOFBTpkyxQUyTJk3ssWLFimn9+vVhz0tKSgoNG5nzZv/Y85UqVcry5zKEBACAYwI+WQcmISHBzjQaOXKkbrjhhtBxs7bL6tWrlZKSEjq2ZMkSezz9vNlPZ4aUzPBT+vmsIIABAMDBadTBbNqyasOGDXrppZd0//332zoZU5ibvpmF7UqUKKFevXpp3bp1Gj9+vFauXKlbb73VvvaWW27R0qVL7XFz3jyvdOnSWZ5CbRDAAACAU/b555/ryJEjGjt2rK644oqwLVeuXDa4McGMWazu/fff15gxY1SyZEn7WhOsvPjii3ZdGBPUmHoZcz4qKusBVFTwVJa9y0a5o0t53QQgR2Mhu8yxkB3+qsNp287YZ31d/I9MRna4MnG6XEAGBgAAOIdZSAAAOCYo728l4DUyMAAAwDlkYAAAcEzAF9Wr3iIDAwAAnEMGBgAAxwSogSEDAwAA3EMGBgAAxwTJwBDAAADgmoDXDfABhpAAAIBzyMAAAOCYIENIZGAAAIB7yMAAAOCYgNcN8AEyMAAAwDlkYAAAcEzA6wb4ABkYAADgHDIwAAA4JsgsJAIYAABcEyB+YQgJAAC4hwwMAACOCTCERAYGAAC4hwwMAACOCXrdAB8gA3OMmJgYjR/3rJJ2rtGWTUvV/eGOXjfJV+ifzNE/4Zrc1lifb/3suG3W5k/s+fJVyinhg9H6aN37GvPhi7rokosU6biGMkf/IB0ZmGMMG9pXNWtWU+Prbtd555fWaxNHadPmrXr33Y+8bpov0D+Zo3/CffnBHC387+LQfu7cufXsv4frm9nfKm9sXg2eNEifz/hCw7uPUPPWzTT49YFqXb+NUpJTFKm4hjJH//wh4HUDfCAqGAz6IhOVO7qU101Qvnyx2vHLd2rWvLXmfLXAHuvd6yFd0+gKXdP4NkU6+sft/rk6vorXTVCrzneqaasmateog665uZH+2e0uta5/b+j861+/prdGv6VPp806422bs3O1vOb3a8hrfu+fw2nbzthnvVv8rmx775aJb8kFDCFlUO3SKsqTJ4/mLzj6jXHevIWqXbu6oqKo+KZ/Mkf/ZO7sgmfrzk63a8KQV3Uo7ZAq1aikVYtWhT1n9aLVqlyzsiIV11Dm6J+jAlFR2ba54i8HMIcPH9bevXuVExQvEa+kpN06dOhQ6NiOnbsUGxuruLhCinT0T+bon8yZIaJfd/yqrz762u7HxRe2+xntSdqjIiWKKFJxDWWO/jkqmI1bjgxgPvroIw0YMECffvqpzMjToEGDVKNGDdWrV0/169fX5MmT5Xp6MjU1LexY+r4pHIt09E/m6J/MXd+qqWa89l5oPyY2xmZiMjL7eaLzKFJxDWWO/sFpFfFOnDhRY8eOtcFKv379NHPmTK1du1YjRoxQ+fLl9d133+nZZ5/VwYMH1aFDB7koJSVVMTHRYcfS9w8eTFako38yR//8uQrVLlbREkX05fv/DR1LS007Llgx+6nJqYpUXEOZo3+OCnjdAJcCmDfffFMjR47UVVddpSVLlujuu+/Wyy+/rKuvvtqeL1eunAoVKqQnn3zS2QBm+7ZEFSlSWLly5dKRI0fsseLF4u0/jL179ynS0T+Zo3/+3OUNLtfKb7/TgX0HQseSEn9V4aKFw55n9nfv3K1IxTWUOfoHpzWEtGfPHpUtW9b+XLNmTZUoUUJFioSPVZcuXVrJye5GwctXrLJjq3Xr1Agdq1+/thYvXm6HzCId/ZM5+ufPVapeQasXh8/yWbt0rarUCi/YrXJ5Za1ZulaRimsoc/RP+M0cA9m05bgAxtS6jBkzxg4RGV988YWqVDk6LXPnzp0aMmSIHWJyVXJyiia9MV1jxgxVrZrVdOONTdSje0eNTpjoddN8gf7JHP3z58pWKKtNP24OO2aKefOfU0Cdn35Q5190nn00a8PM+eArRSquoczRPzitdWA2b95sh4YqV65sh5Iymj17trp27aqqVavqpZdeUtGiReXiOjBGbGxejUkYqpY3X699+/bruZEva/SLE7xulm/QP+72j5frwHy8/gM91a6/Fs9ZEna8wmUV1H1IN5130XnauPYnjXriBa1fvcGTNvphHRi/X0N+4Of+OZPrwLxZ8u5se+9/bp+c8xayM09NSko6LkD59ddftXXrVl1yySU666zTm5ntlwAGyKn8sJCdn/klgIG7CGB8fCsBs1DQibIrcXFxdgMAANkv6HUDfIB7IQEA4JiAQ8W22YVbCQAAAOeQgQEAwDEBrxvgA2RgAACAc8jAAADgmKDXDfABMjAAAMA5ZGAAAHBMgFlIZGAAAIB7yMAAAOCYgNcN8AECGAAAHBPwugE+wBASAAD4S9LS0tSsWTN9++23oWODBg1ShQoVwrbJk4/eZ+nDDz/Utddeq2rVqqlz587avXv3KX0mAQwAAI4JRmXfdqpSU1PVo0cPrVu3Luz4hg0b1LNnT82dOze03XLLLfbcypUr1adPH3Xp0kVvv/229u/fr169ep3S5zKEBAAATsv69ettkBIMHr8yjQlg2rVrd8KbQJtMTNOmTXXTTTfZ/eHDh6thw4basmWLypQpk6XPJgMDAICDNTCBbNpOxcKFC1WnTh2bRcnowIED2rFjh8qWLXvC161YsUK1atUK7ZcoUUIlS5a0x7OKDAwAAAirZzFbRtHR0XY71l133aUTMdmXqKgovfzyy/rqq69UsGBBtW3bVjfffLM9v3PnTsXHx4e9Ji4uTomJicoqAhgAABwTyMb3HjdunBISEsKOmVqVrl27Zvk9Nm7caAOYCy+8UHfffbcWLVqkJ598UgUKFFDjxo2VkpJyXEBk9o8NnDJDAAMAAEI6duxosyUZnSj7khlT22JqWkzmxahYsaJ+/vlnTZkyxQYwMTExxwUrZj82NjbLn0EAAwCAY4LZ+N5/Nlx0Kkz2JT14SWeyMd988439uVixYkpKSgo7b/ZPVPD7ZyjiBQDAwXshBbJp+zu88MILatOmTdix77//3gYxhln7ZcmSJaFzv/zyi93M8awigAEAAH8rM3xk6l4mTpyozZs366233tLMmTN133332fOtWrXSe++9p2nTptnA5rHHHlODBg2yPIXaYAgJAADHBORvl156qc3CjB492j6WKlVKzz33nKpXr27Pm8cBAwbY8/v27VP9+vU1cODAU/qMqOCJVp/xQO7oUl43AcjRro6v4nUTfG3OztVeNwGOO5y27Yx91vPn3Z1t791989Hl/v2MDAwAAI4JeN0AH6AGBgAAOIcMDAAAjgl63QAfIAMDAACcQwYGAADHBP6m9VpcRgADAIBjAl43wAcYQgIAAM4hAwMAgGOCXjfAB8jAAAAA55CBAQDAMQFyMAQwyBkoyD85lsrP3OVFL/a6Cb62aNePXjcBCEMAAwCAYwJeN8AHqIEBAADOIQMDAIBjgl43wAcIYAAAcEzA6wb4AENIAADAOWRgAABwTICpl2RgAACAe8jAAADgmABlvGRgAACAe8jAAADgmKDXDfABMjAAAMA5ZGAAAHBMwOsG+AAZGAAA4BwyMAAAOCZAFQwBDAAArgl63QAfYAgJAAA4hwwMAACOCXjdAB8gAwMAAJxDBgYAAMcEqIIhAwMAANxDBgYAAMcEvW6AD5CBAQAAziEDAwCAYwJeN8AHCGAAAHBMkEEkhpAAAIB7yMAAAOCYgNcN8AEyMAAAwDlkYAAAcEyAGhgyMAAAwD1kYAAAcEzQ6wb4ABkYAADgHAKYPxEdHa3lyz7X1VfV87opvhITE6Px455V0s412rJpqbo/3NHrJvlKyZLFNXXqeO1IXKWff1qsEcP72T7DUVxD4fJE59EjzzykT1e/r4+Wv6MHnmh/3HMuvbyqps9/05P2+Q3Xz9EamEA2ba5gCOlP/oFMfiNBVatU9LopvjNsaF/VrFlNja+7XeedX1qvTRylTZu36t13P/K6ab7w9tTx2rNnrxo2aqlChQrqlfEjdeTIET3Ra5DXTfMNrqFw3Qd0Uc361dX9n48pX4F8GvDSk0rcukMzJ39gz5ereIEGj39aaalpXjfVF7h+/hDwugE+QAbmGJUqXaR5cz/QhReW9bopvpMvX6za3ddKPXo8pWXLV+m99z7Rs8+NVecH23jdNF+oUKGc6tatqfb399CaNT9q3ryFenrACN15501eN803uIbCnVPwbDW/83oNffQ5rVn+vRbPXaop4/6tKtUr2fM33d1c495L0O6kPV431Re4fpARAcwxrrqynub8d76uuLK5103xnWqXVlGePHk0f8Hi0DHzR7p27eqKiopSpEtM3KXrb7hLO3cmhR0/99xzPGuT33ANhbv08kt04LffteybFaFjb4yZomd6Drc/121YWwMfHqqpr0zzsJX+wfUTfiuBYDb973SkpaWpWbNm+vbbb0PHtmzZojZt2uiyyy7T9ddfr7lz54a9Zv78+fY11apV0z333GOffyoIYI4xbvwk9Xy0v5KTU7xuiu8ULxGvpKTdOnToUOjYjp27FBsbq7i4Qop0+/bt16xZc0L75hdqpwfb6osvw//RRjKuoXClzi+hX7Ykqumt12nqnNdtnUvbh1uH/hg/0e5JzfnP11430ze4fvwpNTVVPXr00Lp160LHgsGgOnfurCJFiuidd95RixYt1KVLF23fvt2eN4/mfMuWLTV9+nQVLlxYnTp1sq87YzUwNWrU0HvvvacyZcr81beCA+nb1GPG4dP3KVQ93tAhfVW9elXV+8cNXjfFN7iGwsXmj1WZC0rZoaJBPYYpLj5Ojw/roZTkFE0ZR9blWFw//quBWb9+vXr27Hlc4PHNN9/YjMrUqVOVL18+lStXTgsWLLDBTNeuXTVt2jRVrVpV9913n33+kCFDVL9+fS1cuFB16tT5+wKYXr16ZZo2GjFihPLnzx9qBHKmlJRUxcREhx1L3z94MNmjVvnT4MG91a1be931zwe1evUPXjfHN7iGwh05fEQFzimgfp0HKXHbDnuseKl4tby3BQHMCXD9+M/C/wUc3bt3t0NF6VasWKHKlSvb4CVdzZo1tXz58tD5WrVqhc6ZLFqVKlXs+b81gPn111/11Vdf6dJLL7VRFCLT9m2JKlKksHLlymVn1hjFi8XbXxx79+7zunm+Mer5gerY8R7d26arZsz42Ovm+ArXULhfd+5WanJqKHgxNm3YomIl4j1tl19x/RwVzMbpziYxYbZjlxYx27HuuuuuE77Hrl27FB8ffh3HxcUpMTExS+f/tgBm/Pjx+uijj2ympV69enbcKv3/yCeffKJHH32UIaQIsHzFKjv2XLdODc2bv8geq1+/thYvXn5K45Y5Wd++3dWhQ2v98+5OETetMyu4hsKtWrpGMbExKnNhaW3ZuNUeK3vR+fpla9Z/iUcSrp8zY9y4cUpISAg7ZupXzNBPViUnJx8X8Jj99MDoZOf/1iLeG264wda6mKipefPmtnoYkcUUNk96Y7rGjBmqWjWr6cYbm6hH944anTDR66b5QsWK5dWn98MaPmKMnRlRrFjR0IY/cA2F27xhi+bNXqAnn39c5SuXU52rL1frzq307qT3vW6aL3H9hNfABLJp69ixo5YsWRK2mWOnwtQkHRuMmP28efNmet4MJWVLEe+5556rwYMH20Kc/v372wIcot7I8sij/TUmYahmz5pmZ908PeA5zZz5H6+b5QvNmzdR7ty5bRBjtozyRJfyrF1+wzUUrl+XZ9RzUDe9PGO0UpNT9M5rMzXt1Xe9bpZvcf38IZCNf3v/bLjoVBQrVswW+GaUlJQUGjYy583+secrVfpjDaSsiAqeZgRiIqUXX3xRH3/8sSZPnqwSJUror8jNL3j8BZG1AsTp4atG5i4verHXTfC1Rbt+9LoJvnc4bdsZ+6zW57fMtvd+Y9PpBdAVKlTQpEmTbBGuSXSYchMzWpOedbn33nttIW+3bt30wgsvaNmyZfrXv/4VGlIys5Beeukl1a1bN3vXgTHRmZk69fnnn//l4AUAAJzaF5JgNm1/h9q1a9vYwMxiNuvDmFralStX6tZbb7Xnb7nlFi1dutQeN+fN80qXLp3lGUgGC9kBAIC/lZkpZrIppm7WLFb3/vvva8yYMSpZsqQ9b4IVM4pj1oUxQc3evXvt+VNZUfm0h5D+bgwh4a9gCOnkfPEP3ccYQsocQ0j+GkK66/ybs+2939o0Qy4gAwMAAJzzl28lAAAAcs5Cdq4gAwMAAJxDBgYAAMcEvG6ADxDAAADgmABDSAwhAQAA95CBAQDAMUEyMGRgAACAe8jAAADgmIDXDfABMjAAAMA5ZGAAAHBM0B93AfIUGRgAAOAcMjAAADgmwCwkAhgAAFwT8LoBPsAQEgAAcA4ZGAAAHBNkCIkMDAAAcA8ZGAAAHBMgA0MGBgAAuIcMDAAAjgmykB0ZGAAA4B4yMAAAOCbgdQN8gAAGAADHBCniZQgJAAC4hwwMAACOCZCBIQMDAADcQwYGAADHBJlGTQYGAAC4hwwMAACOCVADQwYGAAC4hwwMcgS+i+CvWrTrR6+b4GsXnFvc6yYggyC/9QhgAABwTYAiXoaQAACAe8jAAADgmKDXDfABMjAAAMA5ZGAAAHBMgBwMGRgAAOAeMjAAADgmQAaGDAwAAHAPGRgAABwTZB0YMjAAAMA9ZGAAAHBMgBoYAhgAAFwTJIBhCAkAALiHDAwAAI4JUsRLBgYAAJyeWbNmqUKFCmFbt27d7Lk1a9botttuU7Vq1XTLLbdo1apV+juRgQEAwDEBn9TArF+/Xg0bNtTAgQNDx2JiYnTw4EF16NBBzZs319ChQzVlyhR17NjRBjz58uX7Wz6bDAwAADgtGzZs0MUXX6yiRYuGtnPOOUcff/yxDWQee+wxlStXTn369FH+/Pn1ySef6O9CAAMAgIM1MMFs2k41gClbtuxxx1esWKGaNWsqKirK7pvHGjVqaPny5X9bHxDAAACAkLS0NB04cCBsM8eOZYKdn376SXPnzlWTJk107bXX6tlnn7XP3bVrl+Lj48OeHxcXp8TERP1dqIEBAMAxgWysgRk3bpwSEhLCjnXp0kVdu3YNO7Z9+3YlJycrOjpao0aN0tatWzVo0CClpKSEjmdk9k8UCJ0uAhgAABwTzMYAxhTbtm3bNuzYscGIUapUKX377bc699xz7RBRpUqVFAgE9Oijj6p27drHBStmP2/evH9bOwlgAABAWLByooDlRAoWLBi2bwp2U1NTbTFvUlJS2Dmzf+yw0l9BDQwAAI4JBIPZtmXV119/rTp16tjhonRr1661QY0p4F22bFmoKNg8Ll261K4J83chgAEAAKesevXqdqp03759tXHjRs2ZM0fDhw9X+/bt9X//93/av3+/nnnmGbtWjHk0gU7Tpk31dyGAAQDAwRqYYDb9L6sKFCigiRMnavfu3XalXbPWyx133GEDGHPOFAMvWbJELVu2tNOqx48f/7ctYmdEBX1yQ4Xc0aW8bgIA4E9ccG5xr5vge+t2LTljn1WlWJ1se+/VO76VCyjiBQDAMQF/5B48xRASAABwDhkYAAAcE/TJzRy9RAADAIBjAgwhMYQEAADcQwDzJ8wqhMuXfa6rr6rndVN8xcz5Hz/uWSXtXKMtm5aq+8MdvW6Sr9A/J0cfZY7+CXfeBaX16r8TtPznrzVn2Udq37l16FytupdpxuzJWvHzXL3/5Vv6x1W1FSmCPphG7TWGkP7kF8jkNxJUtUpFr5viO8OG9lXNmtXU+Lrbdd75pfXaxFHatHmr3n33I6+b5gv0z8nRR5mjf44y99d55a0X9N2yNWrR6C6VvfA8PT9usHb8skvzvvpW4yaP0tjnJ+rTD7/QDTdfp7GTRqpJvZZK/GWn103HGcA6MMeoVOkivTFpjP2HU+3Syrrm2ls156sFXjfLF/Lli9WOX75Ts+atQ33Su9dDuqbRFbqm8W2KdPTPydFH7vaPF+vAFC1WRH0G9VSfhwfq998P2mNjXhuhXTt/1bw532rQyL6qU/Ga0PMX/vC5nnpksD754HPl9HVgyhWpkW3vvSFpqVzAENIxrrqynub8d76uuLK5103xnWqXVlGePHk0f8Hi0LF58xaqdu3qNuCLdPTPydFHmaN/wu3akaSH7+8VCl5q1K6mWvVq6Nv5S7R3z14Vjiuo625oaM9d27SB8hfIrx/WrPe41XBmCMkkcPbu3atChQopJxg3fpLXTfCt4iXilZS0W4cOHQod27Fzl2JjYxUXV8iei2T0z8nRR5mjf/7cf5d+qFJlSuiLT7/Spx98rkAgoDcmvq0XXx1uf86dO7ce79pfP23YpEgQdKhWxfMMzEMPPaQDBw6E9s0/sMGDB9ubOf3jH/9QvXr19Oqrr2ZXO+GT9HZqalrYsfR9UzcU6eifk6OPMkf//LkubR9Vh7seVqWqF9thpfz586nM+aX04vDxuqXJvXpp5AQ9OfgRXVi+rNdNhd8yMJ999pmeeuope4MmY/To0faYufNkuXLltGbNGo0YMUIpKSnq1KlTdrYZHklJSVVMTHTYsfT9gweP3k49UtE/J0cfZY7++XOrVqy1jzFPRuu5sYNsf5hhtYTnXrHH16z8XtVqVNW9HVqp32NDlNMFgwFFuixnYI6t9f3kk0/sLbSvu+46G8A0b95cAwcO1NSpU7OjnfCB7dsSVaRIYeXKlSt0rHixePuLZO/efYp09M/J0UeZo3/CxRUtbGtbMlr/w0ZFx0SrYpWL9P3qdWHn1nz3g0qWiYybTgYUzLYtxwUwJtLNWER21llnqXTp0mHPOe+88/T777//vS2EbyxfscoOHdatc7T6vX792lq8ePlxAW4kon9Ojj7KHP0Trsx5JTXmXyNUrHjR0LEq1Srp1127tTMxSeUvviDs+RdeVFZbN2/3oKXwfQbGZFyef/55zZw5U1WrVtWkSUcLXlNTUzVmzBhddtll2dVWeCw5OUWT3piuMWOGqlbNarrxxibq0b2jRidM9LppvkD/nBx9lDn6J9zKZWvs0NGQ0f1ssHL1tfX1eP+HNHbUq5o2eYbdb9PxLlsL06ZjK13Z6B9689VpigTBYDDbthy3Dszs2bO1fv16bdiwwW4//fSTrXf59ttvdc4556hOnTq2Un7ixIl2SMnVdWAyOpy2jXVgjhEbm1djEoaq5c3Xa9++/Xpu5Msa/eIEr5vlG/TPydFHbvaPF+vAGPHFiqjf0MdV76radiht8sS39fKo1+y5Rk2u0sNPPKDzLiijn9Zv0ogBozX/q4XyyplcB+a8wpdk23tv3v2dcvxCdtu3b1fJkiXtz3PnzrUzkvLnz39a7+XHAAYA4G0A45IzGcCULlw129576+5VyvHrwKQHL8YVV1zxd7QHAADgpLgXEgAAjgk6VKuSXbiVAAAAcA4ZGAAAHBMgA0MAAwCAa4IOLTiXXRhCAgAAziEDAwCAY4IMIZGBAQAA7iEDAwCAYwLUwJCBAQAA7iEDAwCAY4LUwJCBAQAA7iEDAwCAYwJkYAhgAABwTZAAhiEkAADgHjIwAAA4JsA0ajIwAADAPWRgAABwTJAaGDIwAADAPWRgAABwTIAMDBkYAADgHjIwAAA4JsgsJAIYAABcE2AIiSEkAADgHjIwAAA4JkgGhgwMAABwDxkYAAAcE6SIlwwMAABwDwEMAAAO1sAEs2k7Fampqerdu7dq1aqlK664Qq+++qrOFIaQAADAaRk+fLhWrVql119/Xdu3b9fjjz+ukiVL6v/+7/+U3QhgAABwTNAHs5AOHjyoadOm6ZVXXlGVKlXstm7dOr355ptnJIBhCAkAAMcEs3HLqu+//16HDx9W9erVQ8dq1qypFStWKBAIKLuRgQEAACFpaWl2yyg6OtpuGe3atUuFChUKO16kSBFbF7N3714VLlxYERHAHE7b5nUTAABwwuFs/Jv54osvKiEhIexYly5d1LVr17BjycnJxwU16fvHBkA5OoABAADe69ixo9q2bRt27NhAxYiJiTkuUEnfz5s3bza3kgAGAACcZLjoRIoVK6Y9e/bYOpjcuXOHhpVM8HLOOecou1HECwAATlmlSpVs4LJ8+fLQsSVLluiSSy7RWWdlf3hBAAMAAE5ZbGysbrrpJvXv318rV67U7Nmz7UJ299xzj86EqKAfJpMDAADnJCcn2wDms88+U4ECBdSuXTu1adPmjHw2AQwAAHAOQ0gAAMA5BDAAAMA5BDAAAMA5BDAAAMA5BDDHMPdw6N27t2rVqqUrrrjCTgnD8cxqi82aNdO3337rdVN8ZceOHerWrZtq166tK6+8UkOGDLHXFI7atGmTnalgbgDXoEEDTZgwwesm+VaHDh30xBNPeN0MX5k1a5YqVKgQtpl/c4g8rMR7jOHDh2vVqlV6/fXXtX37dj3++OMqWbLkGbk1uCvMH+SePXva26bjKDOhz/wiNStQmtvJ79u3zwbDZkEncx1B9g615o+yWehqxowZNpjp0aOHXdGzefPmXjfPVz766CPNmTNHN998s9dN8ZX169erYcOGGjhwYNiS9og8BDAZHDx4UNOmTdMrr7yiKlWq2M38kTZ/jAhgjv7yMMELs++Pt3HjRrsi5bx58+wdWQ0T0AwbNowA5n+SkpLs6p1m3QizZkTZsmVVr149u3onAcxR5k6+5suUCfQQbsOGDbr44otVtGhRr5sCjzGElMH3339v7+lgUtvpatasqRUrVthvjpAWLlyoOnXq6O233/a6Kb5jfqGa4ZD04CXdgQMHPGuT38THx2vUqFE2eDFBsAlcFi1aZIfccJQJelu0aKHy5ct73RRfBjAm8AXIwGRgbkJVqFChsJtYmT9GZsjEfCMqXLiwIt1dd93ldRN8ywwdmbqXdCbonTx5surWretpu/yqUaNGdpjWDAc0adLE6+b4xoIFC7R48WJ98MEHNlOFo0zQ+9NPP2nu3LkaN26cjhw5YrPjJtOZlZsPImchA3PMksjH/iNI3z/2luHAyYwYMUJr1qxR9+7dvW6KL40ePVovv/yy1q5da4ud8Ud9Wb9+/fTUU0/ZO/oinAl4039Pm0yeGZo1gZ4ZbkPkIQOTgSkEOzZQSd/nlwlONXgxheDPP/+8Ha/H8dLrO8wf7UceeUSPPfZYxH+LTkhIUNWqVcMyeTiqVKlSdubjueeeq6ioKFtPZTKdjz76qHr16qVcuXJ53UScQQQwGZiZEHv27LF1MOYW4enDSiZ4McMDQFaY2RFTpkyxQQxDI8cX8ZpC52uvvTZ0zNR5HDp0yNYKRfowrZl5ZPoovQ4v/QvUp59+qmXLlnncOn8oWLBg2H65cuVsEGxm/UX69RNpGELKwETzJnAxv2DTmSJD803RTIUFsvINeurUqRo5cqRuuOEGr5vjO1u3blWXLl3sejnpzLIF5g8Pf3ykN954ww6JzJw5026mTshs5mdIX3/9tZ1EYIaR0pkhSBPUcP1EHv4qZxAbG6ubbrrJFs6tXLlSs2fPtgvZ3XPPPV43DY7MjnjppZd0//3329lrJnuXvuEP5suAWZ7ArI9jpuSbdU5MpuqBBx7wumm+GSI5//zzQ1v+/PntZn6GbGbKDPX37dvXLltgrh9T/9K+fXuvmwYPMIR0DDOOagKYe++910717Nq1q6677jqvmwUHfP7553ZWxNixY+2W0Q8//OBZu/zE1CiYIM8Ms91xxx32S0Pr1q35koAsMb+TJ06cqMGDB+uWW26xwd2dd95JABOhooKsSAYAABzDEBIAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAJBr/h96q9dYBNGLUQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classification Report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.99 0.99 0.99 408\n", + " 1 1.00 0.89 0.94 237\n", + " 2 0.91 0.99 0.95 329\n", + " 3 1.00 1.00 1.00 70\n", + " 4 1.00 0.95 0.98 64\n", + " 5 1.00 0.97 0.99 39\n", + "\n", + " accuracy 0.97 1147\n", + " macro avg 0.98 0.97 0.97 1147\n", + "weighted avg 0.97 0.97 0.97 1147\n", + "\n" + ] + } + ], + "execution_count": 37 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tensorflow-Lite用のモデルへ変換" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.242924Z", + "start_time": "2025-04-06T15:10:27.054441Z" + } + }, + "source": [ + "# モデルを変換(量子化)\n", + "tflite_save_path = 'model/keypoint_classifier/keypoint_classifier.tflite'\n", + "\n", + "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", + "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", + "tflite_quantized_model = converter.convert()\n", + "\n", + "open(tflite_save_path, 'wb').write(tflite_quantized_model)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpx0n8ggq1\\assets\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpx0n8ggq1\\assets\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved artifact at 'C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpx0n8ggq1'. The following endpoints are available:\n", + "\n", + "* Endpoint 'serve'\n", + " args_0 (POSITIONAL_ONLY): TensorSpec(shape=(None, 42), dtype=tf.float32, name='input_layer_1')\n", + "Output Type:\n", + " TensorSpec(shape=(None, 6), dtype=tf.float32, name=None)\n", + "Captures:\n", + " 2614704504176: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2614869353648: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2614704496960: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2614869345904: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2614869344496: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2614871934928: TensorSpec(shape=(), dtype=tf.resource, name=None)\n" + ] + }, + { + "data": { + "text/plain": [ + "6644" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 38 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 推論テスト" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.274132Z", + "start_time": "2025-04-06T15:10:27.259133Z" + } + }, + "source": [ + "interpreter = tf.lite.Interpreter(model_path=tflite_save_path)\n", + "interpreter.allocate_tensors()" + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\.venv\\lib\\site-packages\\tensorflow\\lite\\python\\interpreter.py:457: UserWarning: Warning: tf.lite.Interpreter is deprecated and is scheduled for deletion in\n", + " TF 2.20. Please use the LiteRT interpreter from the ai_edge_litert package.\n", + " See the [migration guide](https://ai.google.dev/edge/litert/migration)\n", + " for details.\n", + " \n", + " warnings.warn(_INTERPRETER_DELETION_WARNING)\n" + ] + } + ], + "execution_count": 39 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.306131Z", + "start_time": "2025-04-06T15:10:27.291134Z" + } + }, + "source": [ + "# 入出力テンソルを取得\n", + "input_details = interpreter.get_input_details()\n", + "output_details = interpreter.get_output_details()" + ], + "outputs": [], + "execution_count": 40 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.337021Z", + "start_time": "2025-04-06T15:10:27.322449Z" + } + }, + "source": [ + "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" + ], + "outputs": [], + "execution_count": 41 + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.368247Z", + "start_time": "2025-04-06T15:10:27.354023Z" + } + }, + "source": [ + "%%time\n", + "# 推論実施\n", + "interpreter.invoke()\n", + "tflite_results = interpreter.get_tensor(output_details[0]['index'])" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: total: 0 ns\n", + "Wall time: 0 ns\n" + ] + } + ], + "execution_count": 42 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.415239Z", + "start_time": "2025-04-06T15:10:27.384549Z" + } + }, + "cell_type": "code", + "source": [ + "# 推論専用のモデルとして保存\n", + "model.save(model_save_path, include_optimizer=False)" + ], + "outputs": [], + "execution_count": 43 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T15:10:27.445830Z", + "start_time": "2025-04-06T15:10:27.431554Z" + } + }, + "cell_type": "code", + "source": [ + "print(np.squeeze(tflite_results))\n", + "print(np.argmax(np.squeeze(tflite_results)))" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4.1954637e-02 7.1722366e-02 8.7705678e-01 8.6475220e-03 5.7122711e-04\n", + " 4.7421348e-05]\n", + "2\n" + ] + } + ], + "execution_count": 44 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/keypoint_classification_EN.ipynb b/keypoint_classification_EN.ipynb index 6da6b90e..69ab6c06 100644 --- a/keypoint_classification_EN.ipynb +++ b/keypoint_classification_EN.ipynb @@ -1,1194 +1,1034 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "colab": { - "name": "keypoint_classification_EN.ipynb", - "provenance": [], - "collapsed_sections": [], - "toc_visible": true - }, - "accelerator": "GPU" - }, - "cells": [ - { - "cell_type": "code", - "metadata": { - "id": "igMyGnjE9hEp" - }, - "source": [ - "import csv\n", - "\n", - "import numpy as np\n", - "import tensorflow as tf\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "RANDOM_SEED = 42" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "t2HDvhIu9hEr" - }, - "source": [ - "# Specify each path" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9NvZP2Zn9hEy" - }, - "source": [ - "dataset = 'model/keypoint_classifier/keypoint.csv'\n", - "model_save_path = 'model/keypoint_classifier/keypoint_classifier.hdf5'\n", - "tflite_save_path = 'model/keypoint_classifier/keypoint_classifier.tflite'" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "s5oMH7x19hEz" - }, - "source": [ - "# Set number of classes" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "du4kodXL9hEz" - }, - "source": [ - "NUM_CLASSES = 4" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XjnL0uso9hEz" - }, - "source": [ - "# Dataset reading" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "QT5ZqtEz9hE0" - }, - "source": [ - "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (21 * 2) + 1)))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "QmoKFsp49hE0" - }, - "source": [ - "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "xQU7JTZ_9hE0" - }, - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mxK_lETT9hE0" - }, - "source": [ - "# Model building" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "vHBmUf1t9hE1" - }, - "source": [ - "model = tf.keras.models.Sequential([\n", - " tf.keras.layers.Input((21 * 2, )),\n", - " tf.keras.layers.Dropout(0.2),\n", - " tf.keras.layers.Dense(20, activation='relu'),\n", - " tf.keras.layers.Dropout(0.4),\n", - " tf.keras.layers.Dense(10, activation='relu'),\n", - " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", - "])" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "ypqky9tc9hE1", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "5db082bb-30e3-4110-bf63-a1ee777ecd46" - }, - "source": [ - "model.summary() # tf.keras.utils.plot_model(model, show_shapes=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Model: \"sequential\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dropout (Dropout) (None, 42) 0 \n", - "_________________________________________________________________\n", - "dense (Dense) (None, 20) 860 \n", - "_________________________________________________________________\n", - "dropout_1 (Dropout) (None, 20) 0 \n", - "_________________________________________________________________\n", - "dense_1 (Dense) (None, 10) 210 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 4) 44 \n", - "=================================================================\n", - "Total params: 1,114\n", - "Trainable params: 1,114\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "MbMjOflQ9hE1" - }, - "source": [ - "# Model checkpoint callback\n", - "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", - " model_save_path, verbose=1, save_weights_only=False)\n", - "# Callback for early stopping\n", - "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "c3Dac0M_9hE2" - }, - "source": [ - "# Model compilation\n", - "model.compile(\n", - " optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", - " metrics=['accuracy']\n", - ")" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7XI0j1Iu9hE2" - }, - "source": [ - "# Model training" - ] - }, - { - "cell_type": "code", - "metadata": { - "scrolled": true, - "id": "WirBl-JE9hE3", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "71b30ca2-8294-4d9d-8aa2-800d90d399de" - }, - "source": [ - "model.fit(\n", - " X_train,\n", - " y_train,\n", - " epochs=1000,\n", - " batch_size=128,\n", - " validation_data=(X_test, y_test),\n", - " callbacks=[cp_callback, es_callback]\n", - ")" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Epoch 1/1000\n", - "29/29 [==============================] - 2s 15ms/step - loss: 1.3853 - accuracy: 0.3360 - val_loss: 1.2779 - val_accuracy: 0.4244\n", - "\n", - "Epoch 00001: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 2/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.2943 - accuracy: 0.3780 - val_loss: 1.2151 - val_accuracy: 0.4703\n", - "\n", - "Epoch 00002: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 3/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.2524 - accuracy: 0.3749 - val_loss: 1.1472 - val_accuracy: 0.5572\n", - "\n", - "Epoch 00003: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 4/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.1989 - accuracy: 0.4251 - val_loss: 1.0682 - val_accuracy: 0.6374\n", - "\n", - "Epoch 00004: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 5/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.1363 - accuracy: 0.4733 - val_loss: 1.0027 - val_accuracy: 0.6608\n", - "\n", - "Epoch 00005: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 6/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.0938 - accuracy: 0.5107 - val_loss: 0.9416 - val_accuracy: 0.6717\n", - "\n", - "Epoch 00006: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 7/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.0426 - accuracy: 0.5351 - val_loss: 0.8775 - val_accuracy: 0.7043\n", - "\n", - "Epoch 00007: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 8/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 1.0024 - accuracy: 0.5597 - val_loss: 0.8238 - val_accuracy: 0.7243\n", - "\n", - "Epoch 00008: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 9/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.9845 - accuracy: 0.5475 - val_loss: 0.7726 - val_accuracy: 0.7444\n", - "\n", - "Epoch 00009: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 10/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.9527 - accuracy: 0.5661 - val_loss: 0.7256 - val_accuracy: 0.7602\n", - "\n", - "Epoch 00010: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 11/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.9066 - accuracy: 0.5915 - val_loss: 0.6922 - val_accuracy: 0.7886\n", - "\n", - "Epoch 00011: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 12/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.8825 - accuracy: 0.6094 - val_loss: 0.6512 - val_accuracy: 0.8087\n", - "\n", - "Epoch 00012: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 13/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.8901 - accuracy: 0.6124 - val_loss: 0.6228 - val_accuracy: 0.8246\n", - "\n", - "Epoch 00013: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 14/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.8616 - accuracy: 0.6238 - val_loss: 0.5969 - val_accuracy: 0.8688\n", - "\n", - "Epoch 00014: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 15/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.8060 - accuracy: 0.6412 - val_loss: 0.5634 - val_accuracy: 0.8780\n", - "\n", - "Epoch 00015: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 16/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.8036 - accuracy: 0.6573 - val_loss: 0.5445 - val_accuracy: 0.8897\n", - "\n", - "Epoch 00016: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 17/1000\n", - "29/29 [==============================] - 0s 6ms/step - loss: 0.7658 - accuracy: 0.6752 - val_loss: 0.5247 - val_accuracy: 0.9056\n", - "\n", - "Epoch 00017: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 18/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7816 - accuracy: 0.6566 - val_loss: 0.5061 - val_accuracy: 0.9073\n", - "\n", - "Epoch 00018: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 19/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.7564 - accuracy: 0.6842 - val_loss: 0.4910 - val_accuracy: 0.9039\n", - "\n", - "Epoch 00019: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 20/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7531 - accuracy: 0.6800 - val_loss: 0.4742 - val_accuracy: 0.9098\n", - "\n", - "Epoch 00020: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 21/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7271 - accuracy: 0.6952 - val_loss: 0.4619 - val_accuracy: 0.9190\n", - "\n", - "Epoch 00021: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 22/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7392 - accuracy: 0.6969 - val_loss: 0.4552 - val_accuracy: 0.9240\n", - "\n", - "Epoch 00022: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 23/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7169 - accuracy: 0.6980 - val_loss: 0.4407 - val_accuracy: 0.9190\n", - "\n", - "Epoch 00023: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 24/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7228 - accuracy: 0.6844 - val_loss: 0.4299 - val_accuracy: 0.9348\n", - "\n", - "Epoch 00024: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 25/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7076 - accuracy: 0.6995 - val_loss: 0.4208 - val_accuracy: 0.9273\n", - "\n", - "Epoch 00025: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 26/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.7026 - accuracy: 0.7094 - val_loss: 0.4089 - val_accuracy: 0.9340\n", - "\n", - "Epoch 00026: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 27/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6647 - accuracy: 0.7284 - val_loss: 0.4033 - val_accuracy: 0.9307\n", - "\n", - "Epoch 00027: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 28/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.7012 - accuracy: 0.7009 - val_loss: 0.4048 - val_accuracy: 0.9282\n", - "\n", - "Epoch 00028: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 29/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6833 - accuracy: 0.7196 - val_loss: 0.3877 - val_accuracy: 0.9390\n", - "\n", - "Epoch 00029: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 30/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6934 - accuracy: 0.7080 - val_loss: 0.3753 - val_accuracy: 0.9465\n", - "\n", - "Epoch 00030: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 31/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6482 - accuracy: 0.7330 - val_loss: 0.3744 - val_accuracy: 0.9407\n", - "\n", - "Epoch 00031: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 32/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6765 - accuracy: 0.7150 - val_loss: 0.3752 - val_accuracy: 0.9465\n", - "\n", - "Epoch 00032: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 33/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6690 - accuracy: 0.7229 - val_loss: 0.3627 - val_accuracy: 0.9490\n", - "\n", - "Epoch 00033: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 34/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6609 - accuracy: 0.7177 - val_loss: 0.3601 - val_accuracy: 0.9415\n", - "\n", - "Epoch 00034: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 35/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6472 - accuracy: 0.7369 - val_loss: 0.3538 - val_accuracy: 0.9357\n", - "\n", - "Epoch 00035: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 36/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6448 - accuracy: 0.7398 - val_loss: 0.3439 - val_accuracy: 0.9482\n", - "\n", - "Epoch 00036: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 37/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6417 - accuracy: 0.7341 - val_loss: 0.3454 - val_accuracy: 0.9482\n", - "\n", - "Epoch 00037: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 38/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6605 - accuracy: 0.7270 - val_loss: 0.3479 - val_accuracy: 0.9507\n", - "\n", - "Epoch 00038: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 39/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6306 - accuracy: 0.7349 - val_loss: 0.3439 - val_accuracy: 0.9499\n", - "\n", - "Epoch 00039: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 40/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6719 - accuracy: 0.7174 - val_loss: 0.3491 - val_accuracy: 0.9490\n", - "\n", - "Epoch 00040: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 41/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6213 - accuracy: 0.7391 - val_loss: 0.3326 - val_accuracy: 0.9465\n", - "\n", - "Epoch 00041: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 42/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6397 - accuracy: 0.7397 - val_loss: 0.3294 - val_accuracy: 0.9499\n", - "\n", - "Epoch 00042: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 43/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6255 - accuracy: 0.7534 - val_loss: 0.3269 - val_accuracy: 0.9515\n", - "\n", - "Epoch 00043: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 44/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6403 - accuracy: 0.7363 - val_loss: 0.3300 - val_accuracy: 0.9507\n", - "\n", - "Epoch 00044: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 45/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6105 - accuracy: 0.7541 - val_loss: 0.3156 - val_accuracy: 0.9574\n", - "\n", - "Epoch 00045: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 46/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.6065 - accuracy: 0.7611 - val_loss: 0.3083 - val_accuracy: 0.9582\n", - "\n", - "Epoch 00046: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 47/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5970 - accuracy: 0.7595 - val_loss: 0.3147 - val_accuracy: 0.9432\n", - "\n", - "Epoch 00047: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 48/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5949 - accuracy: 0.7490 - val_loss: 0.3119 - val_accuracy: 0.9524\n", - "\n", - "Epoch 00048: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 49/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6136 - accuracy: 0.7447 - val_loss: 0.3049 - val_accuracy: 0.9591\n", - "\n", - "Epoch 00049: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 50/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6021 - accuracy: 0.7487 - val_loss: 0.3109 - val_accuracy: 0.9591\n", - "\n", - "Epoch 00050: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 51/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5964 - accuracy: 0.7519 - val_loss: 0.3073 - val_accuracy: 0.9607\n", - "\n", - "Epoch 00051: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 52/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6201 - accuracy: 0.7530 - val_loss: 0.3005 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00052: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 53/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5830 - accuracy: 0.7675 - val_loss: 0.2952 - val_accuracy: 0.9641\n", - "\n", - "Epoch 00053: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 54/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5810 - accuracy: 0.7717 - val_loss: 0.2938 - val_accuracy: 0.9624\n", - "\n", - "Epoch 00054: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 55/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5772 - accuracy: 0.7629 - val_loss: 0.2909 - val_accuracy: 0.9616\n", - "\n", - "Epoch 00055: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 56/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5697 - accuracy: 0.7671 - val_loss: 0.2858 - val_accuracy: 0.9616\n", - "\n", - "Epoch 00056: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 57/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6045 - accuracy: 0.7662 - val_loss: 0.2897 - val_accuracy: 0.9607\n", - "\n", - "Epoch 00057: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 58/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5758 - accuracy: 0.7605 - val_loss: 0.2866 - val_accuracy: 0.9649\n", - "\n", - "Epoch 00058: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 59/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5680 - accuracy: 0.7674 - val_loss: 0.2823 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00059: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 60/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.6012 - accuracy: 0.7609 - val_loss: 0.2797 - val_accuracy: 0.9632\n", - "\n", - "Epoch 00060: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 61/1000\n", - "29/29 [==============================] - 0s 7ms/step - loss: 0.5754 - accuracy: 0.7716 - val_loss: 0.2738 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00061: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 62/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5867 - accuracy: 0.7662 - val_loss: 0.2681 - val_accuracy: 0.9641\n", - "\n", - "Epoch 00062: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 63/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5659 - accuracy: 0.7775 - val_loss: 0.2679 - val_accuracy: 0.9624\n", - "\n", - "Epoch 00063: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 64/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5809 - accuracy: 0.7579 - val_loss: 0.2676 - val_accuracy: 0.9616\n", - "\n", - "Epoch 00064: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 65/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5411 - accuracy: 0.7946 - val_loss: 0.2597 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00065: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 66/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5708 - accuracy: 0.7580 - val_loss: 0.2605 - val_accuracy: 0.9683\n", - "\n", - "Epoch 00066: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 67/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5758 - accuracy: 0.7743 - val_loss: 0.2610 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00067: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 68/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5817 - accuracy: 0.7755 - val_loss: 0.2627 - val_accuracy: 0.9649\n", - "\n", - "Epoch 00068: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 69/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5433 - accuracy: 0.7961 - val_loss: 0.2506 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00069: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 70/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5277 - accuracy: 0.7969 - val_loss: 0.2515 - val_accuracy: 0.9674\n", - "\n", - "Epoch 00070: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 71/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5326 - accuracy: 0.7916 - val_loss: 0.2523 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00071: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 72/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5366 - accuracy: 0.7858 - val_loss: 0.2503 - val_accuracy: 0.9632\n", - "\n", - "Epoch 00072: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 73/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5365 - accuracy: 0.7923 - val_loss: 0.2454 - val_accuracy: 0.9674\n", - "\n", - "Epoch 00073: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 74/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5308 - accuracy: 0.7907 - val_loss: 0.2477 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00074: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 75/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5484 - accuracy: 0.7893 - val_loss: 0.2423 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00075: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 76/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5486 - accuracy: 0.7919 - val_loss: 0.2460 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00076: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 77/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5641 - accuracy: 0.7737 - val_loss: 0.2504 - val_accuracy: 0.9674\n", - "\n", - "Epoch 00077: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 78/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5293 - accuracy: 0.7988 - val_loss: 0.2358 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00078: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 79/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5279 - accuracy: 0.8004 - val_loss: 0.2314 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00079: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 80/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5228 - accuracy: 0.7923 - val_loss: 0.2357 - val_accuracy: 0.9708\n", - "\n", - "Epoch 00080: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 81/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5105 - accuracy: 0.8039 - val_loss: 0.2433 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00081: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 82/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5105 - accuracy: 0.7994 - val_loss: 0.2415 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00082: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 83/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5323 - accuracy: 0.7907 - val_loss: 0.2395 - val_accuracy: 0.9674\n", - "\n", - "Epoch 00083: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 84/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5423 - accuracy: 0.7904 - val_loss: 0.2396 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00084: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 85/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5419 - accuracy: 0.7913 - val_loss: 0.2335 - val_accuracy: 0.9683\n", - "\n", - "Epoch 00085: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 86/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5259 - accuracy: 0.8041 - val_loss: 0.2351 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00086: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 87/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5282 - accuracy: 0.7899 - val_loss: 0.2285 - val_accuracy: 0.9708\n", - "\n", - "Epoch 00087: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 88/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5117 - accuracy: 0.7977 - val_loss: 0.2334 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00088: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 89/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5065 - accuracy: 0.8034 - val_loss: 0.2389 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00089: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 90/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5209 - accuracy: 0.7974 - val_loss: 0.2391 - val_accuracy: 0.9632\n", - "\n", - "Epoch 00090: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 91/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5023 - accuracy: 0.8022 - val_loss: 0.2242 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00091: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 92/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5345 - accuracy: 0.7989 - val_loss: 0.2257 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00092: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 93/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5404 - accuracy: 0.7961 - val_loss: 0.2314 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00093: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 94/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5065 - accuracy: 0.8004 - val_loss: 0.2324 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00094: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 95/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5292 - accuracy: 0.8023 - val_loss: 0.2263 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00095: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 96/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5031 - accuracy: 0.8069 - val_loss: 0.2243 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00096: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 97/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4866 - accuracy: 0.8238 - val_loss: 0.2188 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00097: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 98/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5235 - accuracy: 0.8082 - val_loss: 0.2216 - val_accuracy: 0.9741\n", - "\n", - "Epoch 00098: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 99/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5103 - accuracy: 0.8040 - val_loss: 0.2309 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00099: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 100/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4986 - accuracy: 0.8049 - val_loss: 0.2237 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00100: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 101/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4859 - accuracy: 0.8137 - val_loss: 0.2149 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00101: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 102/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5011 - accuracy: 0.8068 - val_loss: 0.2196 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00102: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 103/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4784 - accuracy: 0.8216 - val_loss: 0.2194 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00103: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 104/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4757 - accuracy: 0.8298 - val_loss: 0.2195 - val_accuracy: 0.9749\n", - "\n", - "Epoch 00104: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 105/1000\n", - "29/29 [==============================] - 0s 6ms/step - loss: 0.5101 - accuracy: 0.7992 - val_loss: 0.2342 - val_accuracy: 0.9632\n", - "\n", - "Epoch 00105: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 106/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4907 - accuracy: 0.8168 - val_loss: 0.2276 - val_accuracy: 0.9641\n", - "\n", - "Epoch 00106: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 107/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5035 - accuracy: 0.8050 - val_loss: 0.2187 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00107: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 108/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5085 - accuracy: 0.7979 - val_loss: 0.2091 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00108: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 109/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4948 - accuracy: 0.8134 - val_loss: 0.2169 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00109: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 110/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4943 - accuracy: 0.8085 - val_loss: 0.2115 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00110: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 111/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5165 - accuracy: 0.8106 - val_loss: 0.2226 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00111: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 112/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4962 - accuracy: 0.8136 - val_loss: 0.2235 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00112: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 113/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5203 - accuracy: 0.8059 - val_loss: 0.2215 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00113: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 114/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5095 - accuracy: 0.8011 - val_loss: 0.2207 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00114: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 115/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4947 - accuracy: 0.8178 - val_loss: 0.2101 - val_accuracy: 0.9683\n", - "\n", - "Epoch 00115: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 116/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5079 - accuracy: 0.8116 - val_loss: 0.2172 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00116: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 117/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5056 - accuracy: 0.8056 - val_loss: 0.2236 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00117: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 118/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5451 - accuracy: 0.7969 - val_loss: 0.2210 - val_accuracy: 0.9649\n", - "\n", - "Epoch 00118: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 119/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5005 - accuracy: 0.8192 - val_loss: 0.2220 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00119: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 120/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.5130 - accuracy: 0.8043 - val_loss: 0.2170 - val_accuracy: 0.9716\n", - "\n", - "Epoch 00120: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 121/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4874 - accuracy: 0.8132 - val_loss: 0.2177 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00121: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 122/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4863 - accuracy: 0.8106 - val_loss: 0.2247 - val_accuracy: 0.9716\n", - "\n", - "Epoch 00122: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 123/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4867 - accuracy: 0.8101 - val_loss: 0.2138 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00123: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 124/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4550 - accuracy: 0.8279 - val_loss: 0.2110 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00124: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 125/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4908 - accuracy: 0.8152 - val_loss: 0.2088 - val_accuracy: 0.9716\n", - "\n", - "Epoch 00125: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 126/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5095 - accuracy: 0.8085 - val_loss: 0.2052 - val_accuracy: 0.9749\n", - "\n", - "Epoch 00126: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 127/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4814 - accuracy: 0.8096 - val_loss: 0.2055 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00127: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 128/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4960 - accuracy: 0.8126 - val_loss: 0.2153 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00128: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 129/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4922 - accuracy: 0.8236 - val_loss: 0.2169 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00129: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 130/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4516 - accuracy: 0.8311 - val_loss: 0.2098 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00130: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 131/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4596 - accuracy: 0.8147 - val_loss: 0.2010 - val_accuracy: 0.9758\n", - "\n", - "Epoch 00131: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 132/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4641 - accuracy: 0.8284 - val_loss: 0.1976 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00132: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 133/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4831 - accuracy: 0.8071 - val_loss: 0.2037 - val_accuracy: 0.9766\n", - "\n", - "Epoch 00133: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 134/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4643 - accuracy: 0.8149 - val_loss: 0.2157 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00134: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 135/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4682 - accuracy: 0.8230 - val_loss: 0.2119 - val_accuracy: 0.9699\n", - "\n", - "Epoch 00135: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 136/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4986 - accuracy: 0.8085 - val_loss: 0.2093 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00136: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 137/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4729 - accuracy: 0.8226 - val_loss: 0.1992 - val_accuracy: 0.9741\n", - "\n", - "Epoch 00137: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 138/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.5082 - accuracy: 0.8100 - val_loss: 0.2034 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00138: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 139/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4770 - accuracy: 0.8159 - val_loss: 0.2011 - val_accuracy: 0.9691\n", - "\n", - "Epoch 00139: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 140/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4842 - accuracy: 0.8167 - val_loss: 0.2040 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00140: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 141/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4895 - accuracy: 0.8208 - val_loss: 0.2113 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00141: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 142/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4821 - accuracy: 0.8175 - val_loss: 0.2193 - val_accuracy: 0.9649\n", - "\n", - "Epoch 00142: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 143/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4909 - accuracy: 0.8237 - val_loss: 0.2194 - val_accuracy: 0.9607\n", - "\n", - "Epoch 00143: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 144/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4814 - accuracy: 0.8163 - val_loss: 0.2222 - val_accuracy: 0.9591\n", - "\n", - "Epoch 00144: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 145/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4776 - accuracy: 0.8226 - val_loss: 0.2159 - val_accuracy: 0.9657\n", - "\n", - "Epoch 00145: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 146/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4810 - accuracy: 0.8290 - val_loss: 0.2111 - val_accuracy: 0.9632\n", - "\n", - "Epoch 00146: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 147/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4892 - accuracy: 0.8163 - val_loss: 0.2065 - val_accuracy: 0.9666\n", - "\n", - "Epoch 00147: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 148/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4642 - accuracy: 0.8298 - val_loss: 0.2058 - val_accuracy: 0.9716\n", - "\n", - "Epoch 00148: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 149/1000\n", - "29/29 [==============================] - 0s 7ms/step - loss: 0.4666 - accuracy: 0.8255 - val_loss: 0.2084 - val_accuracy: 0.9733\n", - "\n", - "Epoch 00149: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 150/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4687 - accuracy: 0.8264 - val_loss: 0.1983 - val_accuracy: 0.9749\n", - "\n", - "Epoch 00150: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 151/1000\n", - "29/29 [==============================] - 0s 4ms/step - loss: 0.4801 - accuracy: 0.8201 - val_loss: 0.2018 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00151: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 152/1000\n", - "29/29 [==============================] - 0s 3ms/step - loss: 0.4387 - accuracy: 0.8379 - val_loss: 0.2064 - val_accuracy: 0.9724\n", - "\n", - "Epoch 00152: saving model to model/keypoint_classifier/keypoint_classifier.hdf5\n", - "Epoch 00152: early stopping\n" - ], - "name": "stdout" - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 11 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "pxvb2Y299hE3", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "59eb3185-2e37-4b9e-bc9d-ab1b8ac29b7f" - }, - "source": [ - "# Model evaluation\n", - "val_loss, val_acc = model.evaluate(X_test, y_test, batch_size=128)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "10/10 [==============================] - 0s 2ms/step - loss: 0.2064 - accuracy: 0.9724\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "RBkmDeUW9hE4" - }, - "source": [ - "# Loading the saved model\n", - "model = tf.keras.models.load_model(model_save_path)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "tFz9Tb0I9hE4", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "1c3b3528-54ae-4ee2-ab04-77429211cbef" - }, - "source": [ - "# Inference test\n", - "predict_result = model.predict(np.array([X_test[0]]))\n", - "print(np.squeeze(predict_result))\n", - "print(np.argmax(np.squeeze(predict_result)))" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "[9.8105639e-01 1.8674158e-02 2.2328236e-04 4.6191799e-05]\n", - "0\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "S3U4yNWx9hE4" - }, - "source": [ - "# Confusion matrix" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "AP1V6SCk9hE5", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 582 - }, - "outputId": "08e41a80-7a4a-4619-8125-ecc371368d19" - }, - "source": [ - "import pandas as pd\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "from sklearn.metrics import confusion_matrix, classification_report\n", - "\n", - "def print_confusion_matrix(y_true, y_pred, report=True):\n", - " labels = sorted(list(set(y_true)))\n", - " cmx_data = confusion_matrix(y_true, y_pred, labels=labels)\n", - " \n", - " df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels)\n", - " \n", - " fig, ax = plt.subplots(figsize=(7, 6))\n", - " sns.heatmap(df_cmx, annot=True, fmt='g' ,square=False)\n", - " ax.set_ylim(len(set(y_true)), 0)\n", - " plt.show()\n", - " \n", - " if report:\n", - " print('Classification Report')\n", - " print(classification_report(y_test, y_pred))\n", - "\n", - "Y_pred = model.predict(X_test)\n", - "y_pred = np.argmax(Y_pred, axis=1)\n", - "\n", - "print_confusion_matrix(y_test, y_pred)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAFpCAYAAABUC7VZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5xVdb3/8ddnzwwgICKBCAOKCWWoAQlEeckrAongyUDKvPGTU1kHykuWeUxPdqyTKJp6HALFVGDyhiIqhpqSCOIRiZsKIjLDXeSqwszsz++PWdJkzAwOa2Z995r308d6sG57r89ej3F/5vP9rLXG3B0REZE4ZJIOQERE0kNJRUREYqOkIiIisVFSERGR2CipiIhIbJRUREQkNkoqIiKNjJnlmdnrZjY9Wj7CzOaa2XIzm2pmTaL1TaPl5dH2LrW9t5KKiEjjMxpYWmX5t8At7t4V+AAYGa0fCXwQrb8l2q9GSioiIo2ImXUCvgn8MVo24FTgoWiXScDQaH5ItEy0/bRo/2opqYiINC63AlcB2Wj5c8AWdy+PlkuAwmi+EFgNEG3fGu1frfy4o/20sk3v6DkwddC844lJh5CT9MMmDa18d2mNv7l/FnF8XzZpd+S/A6OqrCpy9yIAMzsL2ODur5nZyft7rL2p96QiIiL7KFux328RJZCiajYfD5xtZoOAZkArYBzQ2szyo2qkE1Aa7V8KdAZKzCwfOAh4v6bja/hLRKSRcPefu3snd+8CnAc85+7fBZ4Hzo12uxCYFs0/Hi0TbX/Oa3kKsSoVEZFQeLb2ferHz4ApZvZr4HVgQrR+AvAnM1sObKYyEdVISUVEJBTZhksq7v4C8EI0/w7Qdy/7fAx8+7O8r5KKiEggPLlKJTbqqYiISGxUqYiIhKIBh7/qi5KKiEgoUjD8paQiIhKKGO5TSZqSiohIKFJQqahRLyIisVGlIiISCjXqRUQkLmm4T0VJRUQkFKpUREQkNimoVNSoFxGR2KhSEREJhe5TERGR2KRg+EtJRUQkFClo1KunIiIisVGlIiISCg1/iYhIbFIw/KWkIiISCHdd/SUiInFJwfCXGvUiIhIbVSoiIqFQT0VERGKTguEvJRURkVDoMS0iIhKbFFQqatSLiEhsVKmIiIRCjXoREYlNCoa/lFREREKRgkpFPRUREYmNKhURkVCoUglfRUUF5150GT+88joAStasY8SlYxg47BIuv/a/KSsrA2D37t1cfu1/M3DYJYy4dAyla9cnGXaQOnXqyLMz/8wbbzzPggXP8eMfjUw6pJxxZv+TWbzoRZYtmc1VV16WdDg5o7GdN/eK/Z6Slvqkcv+fp/H5LoftWb7lrol8b/hQniqeSKsDW/Lw9GcAeGT6TFod2JKniiu3j71zYlIhB6u8vJyrrrqeHj1O4YQTBvP9H1zEl77ULemwgpfJZLht3I2cNfh8ju1xCsOHD9V52weN8rxls/s/1cDMmpnZPDN7w8wWm9n10fp7zWylmS2Ipp7RejOz28xsuZktNLOv1PYRak0qZnaUmf0seuPbovkv7eMpStS6DRt58eV5fGvwmQC4O3Nfe4P+J58IwJBBp/Pci3MAeO6lOQwZdDoA/U8+kbmvLcDdkwk8UOvWbeD1BYsA2LFjJ8uWvU3HjocmHFX4+vbpxYoV77Jy5XuUlZVRXDyNs6OfSaleozxvnt3/qWa7gFPdvQfQExhgZv2ibVe6e89oWhCtGwh0i6ZRwF21HaDGpGJmPwOmAAbMiyYDJpvZ1bW9edJ+O+5ufvrDkZhVfswtW7dxYMsW5OfnAdC+XVs2bHwfgA0b3+fQQ9oCkJ+fR8sWzdmydVsygeeAww/vRM8exzBv3utJhxK8joWHsrpkzZ7lktK1Ssb7QOctfl5pR7RYEE01/fY8BLgvet0rQGsz61DTMWqrVEYCfdz9Jne/P5puAvpG2/bKzEaZ2Xwzm//H+ybXcoj68cLf5tLm4NYcfVTKy+UEtGjRnOKp47n8iuvYvn1H7S8QkX0Tw/BX1e/faBpV9RBmlmdmC4ANwLPuPjfadGM0xHWLmTWN1hUCq6u8vCRaV63arv7KAh2BVZ9a3yHatlfuXgQUAZRteieRMaTXFy7hhdmv8NKcV9m1u4ydOz/kplv/l+07dlJeXkF+fh7rN27ikHafA+CQdp9j3YZNHHpIO8rLK9ix80NaH9QqidCDlp+fT/HU8Uye/CiPPfZU0uHkhDWl6+jcqeOe5U6FHVizZl2CEeWGRnneYrj5ser3bzXbK4CeZtYaeNTMjgF+DqwDmkSv/RlwQ12OX1ulMgaYZWZPmVlRND0NzAJG1+WADeUnP7iYWY/dz8yHJ/E/119N3+N68Ntf/Yy+X/kyM194CYBpM/7CqSd+DYBTTujHtBl/AWDmCy/x1eN6YGaJxR+q8UU3s2zZcm4dV+3PrHzKq/MX0LXrEXTp0pmCggKGDRvCE9NnJh1W8BrleavnRn1V7r4FeB4Y4O5royGuXcA9VI5GAZQCnau8rFO0rlo1JhV3fxr4AnA98Ew0/Qr4YrQt5/zkB5dw35RHGTjsErZu28a/ndUfgH8760y2btvGwGGV28d8/+KEIw3P8V/vw/nnn8spp3yd+a/OZP6rMxkw4NSkwwpeRUUFo8f8khlPPsiihS/w0ENPsGTJW0mHFbxGed7quVFvZu2iCgUzOwA4A1j2SZ/EKn+THgosil7yOHBBdBVYP2Cru6+t8Rj1fYVTUsNfua55xxOTDiEn6YdNGlr57tLYhjQ+euYP+/0jfMCZP6o2HjP7MjAJyKOyqCh29xvM7DmgHZUXYi0Avu/uO6Ik8wdgAPAhcLG7z6/p+LqjXkQkFPV8R727LwR67WX9XoccvLLq+Ex3nSqpiIiEIgWPaVFSEREJRQoefZ/6x7SIiEjDUaUiIhIKDX+JiEhsUjD8paQiIhIKVSoiIhKbFFQqatSLiEhsVKmIiIRCw18iIhIbJRUREYlNCv7arJKKiEgoUlCpqFEvIiKxUaUiIhKKFFQqSioiIqFIwX0qSioiIqFIQaWinoqIiMRGlYqISCh0SbGIiMQmBcNfSioiIqFQUhERkdik4OovNepFRCQ2qlRERALhWTXqRUQkLuqpiIhIbFLQU1FSEREJRQqGv9SoFxGR2KhSEREJhXoqIiISGyUVERGJTQqe/aWeioiIxEaViohIKFIw/KVKRUQkFFnf/6kGZtbMzOaZ2RtmttjMro/WH2Fmc81suZlNNbMm0fqm0fLyaHuX2j6CkoqISCg8u/9TzXYBp7p7D6AnMMDM+gG/BW5x967AB8DIaP+RwAfR+lui/WqkpCIiEop6rlS80o5osSCaHDgVeChaPwkYGs0PiZaJtp9mZlbTMeq9p9K844n1fYhU2vbolUmHkJM6j7gz6RBy0paPdyYdgsTEzEYBo6qsKnL3oirb84DXgK7AHcAKYIu7l0e7lACF0XwhsBrA3cvNbCvwOWBTdcdXo15EJBAeQ6M+SiBFNWyvAHqaWWvgUeCo/T5oFUoqIiKhaMBnf7n7FjN7Hvga0NrM8qNqpRNQGu1WCnQGSswsHzgIeL+m91VPRUQkFPXcqDezdlGFgpkdAJwBLAWeB86NdrsQmBbNPx4tE21/zr3mOzRVqYiINB4dgElRXyUDFLv7dDNbAkwxs18DrwMTov0nAH8ys+XAZuC82g6gpCIiEop6Hv5y94VAr72sfwfou5f1HwPf/izHUFIREQlFCu6oV1IREQlFCv5Il5KKiEgoUvDnhHX1l4iIxEaViohIKDT8JSIicYnjjvqkKamIiIRClYqIiMQmBUlFjXoREYmNKhURkVCk4JJiJRURkVCkYPhLSUVEJBCegqSinoqIiMRGlYqISChSUKkoqYiIhEI3P4qISGxUqYiISGxSkFTUqBcRkdioUhERCYR77lcqSioiIqFIwfCXkoqISCiUVEREJC66o15ERKQKVSoiIqFIQaWipCIiEorcv6FeSUVEJBTqqYiIiFShSkVEJBQpqFSUVEREQqGeioiIxCUNPRUlFRGRUKhSyU1Nmzbl+ecepmnTpuTl5/HII09yww03Jx1WMHaVlXPJH6ZRVl5BeTbL6T0+zw8H9N2z/bePzOaxeUuZc9OlAPz55cVMnb2ITMZo3rSAa7/9DY48tE1S4QehY+Gh3Hn372h3SFvcnfvunUrRXffR+uCD+OM9t3LY4YW8t6qUkReNZuuWbUmHG6wz+5/M2LE3kJfJMPGeyfzuf+5IOiSpRaO8+mvXrl2c0X8Yx/U+g969+3Nm/5P5at+vJB1WMJrk5zH+h2dTfOUwpl7xbV5etpqF764DYPHqDWz7aNc/7T/wK9146KrhFF8xjItO6cnN015OIuygVJRX8J/X3MTxfQcx4LRhjLz0u3zhi0cy+iejePGvc+jbqz8v/nUOo38yKulQg5XJZLht3I2cNfh8ju1xCsOHD+VLX+qWdFj1yrO+31NNzKyzmT1vZkvMbLGZjY7W/8rMSs1sQTQNqvKan5vZcjN708zOrO0zNMqkArBz54cAFBTkU1BQkIpHTsfFrLLiACivyFJekcXMqMhmueXxOYwZ3O+f9m/ZrMme+Y92l2PWoOEGaf36jSx8YwkAO3bs5K03V9ChY3sGfvM0pj74KABTH3yUQWednmSYQevbpxcrVrzLypXvUVZWRnHxNM4eXOt3Wm7LxjDVrBy43N27A/2Ay8yse7TtFnfvGU0zAKJt5wFHAwOAO80sr6YD1Hn4y8wudvd76vr6pGUyGebNfZojj+zCXf97L/NefT3pkIJSkc0yYuxDrN60leHHH8Oxh7fngRcX8o1jutCuVYt/2X/K7EXc/9c3KKuooOgHZycQcbg6H1bIsV/uzmvz36Bdu7asX78RqEw87dq1TTi6cHUsPJTVJWv2LJeUrqVvn14JRlT/vJ57Ku6+FlgbzW83s6VAYQ0vGQJMcfddwEozWw70BeZU94L9qVSur26DmY0ys/lmNj+b3bkfh6g/2WyW3n360+WI3vTp3Yujj/5i0iEFJS+TofiKYTxz3QUsem8Dr61Yw7NvrGDECcfudf/zTjiG6dd8l9Hf7Mf4Z19r4GjD1aJFc+790+1cc/Vv2LH9X/9fUIUs/ySGSqXq92807XWM1cy6AL2AudGqH5nZQjObaGYHR+sKgdVVXlZCzUmo5qQSHWBv09+B9tW9zt2L3L23u/fOZP71t9qQbN26jRf++jf69z856VCC1OqApvTpWsiry0tZvWkrg3/zIAP/634+Litn8I0P/Mv+A3p144VF7zZ8oAHKz8/nnvtv56HiJ3jyiZkAbNy4ifbt2wHQvn07Nm16P8kQg7amdB2dO3Xcs9ypsANr1qxLMKLcUPX7N5qKPr2PmbUEHgbGuPs24C7gSKAnlZVMna9cqq1SaQ9cAAzey5Sz/ze0bduGgw5qBUCzZs04/bSTePPNFQlHFY7NOz7a04z/eHc5r7y1mu6d2jHr+ot46trzeera82lWkM8T13wXgFUbt+x57UtLV3FY24MSiTs04+74DW+9uYK77vjHKPHTM55j+HfOAWD4d87hqSdnJRVe8F6dv4CuXY+gS5fOFBQUMGzYEJ6YPjPpsOqVZ/d/qo2ZFVCZUB5w90cA3H29u1e4exYYT+UQF0Ap0LnKyztF66pVW09lOtDS3RfsJbAXag8/TB06tGfihFvJy8tgmQwPPfQEM2b8JemwgrFp24dcO/k5stksWXf69+jKSUd3qXb/KbMXMfetEvLzMrQ6oCk3fOfUhgs2UF/tdxzDRwxl8aJlPD97GgA33jCWcbcUMeHecZx/wbmsfm8NIy8anXCk4aqoqGD0mF8y48kHyctkuHfSVJYseSvpsOpXPfdUzMyACcBSdx9bZX2HqN8CcA6wKJp/HHjQzMYCHYFuwLwaj1HfY7oFTQo1aFwH2x69MukQclLnEXcmHUJO2vJxmL3PXFC+uzS26x03nvGN/f6+bPfsX6uNx8xOAF4C/s4/UtgvgBFUDn058C7w758kGTO7BriEyivHxrj7UzUdv1He/Cgi0hi5+2xgb0lnRg2vuRG4cV+PoaQiIhKI+r6kuCEoqYiIBEJJRURE4uO5/zgKJRURkUCkoVJptM/+EhGR+KlSEREJhGc1/CUiIjFJw/CXkoqISCBcjXoREYlLGioVNepFRCQ2qlRERAKhRr2IiMQmDX+zTUlFRCQQaahU1FMREZHYqFIREQlEGioVJRURkUCopyIiIrFRpSIiIrFJwx31atSLiEhsVKmIiAQiDY9pUVIREQlENgXDX0oqIiKBSENPRUlFRCQQabj6S416ERGJjSoVEZFA6OZHERGJTRqGv5RUREQCkYarv9RTERGR2KhSEREJhC4pFhGR2KhRLyIisVFPRUREYuNu+z3VxMw6m9nzZrbEzBab2ehofRsze9bM3o7+PThab2Z2m5ktN7OFZvaV2j6DkoqISONRDlzu7t2BfsBlZtYduBqY5e7dgFnRMsBAoFs0jQLuqu0ASioiIoFw3/+p5vf3te7+f9H8dmApUAgMASZFu00ChkbzQ4D7vNIrQGsz61DTMdRTCVTrb92cdAg5acvky5IOIScdOPz2pEMQGranYmZdgF7AXKC9u6+NNq0D2kfzhcDqKi8ridatpRpKKiIigYjjkmIzG0XlUNUnity96FP7tAQeBsa4+zazfxzX3d3M6nwdmpKKiEgg4qhUogRSVN12MyugMqE84O6PRKvXm1kHd18bDW9tiNaXAp2rvLxTtK5a6qmIiDQSVlmSTACWuvvYKpseBy6M5i8EplVZf0F0FVg/YGuVYbK9UqUiIhKIBrj38Xjge8DfzWxBtO4XwE1AsZmNBFYBw6JtM4BBwHLgQ+Di2g6gpCIiEoj6btS7+2yguoOctpf9HfhMV78oqYiIBCINz/5ST0VERGKjSkVEJBDZpAOIgZKKiEggvNp2R+5QUhERCURWj74XEZG4ZFNQqahRLyIisVGlIiISCPVUREQkNrr6S0REYpOGSkU9FRERiY0qFRGRQGj4S0REYqOkIiIisUlDT0VJRUQkENnczylq1IuISHxUqYiIBCINj2lRUhERCUQKnieppCIiEgpd/SUiIrHJWu4Pf6lRLyIisVGlIiISCPVUREQkNuqpiIhIbHTzo4iISBWqVEREAqGbH0VEJDZq1IuISGzS0FNRUhERCUQarv5So15ERGKjSkVEJBDqqeSoTp06cs/EcRzSvi3uzoQ/PsDtf5iQdFg54c03X2bH9p1UVFRQXl7B14//ZtIhBWNXWTmX3P0UZeUVlGed04/twg/P6MWvHprNkpJNOHB421bc8O0Tad60AIBnFq7k7r+8Dhhf6NCGm0Z8I9HPEJoz+5/M2LE3kJfJMPGeyfzuf+5IOqR6pZ5KjiovL+eqq67n9QWLaNmyBXPnPs1fZr3I0qVvJx1aTuh/5jDef/+DpMMITpP8PMZfOoDmTQsoq8hy8f8+yQlfLOSKs/rSslkTAH4/fR5T5izlkpO/zKpNW5n4/ELu/f43adW8KZt3fJTwJwhLJpPhtnE3MmDQCEpK1vLKnBk8MX1mqv8/bYieiplNBM4CNrj7MdG6XwGXAhuj3X7h7jOibT8HRgIVwH+4+zM1vX+tPRUzO8rMTjOzlp9aP+AzfpZgrFu3gdcXLAJgx46dLFv2Nh07HppwVJLrzGxPBVJekaW8IothexKKu7OrrHzPnQiPzHuL4V/7Eq2aNwWgTcsDkgg7WH379GLFindZufI9ysrKKC6extmDz0w6rHqVjWHaB/cCe/v+vsXde0bTJwmlO3AecHT0mjvNLK+mN68xqZjZfwDTgB8Di8xsSJXNv9m3+MN2+OGd6NnjGObNez3pUHKDO09Of4A5Lz/JyJHfSTqa4FRkswwbN41Tfz2Zft06cuxh7QD4zz+/xGk3TmHlxq2c9/XuAKzatI1Vm7Zy4V1P8r07pvO3N0uSDD04HQsPZXXJmj3LJaVr9ctfDNz9RWDzPu4+BJji7rvcfSWwHOhb0wtqG/66FDjO3XeYWRfgITPr4u7joPpbP81sFDAKIJN3EJlMi32Mv2G1aNGc4qnjufyK69i+fUfS4eSEU079FmvWrKNdu88x48kHefPNFcyePTfpsIKRl8lQPHoI2z7axU//9BzL131A10MP5oZvn0hFNstNj8/lmYUrGdq7GxXZLO9t2sYfRw1kw9adXHL3DP48ZiitDmia9MeQhHgMPZWq37+RIncv2oeX/sjMLgDmA5e7+wdAIfBKlX1KonXVqm34K+PuOwDc/V3gZGCgmY2lhqTi7kXu3tvde4eaUPLz8ymeOp7Jkx/lsceeSjqcnLFmzToANm58n2mPP02f3j0TjihMrQ5oSp/Pd+Bvb/2j+sjLZBjw5SOYtehdANof1IJvdD+MgrwMhW0O5PC2B/Hepm0JRRyeNaXr6Nyp457lToUd9vz8pVUcw19Vv3+jaV8Syl3AkUBPYC1wc10/Q21JZb2Z7fnWiBLMWUBb4Ni6HjQE44tuZtmy5dw6bl/OtwA0b34ALVu22DN/+mknsXjxmwlHFY7NOz5m20e7APi4rJxXlq+hS5VE4e78del7HNHuIABO6X4Y899ZC8AHOz9m1aatdGpzYDLBB+jV+Qvo2vUIunTpTEFBAcOGDeGJ6TOTDqteNVBP5V+4+3p3r3D3LDCefwxxlQKdq+zaKVpXrdqGvy4Ayj918HLgAjO7+zNFHZDjv96H888/l7//fQnzX638If3ltTfx9NPPJRxZ2Nq3b0fx1PEA5OfnMWXqNGY++0KyQQVk0/YPubb4JbLuZN3pf+wRnHhUZy6+ewY7P96NA1/o0IZrhn4NgK9/oZA5b6/h38Y+QsaMnwzqQ+sWzZL9EAGpqKhg9JhfMuPJB8nLZLh30lSWLHkr6bBSycw6uPvaaPEcYFE0/zjwYDQ61RHoBsyr8b3c6/d2m4ImhWm4n6fBZTJ62EFdbJl8WdIh5KQDh9+edAg5q3x3aWx3l9ze+fz9/r788er7a4zHzCZT2cpoC6wHrouWe1J5/+W7wL9/kmTM7BrgEioLjDHuXmO/oFHepyIiEqKGuPnR3UfsZXW1d3+7+43Ajfv6/koqIiKBSMMDJZVUREQCkYakooF7ERGJjSoVEZFApOGqJiUVEZFA6CnFIiISmzT0VJRUREQCkYbhLzXqRUQkNqpUREQCkU1BraKkIiISCPVUREQkNrlfp6inIiIiMVKlIiISCA1/iYhIbHTzo4iIxEZXf4mISGxyP6WoUS8iIjFSpSIiEgg16kVEJDbqqYiISGxyP6UoqYiIBCMNw19q1IuISGxUqYiIBEI9FRERiU3upxQlFRGRYKinIiIiUoUqFRGRQHgKBsCUVEREApGG4S8lFRGRQOjqLxERiU3upxQ16kVEJEaqVEREApGG4S9VKiIigcjGMNXGzCaa2QYzW1RlXRsze9bM3o7+PThab2Z2m5ktN7OFZvaV2t5fSUVEJBAew3/74F5gwKfWXQ3McvduwKxoGWAg0C2aRgF31fbmSioiIoFoiErF3V8ENn9q9RBgUjQ/CRhaZf19XukVoLWZdajp/eu9p5L7I4TJqMim4Yr1hnfg8NuTDiEnnd3huKRDkJiY2Sgqq4pPFLl7US0va+/ua6P5dUD7aL4QWF1lv5Jo3VqqoUa9iEgg4rijPkogtSWRml7vZlbnQJRUREQCkeD4xHoz6+Dua6PhrQ3R+lKgc5X9OkXrqqWeiohIILLu+z3V0ePAhdH8hcC0KusviK4C6wdsrTJMtleqVEREGhEzmwycDLQ1sxLgOuAmoNjMRgKrgGHR7jOAQcBy4EPg4treX0lFRCQQDXFhk7uPqGbTaXvZ14HLPsv7K6mIiAQiDXfUK6mIiARCf09FRERik4a703T1l4iIxEaViohIINRTERGR2KinIiIisUlDT0VJRUQkEF73O+KDoUa9iIjERpWKiEgg1KgXEZHYqKciIiKxScPVX+qpiIhIbFSpiIgEQj0VERGJTRouKVZSEREJhBr1IiISGzXqRUREqlClIiISCDXqRUQkNmrUi4hIbNJQqainIiIisVGlIiISiDRc/aWkIiISiKx6KiIiEpfcTylKKiIiwVCjXkREpApVKiIigUhDpaKkIiISCN38KCIisVGlIiIisUnDfSqNslE/vuhm1pS8wYLXZyUdSs45s//JLF70IsuWzOaqKy9LOpycofO2784aeTa3PvsHbp15Oz+57QoKmhbwo9+P5q7Z47l5xq3cPONWunQ/IukwpRqNslK5775i7rzzHu65Z1zSoeSUTCbDbeNuZMCgEZSUrOWVOTN4YvpMli59O+nQgqbztu/atG/DNy8ezOjTLmP3rt1cfsdVnDD4RADu+809zJnxcsIR1q+G6KmY2bvAdqACKHf33mbWBpgKdAHeBYa5+wd1ef9aKxUz62tmfaL57mb2UzMbVJeDheKl2XPZ/MGWpMPIOX379GLFindZufI9ysrKKC6extmDz0w6rODpvH02eXkZmjRrQiYvQ9MDmrJ5/eakQ2owWXy/p310irv3dPfe0fLVwCx37wbMipbrpMakYmbXAbcBd5nZfwN/AFoAV5vZNXU9qOSmjoWHsrpkzZ7lktK1dOx4aIIR5Qadt323ef1mphU9xt1zJjDh1Ul8uH0nb7y0AIDvXHE+Y5++jYuvHUl+k3QOsrj7fk91NASYFM1PAobW9Y1qq1TOBY4HTgIuA4a6+38BZwLDq3uRmY0ys/lmNj+b3VnX2ESkkWnRqgV9+3+VH5xwKf+v70U0PaAZJ51zMg/87j5+fOoPuersn9Ky9YGc8/1vJR1qsKp+/0bTqE/t4sBMM3utyrb27r42ml8HtK/r8WtL9+XuXgF8aGYr3H0bgLt/ZGbZ6l7k7kVAEUB+k8Lcv5xBAFhTuo7OnTruWe5U2IE1a9YlGFFu0Hnbd18+oSfrV69n2+ZtAMx9eg5HHXcULz76AgDlu8t57s9/YciocxKMsv7EcUlx1e/fapzg7qVmdgjwrJkt+9Tr3czqHEhtlcpuM2sezR/3yUozOwioNqlIOr06fwFdux5Bly6dKSgoYF0UiJUAAATlSURBVNiwITwxfWbSYQVP523fbVqzkS/0+iJNmjUB4Njje1CyfDUHH3Lwnn2+2r8f7725KqkQ65XH8F+tx3Avjf7dADwK9AXWm1kHgOjfDXX9DLVVKie5+64ogKpJpAC4sK4HTdr9f7qDb5z0Ndq2bcO778zn+ht+zz33Tkk6rOBVVFQweswvmfHkg+RlMtw7aSpLlryVdFjB03nbd28veIs5M/7G75+8lWxFBe8sfoeZDz7DtZN+Ras2rTAzVi5Zyd2/uDPpUOtFfT/63sxaABl33x7N9wduAB6n8jv9pujfaXU+Rn1fwqbhL5Hwnd3huNp3kr16ZNXjFtd7Hd3+q/v9fbl4/dxq4zGzz1NZnUBlUfGgu99oZp8DioHDgFVUXlJcp8vu0nkJhYiI/At3fwfosZf17wOnxXEMJRURkUDoLz+KiEhs0vDsLyUVEZFAqFIREZHYpKFSaZRPKRYRkfqhSkVEJBAa/hIRkdikYfhLSUVEJBD//OCS3KSeioiIxEaViohIIOJ4SnHSlFRERALREH9OuL4pqYiIBEKVioiIxCYNlYoa9SIiEhtVKiIigdDNjyIiEhvd/CgiIrFJQ09FSUVEJBBpuPpLjXoREYmNKhURkUBo+EtERGKjq79ERCQ2aahU1FMREZHYqFIREQlEGq7+UlIREQlEGoa/lFRERAKhRr2IiMQmDY9pUaNeRERio0pFRCQQGv4SEZHYqFEvIiKxUU9FRERi4+77PdXGzAaY2ZtmttzMro77MyipiIg0EmaWB9wBDAS6AyPMrHucx9Dwl4hIIBqgp9IXWO7u7wCY2RRgCLAkrgOoUhERCYTHMNWiEFhdZbkkWhebeq9UyneXWn0fo67MbJS7FyUdR67Reas7nbu6aSznLY7vSzMbBYyqsqqoIc9dY69URtW+i+yFzlvd6dzVjc7bPnL3InfvXWWqmlBKgc5VljtF62LT2JOKiEhj8irQzcyOMLMmwHnA43EeQI16EZFGwt3LzexHwDNAHjDR3RfHeYzGnlRSP0ZbT3Te6k7nrm503mLi7jOAGfX1/paGxwKIiEgY1FMREZHYNNqkUt+PKkgjM5toZhvMbFHSseQSM+tsZs+b2RIzW2xmo5OOKReYWTMzm2dmb0Tn7fqkY5LaNcrhr+hRBW8BZ1B588+rwAh3j+2u0jQys5OAHcB97n5M0vHkCjPrAHRw9/8zswOB14Ch+nmrmZkZ0MLdd5hZATAbGO3uryQcmtSgsVYqex5V4O67gU8eVSA1cPcXgc1Jx5Fr3H2tu/9fNL8dWErMdzGnkVfaES0WRFPj+y04xzTWpFLvjyoQ2Rsz6wL0AuYmG0luMLM8M1sAbACedXedt8A11qQi0uDMrCXwMDDG3bclHU8ucPcKd+9J5Z3ffc1Mw66Ba6xJpd4fVSBSVdQTeBh4wN0fSTqeXOPuW4DngQFJxyI1a6xJpd4fVSDyiajhPAFY6u5jk44nV5hZOzNrHc0fQOWFNcuSjUpq0yiTiruXA588qmApUBz3owrSyMwmA3OAL5pZiZmNTDqmHHE88D3gVDNbEE2Dkg4qB3QAnjezhVT+Ivisu09POCapRaO8pFhEROpHo6xURESkfiipiIhIbJRUREQkNkoqIiISGyUVERGJjZKKiIjERklFRERio6QiIiKx+f+qZaCCTOC31wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - }, - { - "output_type": "stream", - "text": [ - "Classification Report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.99 1.00 0.99 402\n", - " 1 0.98 0.94 0.96 366\n", - " 2 0.94 0.98 0.96 343\n", - " 3 1.00 0.99 0.99 86\n", - "\n", - " accuracy 0.97 1197\n", - " macro avg 0.98 0.98 0.98 1197\n", - "weighted avg 0.97 0.97 0.97 1197\n", - "\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FNP6aqzc9hE5" - }, - "source": [ - "# Convert to model for Tensorflow-Lite" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "ODjnYyld9hE6" - }, - "source": [ - "# Save as a model dedicated to inference\n", - "model.save(model_save_path, include_optimizer=False)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "zRfuK8Y59hE6", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "a4ca585c-b5d5-4244-8291-8674063209bb" - }, - "source": [ - "# Transform model (quantization)\n", - "\n", - "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", - "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", - "tflite_quantized_model = converter.convert()\n", - "\n", - "open(tflite_save_path, 'wb').write(tflite_quantized_model)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: /tmp/tmpe5yx255p/assets\n" - ], - "name": "stdout" - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "6352" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 17 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CHBPBXdx9hE6" - }, - "source": [ - "# Inference test" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "mGAzLocO9hE7" - }, - "source": [ - "interpreter = tf.lite.Interpreter(model_path=tflite_save_path)\n", - "interpreter.allocate_tensors()" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "oQuDK8YS9hE7" - }, - "source": [ - "# Get I / O tensor\n", - "input_details = interpreter.get_input_details()\n", - "output_details = interpreter.get_output_details()" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "2_ixAf_l9hE7" - }, - "source": [ - "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "scrolled": true, - "id": "s4FoAnuc9hE7", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "91f18257-8d8b-4ef3-c558-e9b5f94fabbf" - }, - "source": [ - "%%time\n", - "# Inference implementation\n", - "interpreter.invoke()\n", - "tflite_results = interpreter.get_tensor(output_details[0]['index'])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "CPU times: user 131 µs, sys: 17 µs, total: 148 µs\n", - "Wall time: 679 µs\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "vONjp19J9hE8", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "77205e24-fd00-42c4-f7b6-e06e527c2cba" - }, - "source": [ - "print(np.squeeze(tflite_results))\n", - "print(np.argmax(np.squeeze(tflite_results)))" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "[9.8105639e-01 1.8674169e-02 2.2328216e-04 4.6191799e-05]\n", - "0\n" - ], - "name": "stdout" - } - ] - } - ] -} \ No newline at end of file +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, + "colab": { + "name": "keypoint_classification_EN.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "code", + "metadata": { + "id": "igMyGnjE9hEp", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.152533Z", + "start_time": "2025-04-06T14:45:24.142416Z" + } + }, + "source": [ + "import csv\n", + "\n", + "import numpy as np\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "RANDOM_SEED = 42" + ], + "outputs": [], + "execution_count": 23 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t2HDvhIu9hEr" + }, + "source": [ + "# Specify each path" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9NvZP2Zn9hEy", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.168038Z", + "start_time": "2025-04-06T14:45:24.155536Z" + } + }, + "source": [ + "dataset = 'model/keypoint_classifier/keypoint.csv'\n", + "model_save_path = 'model/keypoint_classifier/keypoint_classifier.keras'\n", + "tflite_save_path = 'model/keypoint_classifier/keypoint_classifier.tflite'" + ], + "outputs": [], + "execution_count": 24 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s5oMH7x19hEz" + }, + "source": [ + "# Set number of classes" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "du4kodXL9hEz", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.199254Z", + "start_time": "2025-04-06T14:45:24.184255Z" + } + }, + "source": "NUM_CLASSES = 5", + "outputs": [], + "execution_count": 25 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XjnL0uso9hEz" + }, + "source": [ + "# Dataset reading" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "QT5ZqtEz9hE0", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.262267Z", + "start_time": "2025-04-06T14:45:24.216254Z" + } + }, + "source": [ + "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (21 * 2) + 1)))" + ], + "outputs": [], + "execution_count": 26 + }, + { + "cell_type": "code", + "metadata": { + "id": "QmoKFsp49hE0", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.309269Z", + "start_time": "2025-04-06T14:45:24.277928Z" + } + }, + "source": [ + "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))" + ], + "outputs": [], + "execution_count": 27 + }, + { + "cell_type": "code", + "metadata": { + "id": "xQU7JTZ_9hE0", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.340387Z", + "start_time": "2025-04-06T14:45:24.326059Z" + } + }, + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" + ], + "outputs": [], + "execution_count": 28 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mxK_lETT9hE0" + }, + "source": [ + "# Model building" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vHBmUf1t9hE1", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.387152Z", + "start_time": "2025-04-06T14:45:24.356636Z" + } + }, + "source": [ + "model = tf.keras.models.Sequential([\n", + " tf.keras.layers.Input((21 * 2, )),\n", + " tf.keras.layers.Dropout(0.2),\n", + " tf.keras.layers.Dense(20, activation='relu'),\n", + " tf.keras.layers.Dropout(0.4),\n", + " tf.keras.layers.Dense(10, activation='relu'),\n", + " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", + "])" + ], + "outputs": [], + "execution_count": 29 + }, + { + "cell_type": "code", + "metadata": { + "id": "ypqky9tc9hE1", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "5db082bb-30e3-4110-bf63-a1ee777ecd46", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.418388Z", + "start_time": "2025-04-06T14:45:24.403879Z" + } + }, + "source": [ + "model.summary() # tf.keras.utils.plot_model(model, show_shapes=True)" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "\u001B[1mModel: \"sequential_1\"\u001B[0m\n" + ], + "text/html": [ + "
Model: \"sequential_1\"\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001B[1m \u001B[0m\u001B[1mLayer (type) \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1mOutput Shape \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1m Param #\u001B[0m\u001B[1m \u001B[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dropout_2 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m42\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_3 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m860\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_3 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_4 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m10\u001B[0m) │ \u001B[38;5;34m210\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_5 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m5\u001B[0m) │ \u001B[38;5;34m55\u001B[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ dropout_2 (Dropout)             │ (None, 42)             │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_3 (Dense)                 │ (None, 20)             │           860 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_3 (Dropout)             │ (None, 20)             │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_4 (Dense)                 │ (None, 10)             │           210 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_5 (Dense)                 │ (None, 5)              │            55 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Total params: \u001B[0m\u001B[38;5;34m1,125\u001B[0m (4.39 KB)\n" + ], + "text/html": [ + "
 Total params: 1,125 (4.39 KB)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Trainable params: \u001B[0m\u001B[38;5;34m1,125\u001B[0m (4.39 KB)\n" + ], + "text/html": [ + "
 Trainable params: 1,125 (4.39 KB)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Non-trainable params: \u001B[0m\u001B[38;5;34m0\u001B[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 30 + }, + { + "cell_type": "code", + "metadata": { + "id": "MbMjOflQ9hE1", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.450278Z", + "start_time": "2025-04-06T14:45:24.435278Z" + } + }, + "source": [ + "# Model checkpoint callback\n", + "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", + " model_save_path, verbose=1, save_weights_only=False)\n", + "# Callback for early stopping\n", + "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" + ], + "outputs": [], + "execution_count": 31 + }, + { + "cell_type": "code", + "metadata": { + "id": "c3Dac0M_9hE2", + "ExecuteTime": { + "end_time": "2025-04-06T14:45:24.481276Z", + "start_time": "2025-04-06T14:45:24.467208Z" + } + }, + "source": [ + "# Model compilation\n", + "model.compile(\n", + " optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")" + ], + "outputs": [], + "execution_count": 32 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7XI0j1Iu9hE2" + }, + "source": [ + "# Model training" + ] + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "id": "WirBl-JE9hE3", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "71b30ca2-8294-4d9d-8aa2-800d90d399de", + "jupyter": { + "is_executing": true + }, + "ExecuteTime": { + "start_time": "2025-04-06T14:45:24.512546Z" + } + }, + "source": [ + "model.fit(\n", + " X_train,\n", + " y_train,\n", + " epochs=1000,\n", + " batch_size=128,\n", + " validation_data=(X_test, y_test),\n", + " callbacks=[cp_callback, es_callback]\n", + ")" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m10s\u001B[0m 363ms/step - accuracy: 0.1953 - loss: 1.6084\n", + "Epoch 1: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 5ms/step - accuracy: 0.2250 - loss: 1.5929 - val_accuracy: 0.3814 - val_loss: 1.5218\n", + "Epoch 2/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.3047 - loss: 1.5177\n", + "Epoch 2: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.3112 - loss: 1.5054 - val_accuracy: 0.4586 - val_loss: 1.4139\n", + "Epoch 3/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.3281 - loss: 1.4603\n", + "Epoch 3: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.3643 - loss: 1.4192 - val_accuracy: 0.4451 - val_loss: 1.3149\n", + "Epoch 4/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4688 - loss: 1.2876\n", + "Epoch 4: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.4201 - loss: 1.3231 - val_accuracy: 0.4896 - val_loss: 1.2231\n", + "Epoch 5/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.4609 - loss: 1.2559\n", + "Epoch 5: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4451 - loss: 1.2600 - val_accuracy: 0.5932 - val_loss: 1.1387\n", + "Epoch 6/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.4609 - loss: 1.1967\n", + "Epoch 6: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.4665 - loss: 1.2117 - val_accuracy: 0.6473 - val_loss: 1.0768\n", + "Epoch 7/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5156 - loss: 1.1476\n", + "Epoch 7: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.5104 - loss: 1.1613 - val_accuracy: 0.6863 - val_loss: 1.0110\n", + "Epoch 8/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5625 - loss: 1.0796\n", + "Epoch 8: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5219 - loss: 1.1159 - val_accuracy: 0.6967 - val_loss: 0.9488\n", + "Epoch 9/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5312 - loss: 1.1139\n", + "Epoch 9: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.5371 - loss: 1.0842 - val_accuracy: 0.7102 - val_loss: 0.8944\n", + "Epoch 10/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5078 - loss: 1.0926\n", + "Epoch 10: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5419 - loss: 1.0645 - val_accuracy: 0.7396 - val_loss: 0.8457\n", + "Epoch 11/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5703 - loss: 0.9679\n", + "Epoch 11: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5770 - loss: 1.0044 - val_accuracy: 0.7420 - val_loss: 0.7995\n", + "Epoch 12/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5703 - loss: 1.0771\n", + "Epoch 12: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5787 - loss: 1.0050 - val_accuracy: 0.7659 - val_loss: 0.7561\n", + "Epoch 13/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.8542\n", + "Epoch 13: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.5961 - loss: 0.9563 - val_accuracy: 0.8089 - val_loss: 0.7225\n", + "Epoch 14/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.8939\n", + "Epoch 14: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.6199 - loss: 0.9169 - val_accuracy: 0.8073 - val_loss: 0.6949\n", + "Epoch 15/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5938 - loss: 0.9604\n", + "Epoch 15: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6071 - loss: 0.9359 - val_accuracy: 0.8161 - val_loss: 0.6721\n", + "Epoch 16/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5938 - loss: 0.9904\n", + "Epoch 16: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6136 - loss: 0.9143 - val_accuracy: 0.8193 - val_loss: 0.6504\n", + "Epoch 17/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.8992\n", + "Epoch 17: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6218 - loss: 0.9049 - val_accuracy: 0.8177 - val_loss: 0.6292\n", + "Epoch 18/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6562 - loss: 0.8734\n", + "Epoch 18: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6356 - loss: 0.8709 - val_accuracy: 0.8280 - val_loss: 0.6049\n", + "Epoch 19/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6484 - loss: 0.8783\n", + "Epoch 19: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6448 - loss: 0.8715 - val_accuracy: 0.8400 - val_loss: 0.5920\n", + "Epoch 20/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6250 - loss: 0.8917\n", + "Epoch 20: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6444 - loss: 0.8544 - val_accuracy: 0.8479 - val_loss: 0.5746\n", + "Epoch 21/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6406 - loss: 0.8452\n", + "Epoch 21: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6532 - loss: 0.8258 - val_accuracy: 0.8567 - val_loss: 0.5542\n", + "Epoch 22/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7109 - loss: 0.7396\n", + "Epoch 22: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6710 - loss: 0.8069 - val_accuracy: 0.8559 - val_loss: 0.5424\n", + "Epoch 23/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.7342\n", + "Epoch 23: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6735 - loss: 0.7803 - val_accuracy: 0.8678 - val_loss: 0.5294\n", + "Epoch 24/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6328 - loss: 0.9532\n", + "Epoch 24: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6628 - loss: 0.8159 - val_accuracy: 0.8623 - val_loss: 0.5198\n", + "Epoch 25/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6562 - loss: 0.8667\n", + "Epoch 25: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6748 - loss: 0.8030 - val_accuracy: 0.8686 - val_loss: 0.5088\n", + "Epoch 26/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6250 - loss: 0.7683\n", + "Epoch 26: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6848 - loss: 0.7822 - val_accuracy: 0.8646 - val_loss: 0.5015\n", + "Epoch 27/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6328 - loss: 0.9834\n", + "Epoch 27: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6820 - loss: 0.8063 - val_accuracy: 0.8718 - val_loss: 0.5012\n", + "Epoch 28/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.7102\n", + "Epoch 28: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.6876 - loss: 0.7574 - val_accuracy: 0.8734 - val_loss: 0.4913\n", + "Epoch 29/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7794\n", + "Epoch 29: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6802 - loss: 0.7801 - val_accuracy: 0.8702 - val_loss: 0.4805\n", + "Epoch 30/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.8337\n", + "Epoch 30: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6880 - loss: 0.7710 - val_accuracy: 0.8758 - val_loss: 0.4702\n", + "Epoch 31/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6962\n", + "Epoch 31: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7054 - loss: 0.7254 - val_accuracy: 0.8710 - val_loss: 0.4637\n", + "Epoch 32/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6719 - loss: 0.8108\n", + "Epoch 32: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6712 - loss: 0.7703 - val_accuracy: 0.8798 - val_loss: 0.4561\n", + "Epoch 33/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7031 - loss: 0.7438\n", + "Epoch 33: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6900 - loss: 0.7467 - val_accuracy: 0.8814 - val_loss: 0.4527\n", + "Epoch 34/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.7874\n", + "Epoch 34: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6893 - loss: 0.7567 - val_accuracy: 0.8838 - val_loss: 0.4389\n", + "Epoch 35/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7031 - loss: 0.6894\n", + "Epoch 35: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.7073 - loss: 0.7134 - val_accuracy: 0.8774 - val_loss: 0.4399\n", + "Epoch 36/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5961\n", + "Epoch 36: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.7120 - loss: 0.6963 - val_accuracy: 0.8854 - val_loss: 0.4290\n", + "Epoch 37/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.6530\n", + "Epoch 37: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7089 - loss: 0.7233 - val_accuracy: 0.8838 - val_loss: 0.4288\n", + "Epoch 38/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.7137\n", + "Epoch 38: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7096 - loss: 0.7194 - val_accuracy: 0.8869 - val_loss: 0.4218\n", + "Epoch 39/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6719 - loss: 0.7741\n", + "Epoch 39: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7013 - loss: 0.7169 - val_accuracy: 0.8838 - val_loss: 0.4200\n", + "Epoch 40/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6797 - loss: 0.7328\n", + "Epoch 40: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7036 - loss: 0.7143 - val_accuracy: 0.8877 - val_loss: 0.4118\n", + "Epoch 41/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.6635\n", + "Epoch 41: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7087 - loss: 0.7039 - val_accuracy: 0.8901 - val_loss: 0.4091\n", + "Epoch 42/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6797 - loss: 0.7643\n", + "Epoch 42: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7097 - loss: 0.7095 - val_accuracy: 0.8893 - val_loss: 0.4064\n", + "Epoch 43/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.6689\n", + "Epoch 43: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7024 - loss: 0.7039 - val_accuracy: 0.8877 - val_loss: 0.3990\n", + "Epoch 44/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.7303\n", + "Epoch 44: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7352 - loss: 0.6769 - val_accuracy: 0.8869 - val_loss: 0.3973\n", + "Epoch 45/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7266 - loss: 0.6801\n", + "Epoch 45: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7095 - loss: 0.7069 - val_accuracy: 0.8885 - val_loss: 0.3942\n", + "Epoch 46/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6953 - loss: 0.7340\n", + "Epoch 46: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6962 - loss: 0.7316 - val_accuracy: 0.8949 - val_loss: 0.3938\n", + "Epoch 47/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6875 - loss: 0.7919\n", + "Epoch 47: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7055 - loss: 0.7090 - val_accuracy: 0.8925 - val_loss: 0.3915\n", + "Epoch 48/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7500 - loss: 0.6764\n", + "Epoch 48: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7318 - loss: 0.6735 - val_accuracy: 0.8941 - val_loss: 0.3857\n", + "Epoch 49/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7734 - loss: 0.5898\n", + "Epoch 49: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7451 - loss: 0.6481 - val_accuracy: 0.8909 - val_loss: 0.3789\n", + "Epoch 50/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7031 - loss: 0.7234\n", + "Epoch 50: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7266 - loss: 0.6766 - val_accuracy: 0.9100 - val_loss: 0.3837\n", + "Epoch 51/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6571\n", + "Epoch 51: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7379 - loss: 0.6709 - val_accuracy: 0.9068 - val_loss: 0.3770\n", + "Epoch 52/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7031 - loss: 0.7096\n", + "Epoch 52: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7205 - loss: 0.6914 - val_accuracy: 0.9068 - val_loss: 0.3794\n", + "Epoch 53/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6484\n", + "Epoch 53: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7356 - loss: 0.6619 - val_accuracy: 0.9124 - val_loss: 0.3734\n", + "Epoch 54/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6953 - loss: 0.7277\n", + "Epoch 54: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7288 - loss: 0.6591 - val_accuracy: 0.9204 - val_loss: 0.3661\n", + "Epoch 55/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6324\n", + "Epoch 55: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7452 - loss: 0.6431 - val_accuracy: 0.9180 - val_loss: 0.3635\n", + "Epoch 56/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6875 - loss: 0.7121\n", + "Epoch 56: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.7250 - loss: 0.6594 - val_accuracy: 0.9148 - val_loss: 0.3637\n", + "Epoch 57/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6562 - loss: 0.7921\n", + "Epoch 57: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7322 - loss: 0.6624 - val_accuracy: 0.9148 - val_loss: 0.3610\n", + "Epoch 58/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6875 - loss: 0.7217\n", + "Epoch 58: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 4ms/step - accuracy: 0.7354 - loss: 0.6633 - val_accuracy: 0.9315 - val_loss: 0.3510\n", + "Epoch 59/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 20ms/step - accuracy: 0.6797 - loss: 0.7286\n", + "Epoch 59: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7248 - loss: 0.6512 - val_accuracy: 0.9379 - val_loss: 0.3492\n", + "Epoch 60/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5594\n", + "Epoch 60: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7479 - loss: 0.6388 - val_accuracy: 0.9331 - val_loss: 0.3451\n", + "Epoch 61/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8906 - loss: 0.4979\n", + "Epoch 61: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7643 - loss: 0.6194 - val_accuracy: 0.9355 - val_loss: 0.3395\n", + "Epoch 62/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6549\n", + "Epoch 62: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7414 - loss: 0.6411 - val_accuracy: 0.9275 - val_loss: 0.3461\n", + "Epoch 63/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.6774\n", + "Epoch 63: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7465 - loss: 0.6484 - val_accuracy: 0.9347 - val_loss: 0.3392\n", + "Epoch 64/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5636\n", + "Epoch 64: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7546 - loss: 0.6185 - val_accuracy: 0.9371 - val_loss: 0.3372\n", + "Epoch 65/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.6386\n", + "Epoch 65: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7490 - loss: 0.6555 - val_accuracy: 0.9379 - val_loss: 0.3383\n", + "Epoch 66/1000\n", + "\u001B[1m 1/30\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7422 - loss: 0.7631\n", + "Epoch 66: saving model to model/keypoint_classifier/keypoint_classifier.keras\n", + "\u001B[1m30/30\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7357 - loss: 0.6574 - val_accuracy: 0.9419 - val_loss: 0.3427\n", + "Epoch 67/1000\n" + ] + } + ], + "execution_count": null + }, + { + "cell_type": "code", + "metadata": { + "id": "pxvb2Y299hE3", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "59eb3185-2e37-4b9e-bc9d-ab1b8ac29b7f", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.020954Z", + "start_time": "2025-04-06T14:42:45.957934Z" + } + }, + "source": [ + "# Model evaluation\n", + "val_loss, val_acc = model.evaluate(X_test, y_test, batch_size=128)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001B[1m10/10\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.9746 - loss: 0.1850 \n" + ] + } + ], + "execution_count": 12 + }, + { + "cell_type": "code", + "metadata": { + "id": "RBkmDeUW9hE4", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.131030Z", + "start_time": "2025-04-06T14:42:46.068957Z" + } + }, + "source": [ + "# Loading the saved model\n", + "model = tf.keras.models.load_model(model_save_path)" + ], + "outputs": [], + "execution_count": 13 + }, + { + "cell_type": "code", + "metadata": { + "id": "tFz9Tb0I9hE4", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "1c3b3528-54ae-4ee2-ab04-77429211cbef", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.194982Z", + "start_time": "2025-04-06T14:42:46.134983Z" + } + }, + "source": [ + "# Inference test\n", + "predict_result = model.predict(np.array([X_test[0]]))\n", + "print(np.squeeze(predict_result))\n", + "print(np.argmax(np.squeeze(predict_result)))" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001B[1m1/1\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 32ms/step\n", + "[1.6097246e-02 5.2194584e-02 9.3088049e-01 7.2499871e-04 1.0261367e-04]\n", + "2\n" + ] + } + ], + "execution_count": 14 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S3U4yNWx9hE4" + }, + "source": [ + "# Confusion matrix" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AP1V6SCk9hE5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 582 + }, + "outputId": "08e41a80-7a4a-4619-8125-ecc371368d19", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.479204Z", + "start_time": "2025-04-06T14:42:46.242995Z" + } + }, + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import confusion_matrix, classification_report\n", + "\n", + "def print_confusion_matrix(y_true, y_pred, report=True):\n", + " labels = sorted(list(set(y_true)))\n", + " cmx_data = confusion_matrix(y_true, y_pred, labels=labels)\n", + " \n", + " df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels)\n", + " \n", + " fig, ax = plt.subplots(figsize=(7, 6))\n", + " sns.heatmap(df_cmx, annot=True, fmt='g' ,square=False)\n", + " ax.set_ylim(len(set(y_true)), 0)\n", + " plt.show()\n", + " \n", + " if report:\n", + " print('Classification Report')\n", + " print(classification_report(y_test, y_pred))\n", + "\n", + "Y_pred = model.predict(X_test)\n", + "y_pred = np.argmax(Y_pred, axis=1)\n", + "\n", + "print_confusion_matrix(y_test, y_pred)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001B[1m39/39\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 767us/step\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAH5CAYAAACf/gSOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ0xJREFUeJzt3Qd4VFX+xvEXkYTQBBJ6lV6NGAwgoqAgiigKri4oCKhEKa4UUcCCWOhFOggqTUAQLFh2hXVRivQiRaRI6CnSZEkBZv7PPf4zEkB3ggl3zvD9+NwnmXunnFyHzC/vKTeb1+v1CgAAwCLXuN0AAACAjKKAAQAA1qGAAQAA1qGAAQAA1qGAAQAA1qGAAQAA1qGAAQAA1qGAAQAA1rlWAeJM4h63mxC0chVv4HYTghIrQAI439nUg0HxmZkjopxsQAIDAACsEzAJDAAA8JPnnK52JDAAAMA6JDAAANjG69HVjgQGAABYhwQGAADbeEhgKGAAALCMly4kupAAAIB9SGAAALCNhwSGBAYAAFiHBAYAANt4SWBIYAAAgHVIYAAAsI2HSwmQwAAAAOuQwAAAYBsvY2BIYAAAgHVIYAAAsI2HBIYCBgAAy3jpQqILCQAA2IcEBgAA23hIYEhgAACAdUhgAACwjZcEhgQGAABYhwQGAADbeLiUAAkMAACwDgkMAAC28TIGhgIGAADbeChg6EICAADWIYEBAMA2XhIYEhgAAGAdEhgAAGzjIYEhgQEAANYhgQEAwDJeLwvZkcAAAADrkMAAAGAbL2NgKGAAALCNhwKGLiQAAGAdEhgAAGzjJYEhgQEAANahgDnPvgOH1Kl7P93c+EE1btlO786a7zu29cederRTd3OszVPPadOW7eke2/LxzqpR/5502849e134KexTvHhRzZkzWXFHtmjvz2s1dMirCg0NdbtZQSUkJEQbNyzR7bfVc7spQcN5j06eNEyJ8du0P3a9uj8X43aTggbn1g+ec1m3WYIupP/n8XjUudcrql61kua/N1ax+w+qd//BKlIoXHVvrqUn/9FHTe9ooNf79dCylWv11HP99MnMiSpWtLDOnTun2H0H9f64ISpbqoTvOfNfd52rP5Mt5s6ZrGPHjqvRHS1VoEB+vTN5hDmnL/Z5w+2mBc2HwcwZY1WjehW3mxJUBg96SVFRkWpy18MqXaak3ps6SrH7DmjBgs/dbpr1OLfwBwXM//vl6HFVrlher/Tqqty5c6lMqRKqE3Wj1m/eqvjEX3Rdvrx6uVdXZc+eXeXKlNKKNes1Z+Hn6v5MBx08HKczZ8+qZtXKCg0NcftHsUrlyuVVt26USpSMVHx8otn32oChGjzoZQqYTFC1akXNmD5O2bJlc7spQSVXrjA90bG1mt/XVhs2bjHbsGoT1OWZ9nzI/kWcWz95GQNDF9L/KxRRUMNf72OKF6/XawqXdZu26OZaN+jAoSOqXqWiKV7SVCpfVpu2/taNtPvnfSpaOILi5TIcOZKgZve28RUvaa67Lp9rbQomtzWop6X/WaFbG9zndlOCSuQN1ZUjRw6tWLnWt2/58tWKjq5FsfgXcW6R5QnMsWPHlJqaqrCwMOXLF1wfNne1aq/DcfG6vX60mjSsrz2x+7Vj18/p7nMkPlHHj5803++J3Wf+wXV+/lUzVub60iXUs8uTqlmtsks/gT1OnDipr79e6rvt/ILq/EwH/fubZa62K1hMmjzd7SYEpaLFCisx8ajOnDnj2xcXn2B+H4aHFzDHcHk4t37ykMBkKIH517/+pXbt2unGG2/ULbfcooYNG6pOnTqqVauW2rZtq8WLFysYjHyzn8YO6a8fd+7R4NGTTRHzw7YfNf/TL3X27DktX7VO33y30nQbOX6OPaCTv/6qVvc11YRhA1SubGk98WwfHY5LcPtHsc6ggS+pVq0aeuWVwW43BfjTbo6UlNR0+9JuMwD9r+HcZqALyZtFW7AlMO+9957Gjh2rJ598Ul27dlV4eLiZ2eCkMImJiVq7dq1efPFF/eMf/zDFjM1qVK1kvjo/2wuvDdHzXZ9U/xf+oYEjJ2rA0LGqUrGcHnmwuVav32zu5xxLTklWnty5zW1nrMyGH7bps6+WqNPjf3f1Z7HJW2/11bPPPqk2jz6jrVt3uN0c4A8lJ6dc1GWcdvv06SSXWhUcOLfI9ALm3Xff1eDBg9W4ceOLjpUvX94kMZUrV9brr79uZQGTePSYmRp95223+PaVL1taZ86c1an/ntaD996l++++U0ePnfhtvMy4qSpRrLC537XXZleea38rXtK6QZyBvs7gX/hn1MjXFRPTTo+376aFC79wuznAnzp08IgiIgqacXHOjDlH0SKFzQfs8eMn3G6e1Ti3fvLYk5S43oWUnJyskiVL/ul9ihQpol9//VU2OnjoiJ7r+4biEn4fTLp1xy4VzH+ddu7eq16vDDT/oJzixRnku+z7tYq+KdLcr0PXFzT+3VnppmT/tOtnXV/6z88XfvPSS93VqVNbPfpYZ3344aduNwf4nzZu2mLGaNStc5NvX/360Vq7dqP5/YDLx7m1S2xsrJ544gkzlMQZVjJlyhTfsTfeeMMEG+dvM2fO9B1ftGiRCUUiIyPVpUsXHT16NGsKmCZNmpguIqer6Oz/j/04/wN7/fr16tu3r5o2bSpbu42qVa6gl98aqd0/x+rbFatNyvLU439XmdIltHT5Ks1ZuEj7Dx7WG8PHmTEvLe75LY1qeGsdzZi7UN98970ZD/PmiPE6eeq/eqBZE7d/rIBXpUoF9ev7nIYMHWdmGhQpUsi3AYEqKSlZ02fM17hxg1Q7KlL3399UPbrHaPTYqW43zXqc2wwkMJ4s2vxugkedOnVSgQIFtHDhQr322muaMGGCPvvsM3N89+7d6tmzp5YtW+bbWrVqZY5t3rxZ/fr1M0NS5s6dq5MnT6pPnz4ZOgXZvH6WtM54EKcLaf78+SbWy58/v28MzPHjx3XttdeqRYsWpgE5c+ZURp1J3CO3xSf8YoqPVes2KixnTrVudZ+eaveI6RJaumK1ho2doiNx8bqhehX169nFdBM5nFP4zvS5mvfJl/rl2DHdUK2yOV6xXFkFglzFGyhQPf98F731Zt9LHssR8vuigIHItr8Fz6Ye1J2NH9LSb1e63ZSgEBaWU+PGDlLLB5uZ2XTDR0zU6DG///WJq+/cOv/GrpTk72Zk2XPnbODfMJD4+Hi99dZbJmnJkyeP2ecUJBEREerfv79uu+02c/zWW2+96LG9e/fWNddco0GDBpnbhw8fVqNGjfT111+rVKnfPlszrYBJk5SUpB9//FEJCQnme2dUuNN1VLVq1csqXAKpgAlWgVzA2My2AgZA8BQwSd++n2XPHXZb+ww/xqyftn69OnfurFdffdUUL1FRUVqyZMklh584vTVPPfWUHnroId++O+64Qz169FDz5s2zZh0YZy6+09cFAACCT2pqqtnO5/S4ONsfcYqPQ4cOmRTFKU62bNliei8mTpyob7/91vTadOjQQQ8++KAvvSlc+LeJMGmc2c1Hjhzxu51cSgAAANt4sm4W0qRJk8yyKedzuoa6dev2h48ZPXq0WVLF6ToaOHCgqlev/tuM3HLl9Nhjj2nNmjV6+eWXTVeTM6bWmRh0YUGUNizFXxQwAADYxpt1BUxMTIxJS873Z+mLo2bNmuZrSkqKevXqZbqTnDTGSV4cVapU0d69ezV79mxTwDjDTy4sVtJW9/cX10ICAADpihUnKTl/u1QB4yQuF67AX6FCBTMN/tSpU77iJY2TxsTFxZnvnbGzzuMvfL5ChfyfgUoBAwCAbTzuT6M+cOCA6VpKK0ocztiXggULasaMGWrfPv1gYGcCkFPEOJy1X9atW+c75sxCcjZnv78oYAAAQIY53UbOWBdnDbhdu3Zp6dKlGjp0qJ5++mnTfeSMe5k6dar27dunDz74QB9//LE6duxoHtu6dWt98sknmjdvnilsnGnVzkJ4/k6hvqxp1FmFadRZh2nUWSMg/uEAuDqnUS+emGXPHdb4ab/v66QvziWEVq5cacavOAN2nTE0zgBep3vJGdzrjH0pUaKEunfvrrvuusv32AULFpjjJ06cUP369c3zOIvi+YsC5ipAAZM1AuIfDoCAcTUWMG5iFhIAALbxcDFHxsAAAADrkMAAAGAbLwkMBQwAALbxUMDQhQQAAKxDAgMAgG08JDAkMAAAwDokMAAA2MZLAkMCAwAArEMCAwCAbTwkMCQwAADAOiQwAADYxksCQwEDAIBtPBQwdCEBAADrkMAAAGAbLwkMCQwAALAOCQwAALbxkMCQwAAAAOuQwAAAYBsPCQwJDAAAsA4JDAAAtvF6dbWjgAEAwDYeupDoQgIAANYhgQEAwDYeEhgSGAAAYB0SGAAAbOMlgSGBAQAA1iGBAQDANh4SGBIYAABgHRIYAABs42UhOxIYAABgHRIYAABs42EMDAUMAAC28VDABEwBk6fk7W43IWj9+s0Qt5sQlMKb9HO7CUEr5ewZt5sAIMAFTAEDAAD85CWBYRAvAACwDgkMAACW8XqYRk0CAwAArEMCAwCAbTyMgSGBAQAA1iGBAQDANl4SGAoYAABs42EQL11IAADAOiQwAADYxkMXEgkMAACwDgkMAAC28ZDAkMAAAADrUMAAAGAbrzfrtgyIjY3VE088oVq1aqlhw4aaMmWK79j+/fvVvn173XjjjWrWrJmWLVuW7rErVqxQ8+bNFRkZqXbt2pn7ZwQFDAAAyDCPx6NOnTqpQIECWrhwoV577TVNmDBBn332mbxer7p06aKIiAh99NFHatGihbp27apDhw6ZxzpfneMtW7bU/PnzVbBgQXXu3Nk8zl+MgQEAwDYe98fAJCYmqmrVqurfv7/y5MmjsmXLql69elq3bp0pXJxEZc6cOcqVK5fKly+vlStXmmKmW7dumjdvnmrUqKGOHTua5xo4cKDq16+v1atXq06dOn69PgkMAAA2LmTnyZotNTVVp06dSrc5+y5UuHBhjRo1yhQvTnLiFC5r1qxRdHS0Nm3apGrVqpniJU1UVJQ2btxovneO165d23csLCxM1atX9x33BwUMAADwmTRpkik2zt+cfX/mjjvuUJs2bcxYmKZNmyohIcEUOOcLDw/XkSNHzPf/67g/6EICAMA23qzrQoqJiVGHDh3S7QsJCfnTx4wePdp0KTndSU53UFJS0kWPcW6nJTn/67g/KGAAAEC6QuJ/FSwXqlmzpvmakpKiXr16qVWrVqZIOZ9TnOTMmdN8HxoaelGx4tzOly+f369JFxIAALbxZN0YGH85icvixYvT7atQoYLOnDmjQoUKmeMX3j+t26hIkSKXPO48zl8UMAAAIMMOHDhgpkbHxcX59m3ZssVMiXbGzWzdulXJycm+Y84gX2fNF4fz1bmdxklrtm3b5jvuDwoYAAAs4/V4smzLSLeRM3Oob9++2rVrl5YuXaqhQ4fq6aefNjORihUrpj59+mjnzp2aPHmyNm/erIceesg81uliWr9+vdnvHHfuV7JkSb+nUDsoYAAAQIZlz55d48ePN1OgH3nkEfXr109t27Y1q+qmHXNmGzmL1X366acaN26cihcvbh7rFCtjxowx68I4Rc3x48fN8WzZsvn9+tm8GVn2LguF5izldhOC1oklg9xuQlAKb9LP7SYErZSzZ9xuApBhZ1MPXrHX+u+b7bLsuXP3my4bMAsJAADbeN1fiddtdCEBAADrkMAAAGAbT0CM/nAVCQwAALAOCQwAALbxMAaGBAYAAFiHBAYAANt4GANDAgMAAKxDAgMAgG28jIGhgAEAwDYeupDoQgIAANYhgQEAwDJeplGTwAAAAPuQwAAAYBsPY2BIYDIgJCREb496Q0cO/6B9ses1YMALbjfJGvvijurp4TNV95mBatprlN7/coXv2OAPvlJkxwHpttlLVl/0HP9as80cg//v1zVr/qkGDer69pUpU1KLFs1UfMI2rV33te68s4GrbbRZaGioJk8apsT4bdofu17dn4txu0lBg3MLf5DAZMCI4f3VsGF9Nb+vrfLmza0Z08dp374DmjJllttNC2gej1ddR81W9euLa27/TqaYeXHSAhUukFfN6tbUnkMJerbVHWpx642+x+TOGZruOU6eTjaFDvz/AHjv/bdVrXrldPvnzn1HW7f+qAa33qf77muq2XMm6aZajXXgwCHX2mqrwYNeUlRUpJrc9bBKlymp96aOUuy+A1qw4HO3m2Y9zq0fPCQwJDB+KlAgv9q3/7ue6fyC1q7dqG++Wa5Rb0/WzTfXcrtpAe+Xk6dUuXQRvdS2mcoUCVeDGyoquur12rBzvzm+53CiqpYppojr8vi2sNAc6Z5j5Idfq2ShAi79BHapUqWC/rN0ocpdXybd/ttvr6fry5VWt259tWPHbg0bNl6rV61Xu8cfdq2ttsqVK0xPdGytHj1e0YaNW/TJJ19p2PAJ6vJMe7ebZj3OLfxFAeOn+rfcrBMnftV3333v2+d8AMTE9HK1XTYolD+vhj7zkHKHhcrr9WrDzn1a/1Osalcuo1NJKYo/9qvKFA3/w8ev3bFXa3+M1VPNb72i7bbVrQ3q6tulK9Wo0YPp9t8cXUsbN27R6dNJvn0rVq5VneibXGil3SJvqK4cOXKY85dm+fLVio6upWzZsrnaNttxbjOwkJ03izZL0IXkp+uvL63Y2AN69NFWeqF3V4WE5NC06fM0aNBo86EM/9zTe7QO/3JCt0VWVOPaVbX150NyfidNWfSdlv2wS/lz51LbpnV1f/1Ic//UM2c14P3P1eexe5Tj2uxuN98KU96Zecn9RYsW1uHD8en2xccnqniJoleoZcGjaLHCSkw8qjNnzvj2xcUnKCwsTOHhBcwxXB7OrZ88fO5QwPgpd57cqlChrJ588lE91amn+TAYN3aQkk4nma4k+Gd4578p8cQpvTnjCw2d/S9VK1tM2ZRNZYtGqPWd0Vq7I1YDpi0yY2DujKqiyZ99q6pliuqWGuW15se9bjff+mg+NSU13b7UlBSFhoa41iabz2XKBecy7bYz/giXj3OLLClg1qxZ4/d9b775ZgWTs2fP6rrr8unxx7tp376DZl/pUiUUE9OOAiYDnIG8jtSzZ9Vn8kKtePgF3R5ZSdflCTP7K5Uqoti4X/Thf9aqdJGCmr90vT4a8LTLrQ4OyckpKlgwV7p9IaGhpghHxs/lhYVf2u3zu+iQcZxb/3hJYDJWwAwYMEC7du0y3/9Zt4nTT7l9+3YFkyNH4pWUlOwrXhw//bRbJUv+9oGMP/bLiVPatPuA7ripim9fuWKFdObsOf03OVUF8qb/UC1XLEKrt+/VknXbdfK/Sbr3xTG+2UwOZyr2y+2a6956Na/wT2K3Q4eOqGrVSun2FSlSSEeOJLjWJlsdOnhEEREFlT17dp07d87sK1qksPmAPX78hNvNsxrnFllSwHz00Ufq0aOHDhw4oLlz515VcZ4zWyMsLKcqVrheO3f9bPZVqVJRsbG/zaTBHzuYeFw9xn2ofw57TkUK5DP7tsUeNoXLB4tXadOuA5r8fFvf/Xfsi9P1xcJNl5IzzTrND3sOqu87C/Vh/xiF58vtys9iszWrN6hnz2eUM2eo+SvXcUu92ukGS8I/GzdtMWM06ta5SctX/JZM168fbWYoMibur+Hc+snDubgmowtjjRgxwnw/atQoXU1+2rlHX3yxWO+8M0I1a1ZVk8a3q1evzpo8eYbbTbOi26hameJ69d1Ptftggr7bvNNMi36qeQPdfmMlrfspVtO+WqH98Uf14Tdr9dmKTXq8aT3TreR0I6VtzroxDud7Z0YTMua771bpwIHDmjhpmKpWrWiKmajakZr2/ly3m2YdJ42dPmO+xo0bpNpRkbr//qbq0T1Go8dOdbtp1uPcIssG8TpFzPDhw7V69cUrpQa7x9s/q5EjB+ibfy8wceaEie9r3Pj33G5WwMt+zTUa1e0RDZz1pdq99a7CQnKoTeNoszndjcM6/03jF/5H4xb+R8Uj8mtgTEtFVijldrODjsfj0SMPP6XxE4Zo2fJF2rN7r1r/PYZF7C5Tr+f7m4H8i7+epxMnTuq1AcP18cdfut2soMC59YPHnunOWSWbN0AyudCcfGBllRNLBrndhKAU3qSf200IWilnf59CC9jibOrvYySz2q9dm2XZc+cd+4VswDRqAABs4wmI7MFVFDAAANjGQwHDpQQAAIB1SGAAALCMNzCGr7qKBAYAAFiHBAYAANt4SGBIYAAAgHVIYAAAsI2HBIYEBgAAWIcEBgAAy3hJYChgAACwjocChi4kAABgHRIYAABs43G7Ae4jgQEAANYhgQEAwDJexsCQwAAAAPuQwAAAYBsPCQwJDAAAsA4JDAAAtvG43QD3kcAAAADrUMAAAGDhLCRvFm0ZERcXp2effVbR0dFq0KCBBg4cqJSUFHPsjTfeUOXKldNtM2fO9D120aJFaty4sSIjI9WlSxcdPXo0Q69NFxIAALbxuN0Ayev1muIlX758mjVrlk6cOKG+ffvqmmuu0QsvvKDdu3erZ8+eevDBB32PyZMnj/m6efNm9evXT6+99pqqVKmiN998U3369NGkSZP8fn0SGAAAkGF79uzRxo0bTepSsWJF1a5d2xQ0TrLicAqYatWqqVChQr4tLCzMHHOSmHvuuUcPPPCAKWCGDBmipUuXav/+/X6/PgUMAACW8QZAF5JTkEyZMkURERHp9p86dcpsTvdS2bJlL/nYTZs2mYInTbFixVS8eHGz3190IQEAAJ/U1FSznS8kJMRs53O6jpxxL2k8Ho9JVurWrWvSl2zZsmnixIn69ttvlT9/fnXo0MHXnRQfH6/ChQune77w8HAdOXJE/qKAAQDANp6se2pnHMrYsWPT7evatau6dev2p48bOnSotm3bpvnz52vr1q2mgClXrpwee+wxrVmzRi+//LIZA9OkSRMlJydfVBA5ty8snP4MBQwAAPCJiYkxacn5Liw2LlW8TJs2TSNHjlSlSpXMmJhGjRqZ5MXhjHPZu3evZs+ebQqY0NDQi4oV53baGBl/UMAAAGAZbxYmMJfqLvozr7/+uilMnCKmadOmZp+TvqQVL2mcNOb777833xcpUkSJiYnpjju3nXE1/mIQLwAAuCxOV9OcOXM0YsQI3Xvvvb79b7/9ttq3b5/uvj/++KMpYhzO2i/r1q3zHTt8+LDZnP3+IoEBAMA2Hrcb8Ns06fHjx6tTp06KiopSQkKC75jTfTR58mRNnTrVdBktW7ZMH3/8saZPn26Ot27dWm3bttWNN96omjVrmnVgGjZsqFKlSvn9+hQwAABYxhsABcySJUt07tw5TZgwwWzn27Fjh0lhRo8ebb6WKFFCw4cPV61atcxx5+uAAQPMcWcBvPr165uuqIzI5nWW0gsAoTn9r7qQMSeWDHK7CUEpvEk/t5sQtFLOnnG7CUCGnU09eMVeK/Ge27PsuSO+XCobkMAAAGAbj9sNcB+DeAEAgHVIYAAAsIyXBIYEBgAA2IcEBgAAy3hJYEhgAACAfUhgAACwjJcEhgIGAADreLPpakcBcxW47s4X3W5CUDo+M8btJgStvG3Sr+oJABeigAEAwDJeupAYxAsAAOxDAgMAgGW8HsbAkMAAAADrkMAAAGAZL2NgSGAAAIB9SGAAALCMl3VgKGAAALCNly4kupAAAIB9SGAAALCMl2nUJDAAAMA+JDAAAFjG63W7Be4jgQEAANYhgQEAwDJexsCQwAAAAPuQwAAAYBkvCQwFDAAAtvEyiJcuJAAAYB8SGAAALOOlC4kEBgAA2IcEBgAAy3i5GjUJDAAAsA8JDAAAlvF63G6B+0hgAACAdUhgAACwjIcxMBQwAADYxksBQxcSAACwDwkMAACW8bKQHQkMAACwDwkMAACW8XIxRxIYAABgHxIYAAAs42UMDAkMAACwDwkMAACW8bAODAUMAAC28VLA0IUEAADsQwIDAIBlvEyjJoEBAAD2oYABAMAyziDerNoyIi4uTs8++6yio6PVoEEDDRw4UCkpKebY/v371b59e914441q1qyZli1blu6xK1asUPPmzRUZGal27dqZ+2cEBUwG3H//3UpJ3p9um/3BRLebFRRCQkL09qg3dOTwD9oXu14DBrzgdpOsse+Xk3rmvcWq99ps3T3kI73/3VbfsRU7D+nhMYtU59UPzNdlOw6me+z3uw6r1dufqm7/D/TU1H/pwNFfXfgJ7BQaGqrJk4YpMX6b9seuV/fnYtxuUtDg3NrB6/Wa4iUpKUmzZs3SyJEj9c0332jUqFHmWJcuXRQREaGPPvpILVq0UNeuXXXo0CHzWOerc7xly5aaP3++ChYsqM6dO5vH+YsxMBlQtWpFLVr0tTp3+f3DNTn5t0oTf82I4f3VsGF9Nb+vrfLmza0Z08dp374DmjJllttNC2gej1fdpn+j6iXCNafLvdr3y6/qM/c7Fc6XSzVKhqvHrP+oS5Mb1ahqKX2zbb+6z/qPPu7eQiUK5NHh4/81t5+5M1K3VCyuyd9sVveZ/9GH3ZorWzZmOPwvgwe9pKioSDW562GVLlNS700dpdh9B7RgweduN816nFs7ZiHt2bNHGzdu1PLly02h4nAKmsGDB+u2224zicqcOXOUK1culS9fXitXrjTFTLdu3TRv3jzVqFFDHTt2NI9zkpv69etr9erVqlOnjl+vTwKTAVWqVNDWbTsUF5fg206cOOl2s6xXoEB+tW//dz3T+QWtXbtR33yzXKPenqybb67ldtMC3i+nklS5WAH1a1FHZSLyqUHlEoouX1Qb9sYr7sRptby5otrWr6aSBfOq7a3VFBZyrbYcSDSPXbh2p6qVCFe7W6upQpH8eq3lLTp0/L9a+3Oc2z9WwMuVK0xPdGytHj1e0YaNW/TJJ19p2PAJ6vJMe7ebZj3OrftSU1N16tSpdJuz70KFChXSlClTfMVLGuf+mzZtUrVq1UzxkiYqKsoUPA7neO3atX3HwsLCVL16dd9xf1DAZEDVKhW1c+cet5sRdOrfcrNOnPhV3333vW/fsGHjFRPTy9V22aBQvlwa8vfblDs0h4leN8TGa/3eeNUuV0Q3lyuq3vfebO535pzHFCypZ8+pRsnfftls3p+oqLKFfc/lFDdVihfU5v0Jrv08toi8obpy5MihFSvX+vYtX75a0dG1SK/+Is6tf7zerNsmTZpkio3zN2ffhfLly2fGvaTxeDyaOXOm6tatq4SEBBUu/PvvF0d4eLiOHDlivv9fx/1BF1IGVKpUXk2a3K4XendV9uzZ9dFHi/TagOE6c+aM202z2vXXl1Zs7AE9+mgrc25DQnJo2vR5GjRodIb6Q692zYYtNN1Ct1UuocbVS6cbI/PgqE91zuPVP5rWMt1HjsRfk1Qo7+9/HTnC8+Q0yQ3+XNFihZWYeDTdv/24+ATzV2R4eAFzDJeHc+v+SrwxMTHq0KHDReMU/5ehQ4dq27ZtZkzL+++/f9FjnNtpSY4zbubPjmdaAeM84dtvv61Fixbp119/1S233KLu3bubPq00iYmJphLbvn27glHp0iWUO3cupaSkqs2jz6hs2dIaMeI1hYXlVM9e/d1untVy58mtChXK6sknH9VTnXqqaNHCGjd2kJJOJ5muJPhnWOvbTZfSm5+u0rAv1uqF5tFmf4HcOTXrmWbatC9Bw79cq1IF86pxjTJKPnNWOa5NH8KGZM+uM2c9Lv0EdnVzOL8Lzpd22xmAisvHuXVfSEiIXwXLhcXLtGnTzEDeSpUqmf9Xx48fv6iWyJkzp/neOX5hseLcdlKdTC1gRowYYUYW9+7d2/xF7ERErVq10rBhw9S4cWPf/YL5r+V9+w6qaLGaOnbst/8hmzdv0zXXZNP7743W870HmOgMl+fs2bO67rp8evzxbuY8O0qXKqGYmHYUMBlQvWS4+Zpy9pz6frhMPe6OUo5rsytvzhDTNeRse+JPaPb3O0wBE3LtxcVK6rlzyhuWw6WfwB7O4P3Q0PS/4NNunz6d5FKrggPn1p5BvGlef/11zZ492xQxTZs2NfuKFCmiXbt26XxO0JHWbeQcd25feLxq1arK1DEwX375pd566y3de++9Zs6209DWrVvrueeeM8fSBHv/ZFrxkubHH3eZBKZgwfyutSkYHDkSr6SkZF/x4vjpp90qWbK4q+2ygZO4/HvbvnT7yhW+zox52bQ/Uev3xl107Ph/k833zkylxFPpPxB++TVJEXnDrkDL7Xbo4BFFRBQ0XclpihYpbD5gjx8/4WrbbMe5tcvYsWPNTCMn6HBqhDTO2i5bt25VcvJvv28c69atM/vTjju30zhdSk73U9rxTCtgnAbkz58/XaHywgsv6PHHH9fzzz+vr7/+WsGuSePbdejgZlOwpImMrG76Y+mT/WtWr1pvzmvFCtf79lWpUlGxsRlb1OhqdPDoKfX8YGm6cSvbDx5Vgdyh2rwvQQMWfp8uGd1+6BddX/g68/0NpSK0MTbedywp9ax+PHxMN5QqdIV/Cvts3LTFjNGoW+cm37769aPNLLpgTqKvBM6tPQvZ7d69W+PHj9dTTz1lBvo6A3PTNmdhu2LFiqlPnz7auXOnJk+erM2bN+uhhx4yj3V6cdavX2/2O8ed+5UsWdLvKdR+FzDOEw4ZMkRHj6b/oHaKl0ceecSMh/nggw8UzFZ+v9akBBMnDlWliuXU9K6GGvhWP40YMcHtplnvp5179MUXi/XOOyNUs2ZVUyz26tVZkyfPcLtpVnQbVS0erv4LVmh3/HF9t+OgRn61Tk82rKl7b7zeDNR9+58bFJt4UnO+36HPN/6sJ26rYR7bIqqCNsYm6N2lW7Qr7rheXbDCDPCtfX0Rt3+sgOf8Lpg+Y77GjRuk2lGRuv/+purRPUajx051u2nW49zaY8mSJTp37pwmTJigW2+9Nd3mJGhOceMUM85idZ9++qnGjRun4sV/S9adYmXMmDFmXRinqHHGyzjHM9KTk83rR0mbtlSwUz05c76dxWYujJCcH8AZB3K5g3hDc5ZSoKtatZKGD3tV0dE36ddf/6spU2fqzTdHud2soJAvX16NHDlALe6/20TFEydN01tvva1AdnxmYKwOGn/ytAZ9tlqrdx8xU6EfqVtZT9xew/wicFKYoV+s1c4jx1Q8fx4927SWGlb9/d+aszKvczzuxH8VWbqQXnmgrkoUzCu35W0T+H8YOKmhM9i85YPNzHpQw0dM1OgxU9xuVlCw9dyeTU2/0nVW+r54yyx77rqHFsgGfhUw56+65yxckzdv3ktGSU411qlTp6AtYIBALGCCkQ0FDHAhCpgrK0PrwJQrV+4PjzlTqs+fVg0AAOxbB8YWLGQHAIBlvBQwXEoAAADYhwQGAADLeNxuQAAggQEAANYhgQEAwDJeMQaGBAYAAFiHBAYAAMt4uKoCCQwAALAPCQwAAJbxMAaGBAYAANiHBAYAAMt4SWAoYAAAsI3H7QYEALqQAACAdUhgAACwjJcuJBIYAABgHxIYAAAs43G7AQGABAYAAFiHBAYAAMt43G5AACCBAQAA1iGBAQDAMl5mIVHAAABgGw/1C11IAADAPiQwAABYxkMXEgkMAACwDwkMAACW8brdgABAAgMAAKxDAgMAgGU8bjcgAJDAAAAA65DAAABgGU82ZiFRwAAAYBmv2w0IAHQhAQAA65DAAABgGY/bDQgAJDAAAMA6JDAAAFjGwxheEhgAAGAfEhgAACzj4WKOJDAAAMA+JDAAAFjG63YDAgAFDAAAlvHQgxQ4Bcw5D7PaYZe8bSa43YSg9UCxKLebELQ+PrzO7SYAwVXAAAAA/3jcbkAAYBAvAACwDgkMAACW8brdgABAAgMAAKxDAQMAgIWzkDxZtF2O1NRUNW/eXKtWrfLte+ONN1S5cuV028yZM33HFy1apMaNGysyMlJdunTR0aNHM/SaFDAAAOCypaSkqEePHtq5c2e6/bt371bPnj21bNky39aqVStzbPPmzerXr5+6du2quXPn6uTJk+rTp0+GXpcxMAAAWMajwLBr1y5TpHi9F4/KcQqYJ554QoUKFbromJPE3HPPPXrggQfM7SFDhqhRo0bav3+/SpUq5ddrk8AAAGBhAePJoi0jVq9erTp16pgU5XynTp1SXFycypYte8nHbdq0SbVr1/bdLlasmIoXL272+4sEBgAApBvP4mznCwkJMduF2rRpo0tx0pds2bJp4sSJ+vbbb5U/f3516NBBDz74oDkeHx+vwoULp3tMeHi4jhw5In9RwAAAYBlvFl5KYNKkSRo7dmy6fc5YlW7duvn9HHv27DEFTLly5fTYY49pzZo1evnll5UnTx41adJEycnJFxVEzu0LC6c/QwEDAAB8YmJiTFpyvkulL3/GGdvijGlxkhdHlSpVtHfvXs2ePdsUMKGhoRcVK87tsLAwv1+DAgYAAMt4svC5/6i7KCOc9CWteEnjpDHff/+9+b5IkSJKTExMd9y5fakBv3+EQbwAACBTvf3222rfvn26fT/++KMpYhzO2i/r1v1+YdHDhw+bzdnvLwoYAAAs4wmQWUh/xOk+csa9TJ06Vfv27dMHH3ygjz/+WB07djTHW7durU8++UTz5s0zhU3v3r3VsGFDv6dQO+hCAgAAmeqGG24wKczo0aPN1xIlSmj48OGqVauWOe58HTBggDl+4sQJ1a9fX6+//nqGXiOb91Krz7jg2pASbjcBQIB4oFiU200IWh8f/j22R+Y6m3rwir3WmFKPZdlzd9v/+3L/gYwEBgAAy3iycBq1LRgDAwAArEMCAwCAZTxuNyAAkMAAAADrkMAAAGAZj9sNCAAkMAAAwDokMAAAWMbrdgMCAAkMAACwDgkMAACW8bAODAUMAAC28bjdgABAFxIAALAOCQwAAJbxut2AAEACAwAArEMCAwCAZTxkMCQwAADAPiQwAABYxuN2AwIACQwAALAOCQwAAJbxut2AAEABAwCAZTxuNyAA0IUEAACsQwIDAIBlPFwLiQQGAADYhwQGAADLeBjGSwJzOUJCQrRxwxLdfls9t5sSNEJDQzV50jAlxm/T/tj16v5cjNtNCgqc18wTXixCfd59WdO3zNH4Ze/o3o73+46VrlxGr88fpFk75mn4P0erer2arrbVdrxv4Q8SmMv4hzVzxljVqF7F7aYElcGDXlJUVKSa3PWwSpcpqfemjlLsvgNasOBzt5tmNc5r5ukxvrcSD8Srd/PuKlWxtP4xuqcSDsZry4rNennmAK1dvFrjer6t21o2VO9JfdSt0TM6+csJt5ttJd63/5vX7QYEAAqYDKhataJmTB+nbNkYPZWZcuUK0xMdW6v5fW21YeMWsw2rNkFdnmnPL6y/gPOaeXLny63KN1XRxBfG6sjew2bbuHS9ataPVESxCCWfTtY7/SbI4/How5GzdVOj2ip/QwVt+Gad2023Du9b+IsupAy4rUE9Lf3PCt3a4D63mxJUIm+orhw5cmjFyrW+fcuXr1Z0dC2Kxb+A85p5UlNSTZHS6OHGyn5tdhUvV0KVo6rq5617THfRmq9XmeIlzYv396R4uUy8b/3jycLtqklgzp49q1OnTil//vwKdpMmT3e7CUGpaLHCSkw8qjNnzvj2xcUnKCwsTOHhBcwxZBznNfOcSTmjKS9P1BMDYnRvh/tMEfPvDxfr33O/1j2P36udG39SzMAuqt04WgkH4jXtzXe1Y+12t5ttJd63yJIE5vPPP9eAAQP0z3/+U16vV2+88YZuuukm1atXT/Xr19fMmTMz8nSALzJOSUlNty/ttjPmCJeH85q5SlYopXWL16jvA89rbM9RqtfsFjV44HblzB2mB59ppWPxR/VW+9e0bdUWvTzjNTPoFxnH+9b/WUieLNqCLoGZOnWqJkyYYIqVV199VR9//LG2b9+uoUOHqkKFCvrhhx80bNgwnT59Wp06dcraViOoJCenKDQ0JN2+tNunTye51Cr7cV4zT836N+jOvzdRTJ2Opjtp9w+7VLBouFp1e1ies+f087Y9ZuyLw+lWirytlm5v2UgLxs1zu+nW4X3rH6/bDbCpgJk1a5ZGjBih2267TevWrdNjjz2miRMn6vbbbzfHy5cvrwIFCujll1+mgEGGHDp4RBERBZU9e3adO3fO7CtapLD5ZXX8OLM4LhfnNfOUq1FBh38+bIqXNE6h0qrrw9q5cYcO7jqY7v6H9hwkgblMvG+R6V1Ix44dU9myZc33UVFRKlasmCIi0v8DLVmypJKSqJCRMRs3bTH93XXr3OTbV79+tNau3Wi6KnF5OK+Z52j8URUtW0zX5vj9b74S5Usqfn+cflr/k8pW++134/nHEg7EudBS+/G+9Y+HQbz+FzDOWJdx48aZLiLHv//9b1WvXt13PD4+XgMHDjRdTEBGJCUla/qM+Ro3bpBqR0Xq/vubqkf3GI0eO9XtplmN85p51i1erXNnz+qZwV1V7PriirrzZrXs8jd98d5n+tesL1W6Slk9/FxrFS1TTI/0aKMipYvo24X/cbvZVuJ9C39l8/pZ0u7bt890DVWrVs10JZ1v8eLF6tatm2rUqKHx48erUKFCyqhrQ0rIJmdTD+rOxg9p6bcr3W5KUAgLy6lxYwep5YPNdOLESQ0fMVGjx0xxu1nWs/W8PlAsSoGmZMVS6vDqU6oQWVEnj57UV9M+1+fvfmqOVa5dVR37P2UWuDu4+4De7f+Otq/eqkD08eHAn95t6/vW+Vy4UnqU/XuWPfeIvXMUVAWMw7lrYmLiRQXKL7/8ogMHDqhmzZq65prLW1rGtgIGwNVVwAQLGwoYW1HABPA6MM4iQpdKV8LDw80GAACyntftBgQAVuIFAADW4VpIAABYxuN2AwIABQwAAJbx0olEFxIAALAPCQwAAJbxuN2AAEACAwAArEMCAwCAZTyMgSGBAQAA9iGBAQDAMl63GxAASGAAAIB1SGAAALCMhwyGBAYAANt4snC7HKmpqWrevLlWrVrl27d//361b99eN954o5o1a6Zly5ale8yKFSvMYyIjI9WuXTtz/4yggAEAAJctJSVFPXr00M6dO337vF6vunTpooiICH300Udq0aKFunbtqkOHDpnjzlfneMuWLTV//nwVLFhQnTt3No/zFwUMAAAWXkrAm0X/ZcSuXbv08MMPa9++fen2f//99yZRGTBggMqXL6+YmBiTxDjFjGPevHmqUaOGOnbsqIoVK2rgwIE6ePCgVq9e7fdrU8AAAIB03UGnTp1Ktzn7LsUpOOrUqaO5c+em279p0yZVq1ZNuXLl8u2LiorSxo0bfcdr167tOxYWFqbq1av7jvuDQbwAAFjGk4XPPWnSJI0dOzbdPqf7p1u3bhfdt02bNpd8joSEBBUuXDjdvvDwcB05csSv4/6ggAEAAD5Od0+HDh1+3yEpJCREGZGUlHTRY5zbaUnO/zruDwoYAAAs483CadROIZHRguVCoaGhOn78eLp9TnGSM2dO3/ELixXndr58+fx+DcbAAACATFWkSBElJiam2+fcTus2+qPjhQoV8vs1KGAAALCMJ8DWgbmQs7bL1q1blZyc7Nu3bt06sz/tuHM7jdOltG3bNt9xf1DAAABgGY/Xm2VbZoiOjlaxYsXUp08fsz7M5MmTtXnzZj300EPmeKtWrbR+/Xqz3znu3K9kyZJmRpO/KGAAAECmyp49u8aPH29mGzmL1X366acaN26cihcvbo47xcqYMWPMujBOUeOMl3GOZ8uWze/XyObNyLJ3WejakBJuNwFAgHigWJTbTQhaHx/+PbZH5jqbevCKvdZjZVpm2XPPjF0gG5DAAAAA6zCNGgAAy3i4GjUJDAAAsA8JDAAAlvGSwJDAAAAA+5DAAABgGY/bDQgAFDAAAFjGQxcSXUgAAMA+JDAAAFjGSwJDAgMAAOxDAgMAgGU8bjcgAJDAAAAA65DAAABgGW9gXIfZVSQwAADAOiQwAABYxsMsJAoYAABs43G7AQGALiQAAGAdEhjgMmVzuwFB7OPD69xuQtAqkTfc7SYgE3jpQiKBAQAA9iGBAQDAMh4SGBIYAABgHxIYAAAs42UhOxIYAABgHxIYAAAs43G7AQGAAgYAAMt4GcRLFxIAALAPCQwAAJbxkMCQwAAAAPuQwAAAYBkv06hJYAAAgH1IYAAAsIyHMTAkMAAAwD4kMAAAWMZLAkMBAwCAbTwM4qULCQAA2IcEBgAAy3jdbkAAIIEBAADWIYEBAMAyHjIYEhgAAGAfEhgAACzjIYEhgQEAAPYhgQEAwDJe1oEhgQEAAPYhgQEAwDIexsBQwAAAYBsvBQxdSAAAwD4UMAAAWDiI15tFW0Z8/fXXqly5crrt2WefNce2bdumv/3tb4qMjFSrVq20ZcuWTD0HFDAAAOCy7Nq1S40aNdKyZct82xtvvKHTp0+rU6dOql27thYsWKBatWopJibG7M8sFDAAAFg4iNeTRVtG7N69W5UqVVKhQoV8W758+fTFF18oNDRUvXv3Vvny5dWvXz/lzp1bX331VaadAwoYAABwWZwCpmzZshft37Rpk6KiopQtWzZz2/l60003aePGjcoszEICAMAy3ixcyC41NdVs5wsJCTHbhW34+eefTbfRpEmTdO7cOd19991mDExCQoIqVKiQ7v7h4eHauXNnprWTAgYAAPg4xcjYsWN/3yGpa9eu6tatW7p9hw4dUlJSkilsRo0apQMHDpjxL8nJyb7953NuX1gY/RUUMAAAWMaThevAOINtO3TokG7fhcWIo0SJElq1apWuu+4600VUtWpVeTwePf/884qOjr6oWHFu58yZM9PaSQEDAIBlvFlYwFyqu+iP5M+fP91tZ8BuSkqKGcybmJiY7phzu3DhwpnWTgbxAgCADPvuu+9Up04d012UZvv27aaocQbwbtiwwTdWx/m6fv16syZMZqGAAQDAMh6vN8s2fzlruzhTpV966SXt2bNHS5cu1ZAhQ/Tkk0+awbwnT57Um2++adaKcb46hc4999yTaeeAAgYAAGRYnjx5NHXqVB09etSstOus9fLII4+YAsY55gwGXrdunVq2bGmmVU+ePFm5cuVSZqGAyQCn0pw8aZgS47dpf+x6dX8uxu0mBQ3ObdYoXryo5syZrLgjW7T357UaOuRVc67x1/GezTxlri+l6fMmaFvs91qx6Z+K6dred6xW7Ru04Mvp5ti/V32qvz/W0tW2BtIYGG8W/ZcRFStW1HvvvWe6i5zp1M5spbS1X2644QYtXLhQmzdv1rx581StWrVMPQcM4s2AwYNeUlRUpJrc9bBKlymp96aOUuy+A1qw4HO3m2Y9zm3WmDtnso4dO65Gd7RUgQL59c7kEWathhf7vOF206zHezZzOB92780Zp80btqhZo4d1fbnSGv3OYB05HK8V363StLnjNeO9D9Wjy0uqGVlNw8YMUHxcgv799XduNx0uy+bNytVwMuDakBIKZLlyhSnu8A9qfl9bLf12pdnXt88/dOcdt+rOJn9zu3lWs/Xc/vY3RuCqXLm8tvzwrUqUjFR8/G+zAR55pIUGD3pZZa+vrUAWEL+UgvA96yiRN1yBpHCRCL3yZm+98Fx//ffUb9fJmTRthBLif9H2rT+pY8yjurPeA777vzX8ZeXOnUv/eLqPAk3sL5uv2GtVLRydZc+9PX61bEAXkp8ib6iuHDlyaMXKtb59y5evVnR0LV9chsvDuc0aR44kqNm9bXzFS5rrrsvnWpuCBe/ZzBMfl6iuT/b2FS+1o29UdL0orVy2RkuXLFevbq9c9Ji8+fK40FIEGgoYPxUtVliJiUd15swZ3764+ASFhYUpPLyAq22zHec2a5w4cVJff73Ud9v5YO38TAf9+5tlrrYrGPCezRrLN36lj76crvVrNuvLzxbrwP5D2rD291QjPKKg7mt5t5Z/u0pXO2+AjIGxuoBxLs60f/9+BTsnMk5JSb+qYNptBkX+NZzbK2PQwJdUq1YNvfLKYLebYj3es1nj6fY91KF1V1WrWVmvvPl8umOhOUM18f3fupZmTZuvq50nAKZRu82vQbx9+vxxX6OzNPDQoUPNZbIdAwcOVDBKTk5RaGj6lQnTbp8+/fsiPsg4zm3We+utvnr22SfV5tFntHXrDrebYz3es1njh43bzNfX+w3VqEkD9eYrw3XmzFnlyh2mKTNH6/ryZfTQvY8rOSnZ7abClgTml19+MVOhnMtmX60OHTyiiIiCyp49u29f0SKFzS+r48dPuNo223Fus9aoka+bKb6Pt++mhQu/cLs5QYH3bOaJKFRQdzVrlG7fzp92m4IwT948ypM3t2bMm6hKVSqo9QNPau+efa61NZB46ULyL4FxFp/5/PPPTdJSr149denSxXedhK+++spcuKlUqVIKZhs3bTH93XXr3KTlK9aYffXrR2vt2o1ZelnzqwHnNuu89FJ3derUVo8+1pnpvZmI92zmKVWmpCZNG6m6N9yluMPxZl+NyGpKTDiq48dOaOZHk8w09Ufu76DdO/e63VzYOAbm3nvv1SeffKKEhATdd999WrFiha4mSUnJmj5jvsaNG6TaUZG6//6m6tE9RqPHTnW7adbj3GaNKlUqqF/f5zRk6DgzQ6ZIkUK+DX8N79nMs2n9Fv2waZuGjn5NFSuXU6PGt6pv/x4aO+IdPfJYS9W79WYzxfrkiV9VqHC42a7Lz0w6D2NgLm8dmJUrV6p///6qUaOGlixZos8+++wvJzCBvg6MIywsp8aNHaSWDzYzMzyGj5io0WOmuN2soGDjuQ30ybLPP99Fb73Z95LHcgT4vzcbfoXa+J4NxHVgHIWLFtLrg/voltvqKOl0kqZNmaNxI6do2ocT1PDO+hfd35li/fcWT+hqXgemfMRNWfbcuxPXK6gXsnMG744ZM0ZffPGFZs6cqWLFigV9AQPYVMDYzIYCxlaBWMAEiytZwJSLqJVlz70ncYNswEq8wGWigMk6AfFLKUhRwGQdCpgri2shAQBgGa/Xo6sdBQwAAJbxkFNyKQEAAGAfEhgAACzjDYzhq64igQEAANYhgQEAwDIexsCQwAAAAPuQwAAAYBkvY2BIYAAAgH1IYAAAsIyHBIYCBgAA23gZxEsXEgAAsA8JDAAAlvHShUQCAwAA7EMCAwCAZTyMgSGBAQAA9iGBAQDAMl7GwJDAAAAA+5DAAABgGQ8JDAUMAAC28VLA0IUEAADsQwIDAIBlPEyjJoEBAAD2IYEBAMAyXsbAkMAAAAD7kMAAAGAZDwkMCQwAALAPCQwAAJbxMguJAgYAANt46EKiCwkAANiHBAYAAMt4SWBIYAAAgH1IYAAAsIyXQbwkMAAAwD4kMAAAWMbLGBgSGAAAcHlSUlLUt29f1a5dW7feeqveffddXSkkMAAAWMYbIAnMkCFDtGXLFk2bNk2HDh3SCy+8oOLFi+vuu+/O8temgAEAwDJetxsg6fTp05o3b57eeecdVa9e3Ww7d+7UrFmzrkgBQxcSAADwSU1N1alTp9Jtzr4L/fjjjzp79qxq1arl2xcVFaVNmzbJ4/HoqklgzqYedLsJAABY4WwWfmaOGTNGY8eOTbeva9eu6tatW7p9CQkJKlCggEJCQnz7IiIizLiY48ePq2DBgroqChgAAOC+mJgYdejQId2+84uUNElJSRftT7t9qcQms1HAAACAdEXIpQqWC4WGhl5UqKTdzpkzp7IaY2AAAECGFSlSRMeOHTPjYM7vVnKKl3z58imrUcAAAIAMq1q1qq699lpt3LjRt2/dunWqWbOmrrkm68sLChgAAJBhYWFheuCBB9S/f39t3rxZixcvNgvZtWvXTldCNm+grIYDAACskpSUZAqYf/3rX8qTJ4+eeOIJtW/f/oq8NgUMAACwDl1IAADAOhQwAADAOhQwAADAOhQwllw2/GrhLILUvHlzrVq1yu2mBIW4uDg9++yzio6OVoMGDTRw4EDzPsZfFxsbawYsOteBadiwoaZMmeJ2k4JSp06d9OKLL7rdDAQgVuK15LLhVwPng7Vnz57maqb465zx+U7x4iwo5Vwd9sSJE6YAd9ZncN67uHzOheqcD1ZnvYuFCxeaYqZHjx5mYa/77rvP7eYFjc8//1xLly7Vgw8+6HZTEIBIYDJ42fB+/fqZS4Y3adJETz75pPlgwF+3a9cuPfzww9q3b5/bTQkae/bsMQtMOalLxYoVTXLoFDSLFi1yu2nWS0xMNIt4OdNHy5Ytq9tvv1316tUzi3ghczgXA3T+aHSKROBSKGD85PZlw4Pd6tWrVadOHc2dO9ftpgSNQoUKmW4N5+qw5zt16pRrbQoWhQsX1qhRo8y6F07S5RQua9asMV11yByDBw9WixYtVKFCBbebggBFF5Kf3L5seLBr06aN200IOk7XkTPuJY1TaM+cOVN169Z1tV3B5o477jBdyo0aNVLTpk3dbk5QWLlypdauXavPPvvMpFzApZDA+Mnty4YDf9XQoUO1bds2de/e3e2mBJXRo0dr4sSJ2r59u+muw1/j/FH46quv6pVXXrkiVzSGvUhg/OT2ZcOBv1q8OIPPR44cqUqVKrndnKCSNkbD+eDt1auXevfufdEfO/Df2LFjVaNGjXTpIXApFDCXcdlw5+qbV/qy4cDlev311zV79mxTxNDFkXmDeJ0B0o0bN/btc8ZqnDlzxowxokv5r808cs5v2njDtD8U//nPf2rDhg0utw6BhALmMi4b7szmuNKXDQcu96/ZOXPmaMSIEUz3z0QHDhxQ165dzRRf548bh7PEglO4ULz8NTNmzDB/KKYZNmyY+eqkW8D5KGAu47Lhb731luLj481CdvR5I1Dt3r1b48ePN+uVODPmnMTw/BlKuHzOHy7OcgrOujp9+vTRwYMHTcL19NNPu90065UoUSLd7dy5c5uvZcqUcalFCFQUMBng/KJyCpjHH3/cTJ/s1q2b7rrrLrebBVzSkiVLdO7cOU2YMMFs59uxY4dr7QoG2bNnN8Wh0z33yCOPmD9w2rZtq3bt2rndNOCqkc3rLGIAAABgEQZvAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA61DAAAAA2eb/AOM5qbL0NytTAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classification Report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.97 0.99 0.98 398\n", + " 1 0.98 0.96 0.97 370\n", + " 2 0.96 0.97 0.96 341\n", + " 3 1.00 0.99 0.99 87\n", + " 4 1.00 0.94 0.97 34\n", + "\n", + " accuracy 0.97 1230\n", + " macro avg 0.98 0.97 0.98 1230\n", + "weighted avg 0.97 0.97 0.97 1230\n", + "\n" + ] + } + ], + "execution_count": 15 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FNP6aqzc9hE5" + }, + "source": [ + "# Convert to model for Tensorflow-Lite" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ODjnYyld9hE6", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.525052Z", + "start_time": "2025-04-06T14:42:46.495530Z" + } + }, + "source": [ + "# Save as a model dedicated to inference\n", + "model.save(model_save_path, include_optimizer=False)" + ], + "outputs": [], + "execution_count": 16 + }, + { + "cell_type": "code", + "metadata": { + "id": "zRfuK8Y59hE6", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a4ca585c-b5d5-4244-8291-8674063209bb", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.780128Z", + "start_time": "2025-04-06T14:42:46.542059Z" + } + }, + "source": [ + "# Transform model (quantization)\n", + "\n", + "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", + "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", + "tflite_quantized_model = converter.convert()\n", + "\n", + "open(tflite_save_path, 'wb').write(tflite_quantized_model)" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpdi8ap89u\\assets\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpdi8ap89u\\assets\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved artifact at 'C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpdi8ap89u'. The following endpoints are available:\n", + "\n", + "* Endpoint 'serve'\n", + " args_0 (POSITIONAL_ONLY): TensorSpec(shape=(None, 42), dtype=tf.float32, name='input_layer')\n", + "Output Type:\n", + " TensorSpec(shape=(None, 5), dtype=tf.float32, name=None)\n", + "Captures:\n", + " 2451841247968: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2451842012384: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2451842010800: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2451842419344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2451842010624: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2451842422512: TensorSpec(shape=(), dtype=tf.resource, name=None)\n" + ] + }, + { + "data": { + "text/plain": [ + "6600" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 17 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CHBPBXdx9hE6" + }, + "source": [ + "# Inference test" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "mGAzLocO9hE7", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.812178Z", + "start_time": "2025-04-06T14:42:46.797128Z" + } + }, + "source": [ + "interpreter = tf.lite.Interpreter(model_path=tflite_save_path)\n", + "interpreter.allocate_tensors()" + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\.venv\\lib\\site-packages\\tensorflow\\lite\\python\\interpreter.py:457: UserWarning: Warning: tf.lite.Interpreter is deprecated and is scheduled for deletion in\n", + " TF 2.20. Please use the LiteRT interpreter from the ai_edge_litert package.\n", + " See the [migration guide](https://ai.google.dev/edge/litert/migration)\n", + " for details.\n", + " \n", + " warnings.warn(_INTERPRETER_DELETION_WARNING)\n" + ] + } + ], + "execution_count": 18 + }, + { + "cell_type": "code", + "metadata": { + "id": "oQuDK8YS9hE7", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.844102Z", + "start_time": "2025-04-06T14:42:46.829106Z" + } + }, + "source": [ + "# Get I / O tensor\n", + "input_details = interpreter.get_input_details()\n", + "output_details = interpreter.get_output_details()" + ], + "outputs": [], + "execution_count": 19 + }, + { + "cell_type": "code", + "metadata": { + "id": "2_ixAf_l9hE7", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.875277Z", + "start_time": "2025-04-06T14:42:46.861102Z" + } + }, + "source": [ + "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" + ], + "outputs": [], + "execution_count": 20 + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "id": "s4FoAnuc9hE7", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "91f18257-8d8b-4ef3-c558-e9b5f94fabbf", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.906147Z", + "start_time": "2025-04-06T14:42:46.891643Z" + } + }, + "source": [ + "%%time\n", + "# Inference implementation\n", + "interpreter.invoke()\n", + "tflite_results = interpreter.get_tensor(output_details[0]['index'])" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: total: 0 ns\n", + "Wall time: 0 ns\n" + ] + } + ], + "execution_count": 21 + }, + { + "cell_type": "code", + "metadata": { + "id": "vONjp19J9hE8", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "77205e24-fd00-42c4-f7b6-e06e527c2cba", + "ExecuteTime": { + "end_time": "2025-04-06T14:42:46.937996Z", + "start_time": "2025-04-06T14:42:46.923157Z" + } + }, + "source": [ + "print(np.squeeze(tflite_results))\n", + "print(np.argmax(np.squeeze(tflite_results)))" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.6097244e-02 5.2194584e-02 9.3088049e-01 7.2499836e-04 1.0261366e-04]\n", + "2\n" + ] + } + ], + "execution_count": 22 + } + ] +} diff --git a/point_history_classification.ipynb b/point_history_classification.ipynb index 53e0b022..b6cffc0d 100644 --- a/point_history_classification.ipynb +++ b/point_history_classification.ipynb @@ -1,2006 +1,2143 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import csv\n", - "\n", - "import numpy as np\n", - "import tensorflow as tf\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "RANDOM_SEED = 42" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 各パス指定" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "dataset = 'model/point_history_classifier/point_history.csv'\n", - "model_save_path = 'model/point_history_classifier/point_history_classifier.hdf5'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 分類数設定" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "NUM_CLASSES = 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 入力長" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "TIME_STEPS = 16\n", - "DIMENSION = 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 学習データ読み込み" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (TIME_STEPS * DIMENSION) + 1)))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# モデル構築" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "use_lstm = False\n", - "model = None\n", - "\n", - "if use_lstm:\n", - " model = tf.keras.models.Sequential([\n", - " tf.keras.layers.InputLayer(input_shape=(TIME_STEPS * DIMENSION, )),\n", - " tf.keras.layers.Reshape((TIME_STEPS, DIMENSION), input_shape=(TIME_STEPS * DIMENSION, )), \n", - " tf.keras.layers.Dropout(0.2),\n", - " tf.keras.layers.LSTM(16, input_shape=[TIME_STEPS, DIMENSION]),\n", - " tf.keras.layers.Dropout(0.5),\n", - " tf.keras.layers.Dense(10, activation='relu'),\n", - " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", - " ])\n", - "else:\n", - " model = tf.keras.models.Sequential([\n", - " tf.keras.layers.InputLayer(input_shape=(TIME_STEPS * DIMENSION, )),\n", - " tf.keras.layers.Dropout(0.2),\n", - " tf.keras.layers.Dense(24, activation='relu'),\n", - " tf.keras.layers.Dropout(0.5),\n", - " tf.keras.layers.Dense(10, activation='relu'),\n", - " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", - " ])" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dropout (Dropout) (None, 32) 0 \n", - "_________________________________________________________________\n", - "dense (Dense) (None, 24) 792 \n", - "_________________________________________________________________\n", - "dropout_1 (Dropout) (None, 24) 0 \n", - "_________________________________________________________________\n", - "dense_1 (Dense) (None, 10) 250 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 4) 44 \n", - "=================================================================\n", - "Total params: 1,086\n", - "Trainable params: 1,086\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "model.summary() # tf.keras.utils.plot_model(model, show_shapes=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# モデルチェックポイントのコールバック\n", - "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", - " model_save_path, verbose=1, save_weights_only=False)\n", - "# 早期打ち切り用コールバック\n", - "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# モデルコンパイル\n", - "model.compile(\n", - " optimizer='adam',\n", - " loss='sparse_categorical_crossentropy',\n", - " metrics=['accuracy']\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# モデル訓練" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 1.3800 - accuracy: 0.4279\n", - "Epoch 00001: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 1s 25ms/step - loss: 1.3800 - accuracy: 0.4270 - val_loss: 1.3584 - val_accuracy: 0.5219\n", - "Epoch 2/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 1.3587 - accuracy: 0.5066\n", - "Epoch 00002: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 1.3586 - accuracy: 0.5068 - val_loss: 1.3365 - val_accuracy: 0.5310\n", - "Epoch 3/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 1.3348 - accuracy: 0.5050\n", - "Epoch 00003: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 1.3348 - accuracy: 0.5050 - val_loss: 1.3091 - val_accuracy: 0.5249\n", - "Epoch 4/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 1.3090 - accuracy: 0.5237\n", - "Epoch 00004: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 1.3090 - accuracy: 0.5239 - val_loss: 1.2752 - val_accuracy: 0.5906\n", - "Epoch 5/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 1.2776 - accuracy: 0.5560\n", - "Epoch 00005: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 13ms/step - loss: 1.2768 - accuracy: 0.5554 - val_loss: 1.2332 - val_accuracy: 0.6178\n", - "Epoch 6/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 1.2342 - accuracy: 0.5597\n", - "Epoch 00006: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 1.2342 - accuracy: 0.5599 - val_loss: 1.1817 - val_accuracy: 0.6858\n", - "Epoch 7/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 1.1957 - accuracy: 0.5721\n", - "Epoch 00007: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 1.1932 - accuracy: 0.5780 - val_loss: 1.1206 - val_accuracy: 0.7122\n", - "Epoch 8/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 1.1480 - accuracy: 0.5717\n", - "Epoch 00008: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 1.1455 - accuracy: 0.5743 - val_loss: 1.0555 - val_accuracy: 0.7492\n", - "Epoch 9/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 1.0875 - accuracy: 0.6001\n", - "Epoch 00009: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 1.0879 - accuracy: 0.5997 - val_loss: 0.9879 - val_accuracy: 0.7847\n", - "Epoch 10/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 1.0461 - accuracy: 0.6023\n", - "Epoch 00010: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 1.0451 - accuracy: 0.6037 - val_loss: 0.9241 - val_accuracy: 0.7878\n", - "Epoch 11/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.9968 - accuracy: 0.6238\n", - "Epoch 00011: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.9958 - accuracy: 0.6256 - val_loss: 0.8632 - val_accuracy: 0.8180\n", - "Epoch 12/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.9525 - accuracy: 0.6356\n", - "Epoch 00012: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.9523 - accuracy: 0.6357 - val_loss: 0.8063 - val_accuracy: 0.8270\n", - "Epoch 13/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.9175 - accuracy: 0.6560\n", - "Epoch 00013: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.9174 - accuracy: 0.6558 - val_loss: 0.7573 - val_accuracy: 0.8527\n", - "Epoch 14/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.8813 - accuracy: 0.6709\n", - "Epoch 00014: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.8738 - accuracy: 0.6689 - val_loss: 0.7132 - val_accuracy: 0.8739\n", - "Epoch 15/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.8613 - accuracy: 0.6659\n", - "Epoch 00015: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.8577 - accuracy: 0.6692 - val_loss: 0.6770 - val_accuracy: 0.8897\n", - "Epoch 16/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.8275 - accuracy: 0.6815\n", - "Epoch 00016: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.8273 - accuracy: 0.6815 - val_loss: 0.6460 - val_accuracy: 0.9026\n", - "Epoch 17/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.8088 - accuracy: 0.6958\n", - "Epoch 00017: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.8066 - accuracy: 0.6966 - val_loss: 0.6152 - val_accuracy: 0.9063\n", - "Epoch 18/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.7810 - accuracy: 0.6953\n", - "Epoch 00018: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.7807 - accuracy: 0.6954 - val_loss: 0.5880 - val_accuracy: 0.9162\n", - "Epoch 19/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.7743 - accuracy: 0.6991\n", - "Epoch 00019: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.7695 - accuracy: 0.7029 - val_loss: 0.5688 - val_accuracy: 0.9230\n", - "Epoch 20/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.7537 - accuracy: 0.7121\n", - "Epoch 00020: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.7469 - accuracy: 0.7127 - val_loss: 0.5462 - val_accuracy: 0.9222\n", - "Epoch 21/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.7440 - accuracy: 0.7175\n", - "Epoch 00021: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 1s 31ms/step - loss: 0.7457 - accuracy: 0.7168 - val_loss: 0.5261 - val_accuracy: 0.9313\n", - "Epoch 22/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.7107 - accuracy: 0.7322\n", - "Epoch 00022: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.7106 - accuracy: 0.7329 - val_loss: 0.5073 - val_accuracy: 0.9313\n", - "Epoch 23/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.7039 - accuracy: 0.7356\n", - "Epoch 00023: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.7039 - accuracy: 0.7356 - val_loss: 0.4947 - val_accuracy: 0.9358\n", - "Epoch 24/1000\n", - "24/32 [=====================>........] - ETA: 0s - loss: 0.7048 - accuracy: 0.7279\n", - "Epoch 00024: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.7119 - accuracy: 0.7251 - val_loss: 0.4782 - val_accuracy: 0.9350\n", - "Epoch 25/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.6741 - accuracy: 0.7485\n", - "Epoch 00025: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.6737 - accuracy: 0.7485 - val_loss: 0.4624 - val_accuracy: 0.9366\n", - "Epoch 26/1000\n", - "23/32 [====================>.........] - ETA: 0s - loss: 0.6698 - accuracy: 0.7480\n", - "Epoch 00026: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.6700 - accuracy: 0.7472 - val_loss: 0.4484 - val_accuracy: 0.9388\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 27/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.6723 - accuracy: 0.74 - ETA: 0s - loss: 0.6671 - accuracy: 0.7444\n", - "Epoch 00027: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6640 - accuracy: 0.7447 - val_loss: 0.4387 - val_accuracy: 0.9418\n", - "Epoch 28/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.6625 - accuracy: 0.7533\n", - "Epoch 00028: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.6622 - accuracy: 0.7535 - val_loss: 0.4314 - val_accuracy: 0.9411\n", - "Epoch 29/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.6503 - accuracy: 0.7568\n", - "Epoch 00029: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.6505 - accuracy: 0.7570 - val_loss: 0.4200 - val_accuracy: 0.9449\n", - "Epoch 30/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.6271 - accuracy: 0.7675\n", - "Epoch 00030: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6296 - accuracy: 0.7656 - val_loss: 0.4093 - val_accuracy: 0.9524\n", - "Epoch 31/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.6360 - accuracy: 0.7586\n", - "Epoch 00031: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.6362 - accuracy: 0.7593 - val_loss: 0.4019 - val_accuracy: 0.9479\n", - "Epoch 32/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.6253 - accuracy: 0.7700\n", - "Epoch 00032: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6186 - accuracy: 0.7717 - val_loss: 0.3927 - val_accuracy: 0.9464\n", - "Epoch 33/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.6255 - accuracy: 0.7613\n", - "Epoch 00033: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6217 - accuracy: 0.7623 - val_loss: 0.3868 - val_accuracy: 0.9547\n", - "Epoch 34/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.6175 - accuracy: 0.7678\n", - "Epoch 00034: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6136 - accuracy: 0.7694 - val_loss: 0.3795 - val_accuracy: 0.9547\n", - "Epoch 35/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.6162 - accuracy: 0.7598\n", - "Epoch 00035: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6162 - accuracy: 0.7598 - val_loss: 0.3737 - val_accuracy: 0.9554\n", - "Epoch 36/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.6299 - accuracy: 0.7622\n", - "Epoch 00036: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6154 - accuracy: 0.7711 - val_loss: 0.3709 - val_accuracy: 0.9577\n", - "Epoch 37/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.6147 - accuracy: 0.7734\n", - "Epoch 00037: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6124 - accuracy: 0.7759 - val_loss: 0.3627 - val_accuracy: 0.9517\n", - "Epoch 38/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.5937 - accuracy: 0.7773\n", - "Epoch 00038: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.6087 - accuracy: 0.7722 - val_loss: 0.3583 - val_accuracy: 0.9524\n", - "Epoch 39/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5917 - accuracy: 0.7831\n", - "Epoch 00039: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5975 - accuracy: 0.7782 - val_loss: 0.3579 - val_accuracy: 0.9547\n", - "Epoch 40/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.5938 - accuracy: 0.7749\n", - "Epoch 00040: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5941 - accuracy: 0.7734 - val_loss: 0.3521 - val_accuracy: 0.9569\n", - "Epoch 41/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.5979 - accuracy: 0.7656\n", - "Epoch 00041: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5977 - accuracy: 0.7671 - val_loss: 0.3482 - val_accuracy: 0.9547\n", - "Epoch 42/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5712 - accuracy: 0.7884\n", - "Epoch 00042: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5693 - accuracy: 0.7888 - val_loss: 0.3442 - val_accuracy: 0.9524\n", - "Epoch 43/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.5849 - accuracy: 0.7867\n", - "Epoch 00043: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.5878 - accuracy: 0.7840 - val_loss: 0.3410 - val_accuracy: 0.9577\n", - "Epoch 44/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.5745 - accuracy: 0.7810\n", - "Epoch 00044: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5745 - accuracy: 0.7810 - val_loss: 0.3365 - val_accuracy: 0.9585\n", - "Epoch 45/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.5725 - accuracy: 0.7760\n", - "Epoch 00045: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5731 - accuracy: 0.7754 - val_loss: 0.3323 - val_accuracy: 0.9569\n", - "Epoch 46/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.5730 - accuracy: 0.7781\n", - "Epoch 00046: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5699 - accuracy: 0.7800 - val_loss: 0.3304 - val_accuracy: 0.9554\n", - "Epoch 47/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.5533 - accuracy: 0.7945\n", - "Epoch 00047: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5552 - accuracy: 0.7933 - val_loss: 0.3244 - val_accuracy: 0.9585\n", - "Epoch 48/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5754 - accuracy: 0.7809\n", - "Epoch 00048: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5751 - accuracy: 0.7827 - val_loss: 0.3202 - val_accuracy: 0.9577\n", - "Epoch 49/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5672 - accuracy: 0.7816\n", - "Epoch 00049: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5630 - accuracy: 0.7842 - val_loss: 0.3181 - val_accuracy: 0.9585\n", - "Epoch 50/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.5576 - accuracy: 0.7877\n", - "Epoch 00050: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5561 - accuracy: 0.7888 - val_loss: 0.3148 - val_accuracy: 0.9577\n", - "Epoch 51/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.5451 - accuracy: 0.8011\n", - "Epoch 00051: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5442 - accuracy: 0.8014 - val_loss: 0.3096 - val_accuracy: 0.9532\n", - "Epoch 52/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5685 - accuracy: 0.7884\n", - "Epoch 00052: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5681 - accuracy: 0.7915 - val_loss: 0.3070 - val_accuracy: 0.9569\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 53/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5480 - accuracy: 0.7966\n", - "Epoch 00053: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5476 - accuracy: 0.7983 - val_loss: 0.3045 - val_accuracy: 0.9577\n", - "Epoch 54/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5580 - accuracy: 0.7922\n", - "Epoch 00054: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5476 - accuracy: 0.7931 - val_loss: 0.3040 - val_accuracy: 0.9577\n", - "Epoch 55/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.5455 - accuracy: 0.7933\n", - "Epoch 00055: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5455 - accuracy: 0.7933 - val_loss: 0.3011 - val_accuracy: 0.9554\n", - "Epoch 56/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5667 - accuracy: 0.7822\n", - "Epoch 00056: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5651 - accuracy: 0.7858 - val_loss: 0.2987 - val_accuracy: 0.9554\n", - "Epoch 57/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5463 - accuracy: 0.7900\n", - "Epoch 00057: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5576 - accuracy: 0.7878 - val_loss: 0.3000 - val_accuracy: 0.9592\n", - "Epoch 58/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.5439 - accuracy: 0.7958\n", - "Epoch 00058: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5439 - accuracy: 0.7958 - val_loss: 0.2951 - val_accuracy: 0.9592\n", - "Epoch 59/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5378 - accuracy: 0.8012\n", - "Epoch 00059: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5442 - accuracy: 0.7988 - val_loss: 0.2946 - val_accuracy: 0.9622\n", - "Epoch 60/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5143 - accuracy: 0.8103\n", - "Epoch 00060: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5228 - accuracy: 0.8074 - val_loss: 0.2902 - val_accuracy: 0.9600\n", - "Epoch 61/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5534 - accuracy: 0.7866\n", - "Epoch 00061: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5451 - accuracy: 0.7903 - val_loss: 0.2894 - val_accuracy: 0.9592\n", - "Epoch 62/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.5149 - accuracy: 0.8061\n", - "Epoch 00062: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.5206 - accuracy: 0.8064 - val_loss: 0.2887 - val_accuracy: 0.9600\n", - "Epoch 63/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.5289 - accuracy: 0.7966\n", - "Epoch 00063: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5304 - accuracy: 0.7953 - val_loss: 0.2851 - val_accuracy: 0.9569\n", - "Epoch 64/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.5416 - accuracy: 0.7953\n", - "Epoch 00064: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5416 - accuracy: 0.7953 - val_loss: 0.2861 - val_accuracy: 0.9592\n", - "Epoch 65/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5304 - accuracy: 0.7947\n", - "Epoch 00065: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5350 - accuracy: 0.7966 - val_loss: 0.2838 - val_accuracy: 0.9585\n", - "Epoch 66/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.5162 - accuracy: 0.8056\n", - "Epoch 00066: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5162 - accuracy: 0.8056 - val_loss: 0.2845 - val_accuracy: 0.9600\n", - "Epoch 67/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.5406 - accuracy: 0.7944\n", - "Epoch 00067: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5405 - accuracy: 0.7943 - val_loss: 0.2809 - val_accuracy: 0.9607\n", - "Epoch 68/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5099 - accuracy: 0.8081\n", - "Epoch 00068: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5115 - accuracy: 0.8069 - val_loss: 0.2798 - val_accuracy: 0.9600\n", - "Epoch 69/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.5113 - accuracy: 0.8064\n", - "Epoch 00069: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.5164 - accuracy: 0.8026 - val_loss: 0.2810 - val_accuracy: 0.9592\n", - "Epoch 70/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5161 - accuracy: 0.8028\n", - "Epoch 00070: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5149 - accuracy: 0.8029 - val_loss: 0.2806 - val_accuracy: 0.9600\n", - "Epoch 71/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5159 - accuracy: 0.8138\n", - "Epoch 00071: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5198 - accuracy: 0.8104 - val_loss: 0.2794 - val_accuracy: 0.9577\n", - "Epoch 72/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4899 - accuracy: 0.8138\n", - "Epoch 00072: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4985 - accuracy: 0.8129 - val_loss: 0.2775 - val_accuracy: 0.9592\n", - "Epoch 73/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5159 - accuracy: 0.8109\n", - "Epoch 00073: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5128 - accuracy: 0.8104 - val_loss: 0.2789 - val_accuracy: 0.9592\n", - "Epoch 74/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.5224 - accuracy: 0.8077\n", - "Epoch 00074: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.5225 - accuracy: 0.8077 - val_loss: 0.2753 - val_accuracy: 0.9600\n", - "Epoch 75/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5109 - accuracy: 0.8147\n", - "Epoch 00075: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5102 - accuracy: 0.8134 - val_loss: 0.2728 - val_accuracy: 0.9600\n", - "Epoch 76/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.5054 - accuracy: 0.8116\n", - "Epoch 00076: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.5093 - accuracy: 0.8079 - val_loss: 0.2720 - val_accuracy: 0.9600\n", - "Epoch 77/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4998 - accuracy: 0.8141\n", - "Epoch 00077: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5006 - accuracy: 0.8119 - val_loss: 0.2702 - val_accuracy: 0.9585\n", - "Epoch 78/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5134 - accuracy: 0.8106\n", - "Epoch 00078: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5041 - accuracy: 0.8155 - val_loss: 0.2721 - val_accuracy: 0.9600\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 79/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.5063 - accuracy: 0.8122\n", - "Epoch 00079: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5016 - accuracy: 0.8099 - val_loss: 0.2682 - val_accuracy: 0.9600\n", - "Epoch 80/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4965 - accuracy: 0.8166\n", - "Epoch 00080: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4887 - accuracy: 0.8200 - val_loss: 0.2658 - val_accuracy: 0.9600\n", - "Epoch 81/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4992 - accuracy: 0.8169\n", - "Epoch 00081: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4975 - accuracy: 0.8150 - val_loss: 0.2640 - val_accuracy: 0.9569\n", - "Epoch 82/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4821 - accuracy: 0.8247\n", - "Epoch 00082: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4789 - accuracy: 0.8253 - val_loss: 0.2617 - val_accuracy: 0.9569\n", - "Epoch 83/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4900 - accuracy: 0.8181\n", - "Epoch 00083: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4862 - accuracy: 0.8200 - val_loss: 0.2601 - val_accuracy: 0.9569\n", - "Epoch 84/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.5119 - accuracy: 0.8094\n", - "Epoch 00084: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.5119 - accuracy: 0.8094 - val_loss: 0.2598 - val_accuracy: 0.9577\n", - "Epoch 85/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4991 - accuracy: 0.8095\n", - "Epoch 00085: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4953 - accuracy: 0.8142 - val_loss: 0.2621 - val_accuracy: 0.9592\n", - "Epoch 86/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4927 - accuracy: 0.8175\n", - "Epoch 00086: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4987 - accuracy: 0.8117 - val_loss: 0.2577 - val_accuracy: 0.9569\n", - "Epoch 87/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.5016 - accuracy: 0.8131\n", - "Epoch 00087: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.5003 - accuracy: 0.8114 - val_loss: 0.2605 - val_accuracy: 0.9569\n", - "Epoch 88/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4815 - accuracy: 0.8188\n", - "Epoch 00088: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4806 - accuracy: 0.8205 - val_loss: 0.2572 - val_accuracy: 0.9569\n", - "Epoch 89/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4686 - accuracy: 0.8244\n", - "Epoch 00089: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4705 - accuracy: 0.8230 - val_loss: 0.2551 - val_accuracy: 0.9577\n", - "Epoch 90/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.5002 - accuracy: 0.8131\n", - "Epoch 00090: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4959 - accuracy: 0.8162 - val_loss: 0.2547 - val_accuracy: 0.9569\n", - "Epoch 91/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4894 - accuracy: 0.8159\n", - "Epoch 00091: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4848 - accuracy: 0.8192 - val_loss: 0.2544 - val_accuracy: 0.9585\n", - "Epoch 92/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4848 - accuracy: 0.8209\n", - "Epoch 00092: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4804 - accuracy: 0.8245 - val_loss: 0.2515 - val_accuracy: 0.9577\n", - "Epoch 93/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4998 - accuracy: 0.8116\n", - "Epoch 00093: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4910 - accuracy: 0.8122 - val_loss: 0.2546 - val_accuracy: 0.9600\n", - "Epoch 94/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4816 - accuracy: 0.8194\n", - "Epoch 00094: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4801 - accuracy: 0.8200 - val_loss: 0.2512 - val_accuracy: 0.9607\n", - "Epoch 95/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4954 - accuracy: 0.8239\n", - "Epoch 00095: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4861 - accuracy: 0.8243 - val_loss: 0.2509 - val_accuracy: 0.9607\n", - "Epoch 96/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.4762 - accuracy: 0.8186\n", - "Epoch 00096: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4739 - accuracy: 0.8197 - val_loss: 0.2487 - val_accuracy: 0.9592\n", - "Epoch 97/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4780 - accuracy: 0.8222\n", - "Epoch 00097: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4723 - accuracy: 0.8235 - val_loss: 0.2464 - val_accuracy: 0.9585\n", - "Epoch 98/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.4746 - accuracy: 0.8239\n", - "Epoch 00098: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4751 - accuracy: 0.8258 - val_loss: 0.2460 - val_accuracy: 0.9600\n", - "Epoch 99/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.4791 - accuracy: 0.8198\n", - "Epoch 00099: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4841 - accuracy: 0.8165 - val_loss: 0.2466 - val_accuracy: 0.9600\n", - "Epoch 100/1000\n", - "23/32 [====================>.........] - ETA: 0s - loss: 0.4916 - accuracy: 0.8142\n", - "Epoch 00100: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.4755 - accuracy: 0.8240 - val_loss: 0.2439 - val_accuracy: 0.9592\n", - "Epoch 101/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4731 - accuracy: 0.8285\n", - "Epoch 00101: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4731 - accuracy: 0.8285 - val_loss: 0.2438 - val_accuracy: 0.9585\n", - "Epoch 102/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4815 - accuracy: 0.8200\n", - "Epoch 00102: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4865 - accuracy: 0.8207 - val_loss: 0.2436 - val_accuracy: 0.9592\n", - "Epoch 103/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4595 - accuracy: 0.8338\n", - "Epoch 00103: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4699 - accuracy: 0.8293 - val_loss: 0.2447 - val_accuracy: 0.9577\n", - "Epoch 104/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4708 - accuracy: 0.8284\n", - "Epoch 00104: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4684 - accuracy: 0.8278 - val_loss: 0.2446 - val_accuracy: 0.9562\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 105/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4843 - accuracy: 0.8194\n", - "Epoch 00105: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4775 - accuracy: 0.8207 - val_loss: 0.2425 - val_accuracy: 0.9569\n", - "Epoch 106/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4649 - accuracy: 0.8291\n", - "Epoch 00106: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4692 - accuracy: 0.8293 - val_loss: 0.2411 - val_accuracy: 0.9585\n", - "Epoch 107/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4895 - accuracy: 0.8244\n", - "Epoch 00107: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4843 - accuracy: 0.8253 - val_loss: 0.2416 - val_accuracy: 0.9569\n", - "Epoch 108/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.4617 - accuracy: 0.8294\n", - "Epoch 00108: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.4617 - accuracy: 0.8293 - val_loss: 0.2388 - val_accuracy: 0.9569\n", - "Epoch 109/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4640 - accuracy: 0.8273\n", - "Epoch 00109: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4666 - accuracy: 0.8253 - val_loss: 0.2393 - val_accuracy: 0.9569\n", - "Epoch 110/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4651 - accuracy: 0.8335\n", - "Epoch 00110: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4697 - accuracy: 0.8318 - val_loss: 0.2385 - val_accuracy: 0.9577\n", - "Epoch 111/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4739 - accuracy: 0.8309\n", - "Epoch 00111: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4792 - accuracy: 0.8248 - val_loss: 0.2364 - val_accuracy: 0.9577\n", - "Epoch 112/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4624 - accuracy: 0.8248\n", - "Epoch 00112: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4659 - accuracy: 0.8230 - val_loss: 0.2362 - val_accuracy: 0.9569\n", - "Epoch 113/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4403 - accuracy: 0.8400\n", - "Epoch 00113: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4432 - accuracy: 0.8386 - val_loss: 0.2324 - val_accuracy: 0.9577\n", - "Epoch 114/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4608 - accuracy: 0.8354\n", - "Epoch 00114: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4623 - accuracy: 0.8353 - val_loss: 0.2309 - val_accuracy: 0.9607\n", - "Epoch 115/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4641 - accuracy: 0.8359\n", - "Epoch 00115: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4585 - accuracy: 0.8376 - val_loss: 0.2295 - val_accuracy: 0.9585\n", - "Epoch 116/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4690 - accuracy: 0.8319\n", - "Epoch 00116: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4704 - accuracy: 0.8318 - val_loss: 0.2320 - val_accuracy: 0.9592\n", - "Epoch 117/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4509 - accuracy: 0.8371\n", - "Epoch 00117: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4509 - accuracy: 0.8371 - val_loss: 0.2293 - val_accuracy: 0.9585\n", - "Epoch 118/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4597 - accuracy: 0.8323\n", - "Epoch 00118: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4597 - accuracy: 0.8323 - val_loss: 0.2303 - val_accuracy: 0.9577\n", - "Epoch 119/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4703 - accuracy: 0.8372\n", - "Epoch 00119: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4568 - accuracy: 0.8424 - val_loss: 0.2282 - val_accuracy: 0.9569\n", - "Epoch 120/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4411 - accuracy: 0.8400\n", - "Epoch 00120: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4417 - accuracy: 0.8351 - val_loss: 0.2253 - val_accuracy: 0.9577\n", - "Epoch 121/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4730 - accuracy: 0.8220\n", - "Epoch 00121: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4674 - accuracy: 0.8253 - val_loss: 0.2264 - val_accuracy: 0.9585\n", - "Epoch 122/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4386 - accuracy: 0.8391\n", - "Epoch 00122: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4471 - accuracy: 0.8364 - val_loss: 0.2233 - val_accuracy: 0.9585\n", - "Epoch 123/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4318 - accuracy: 0.8409\n", - "Epoch 00123: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4262 - accuracy: 0.8429 - val_loss: 0.2233 - val_accuracy: 0.9562\n", - "Epoch 124/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4740 - accuracy: 0.8319\n", - "Epoch 00124: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.4678 - accuracy: 0.8336 - val_loss: 0.2233 - val_accuracy: 0.9554\n", - "Epoch 125/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4577 - accuracy: 0.8267\n", - "Epoch 00125: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4563 - accuracy: 0.8283 - val_loss: 0.2235 - val_accuracy: 0.9569\n", - "Epoch 126/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4617 - accuracy: 0.8331\n", - "Epoch 00126: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4529 - accuracy: 0.8336 - val_loss: 0.2229 - val_accuracy: 0.9569\n", - "Epoch 127/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4534 - accuracy: 0.8392\n", - "Epoch 00127: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4512 - accuracy: 0.8416 - val_loss: 0.2239 - val_accuracy: 0.9577\n", - "Epoch 128/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4352 - accuracy: 0.8410\n", - "Epoch 00128: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4357 - accuracy: 0.8411 - val_loss: 0.2234 - val_accuracy: 0.9577\n", - "Epoch 129/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4300 - accuracy: 0.8425\n", - "Epoch 00129: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4386 - accuracy: 0.8416 - val_loss: 0.2206 - val_accuracy: 0.9607\n", - "Epoch 130/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4515 - accuracy: 0.8293\n", - "Epoch 00130: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4515 - accuracy: 0.8293 - val_loss: 0.2227 - val_accuracy: 0.9577\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 131/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4412 - accuracy: 0.8319\n", - "Epoch 00131: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4465 - accuracy: 0.8328 - val_loss: 0.2240 - val_accuracy: 0.9585\n", - "Epoch 132/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4451 - accuracy: 0.8441\n", - "Epoch 00132: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4543 - accuracy: 0.8381 - val_loss: 0.2201 - val_accuracy: 0.9600\n", - "Epoch 133/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4400 - accuracy: 0.8350\n", - "Epoch 00133: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4446 - accuracy: 0.8351 - val_loss: 0.2192 - val_accuracy: 0.9577\n", - "Epoch 134/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4566 - accuracy: 0.8434\n", - "Epoch 00134: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4601 - accuracy: 0.8386 - val_loss: 0.2203 - val_accuracy: 0.9585\n", - "Epoch 135/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4525 - accuracy: 0.8303\n", - "Epoch 00135: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4485 - accuracy: 0.8316 - val_loss: 0.2199 - val_accuracy: 0.9592\n", - "Epoch 136/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4410 - accuracy: 0.8388\n", - "Epoch 00136: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4423 - accuracy: 0.8356 - val_loss: 0.2172 - val_accuracy: 0.9592\n", - "Epoch 137/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4492 - accuracy: 0.8409\n", - "Epoch 00137: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4459 - accuracy: 0.8414 - val_loss: 0.2194 - val_accuracy: 0.9585\n", - "Epoch 138/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4431 - accuracy: 0.8413\n", - "Epoch 00138: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4336 - accuracy: 0.8447 - val_loss: 0.2201 - val_accuracy: 0.9592\n", - "Epoch 139/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4484 - accuracy: 0.8419\n", - "Epoch 00139: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4490 - accuracy: 0.8444 - val_loss: 0.2159 - val_accuracy: 0.9615\n", - "Epoch 140/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4594 - accuracy: 0.8302\n", - "Epoch 00140: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4550 - accuracy: 0.8336 - val_loss: 0.2190 - val_accuracy: 0.9592\n", - "Epoch 141/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4514 - accuracy: 0.8311\n", - "Epoch 00141: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4343 - accuracy: 0.8366 - val_loss: 0.2177 - val_accuracy: 0.9615\n", - "Epoch 142/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4508 - accuracy: 0.8414\n", - "Epoch 00142: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4491 - accuracy: 0.8391 - val_loss: 0.2159 - val_accuracy: 0.9622\n", - "Epoch 143/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4407 - accuracy: 0.8394\n", - "Epoch 00143: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.4407 - accuracy: 0.8394 - val_loss: 0.2144 - val_accuracy: 0.9607\n", - "Epoch 144/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4235 - accuracy: 0.8409\n", - "Epoch 00144: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.4235 - accuracy: 0.8409 - val_loss: 0.2124 - val_accuracy: 0.9607\n", - "Epoch 145/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4487 - accuracy: 0.8388\n", - "Epoch 00145: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4463 - accuracy: 0.8391 - val_loss: 0.2112 - val_accuracy: 0.9622\n", - "Epoch 146/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.4367 - accuracy: 0.8411\n", - "Epoch 00146: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4410 - accuracy: 0.8394 - val_loss: 0.2126 - val_accuracy: 0.9615\n", - "Epoch 147/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4365 - accuracy: 0.8409\n", - "Epoch 00147: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.4375 - accuracy: 0.8396 - val_loss: 0.2132 - val_accuracy: 0.9622\n", - "Epoch 148/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4563 - accuracy: 0.8417\n", - "Epoch 00148: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4547 - accuracy: 0.8406 - val_loss: 0.2151 - val_accuracy: 0.9615\n", - "Epoch 149/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.4672 - accuracy: 0.8306\n", - "Epoch 00149: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4669 - accuracy: 0.8308 - val_loss: 0.2131 - val_accuracy: 0.9577\n", - "Epoch 150/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4482 - accuracy: 0.8469\n", - "Epoch 00150: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4396 - accuracy: 0.8447 - val_loss: 0.2116 - val_accuracy: 0.9585\n", - "Epoch 151/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4280 - accuracy: 0.8394\n", - "Epoch 00151: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4341 - accuracy: 0.8371 - val_loss: 0.2113 - val_accuracy: 0.9637\n", - "Epoch 152/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.4177 - accuracy: 0.8463\n", - "Epoch 00152: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4176 - accuracy: 0.8459 - val_loss: 0.2090 - val_accuracy: 0.9607\n", - "Epoch 153/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4303 - accuracy: 0.8438\n", - "Epoch 00153: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4330 - accuracy: 0.8429 - val_loss: 0.2087 - val_accuracy: 0.9600\n", - "Epoch 154/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4360 - accuracy: 0.8375\n", - "Epoch 00154: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4398 - accuracy: 0.8384 - val_loss: 0.2086 - val_accuracy: 0.9622\n", - "Epoch 155/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4393 - accuracy: 0.8413\n", - "Epoch 00155: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4368 - accuracy: 0.8419 - val_loss: 0.2112 - val_accuracy: 0.9615\n", - "Epoch 156/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4296 - accuracy: 0.8428\n", - "Epoch 00156: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4419 - accuracy: 0.8346 - val_loss: 0.2085 - val_accuracy: 0.9615\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 157/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4322 - accuracy: 0.8384\n", - "Epoch 00157: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4319 - accuracy: 0.8404 - val_loss: 0.2081 - val_accuracy: 0.9615\n", - "Epoch 158/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4179 - accuracy: 0.8522\n", - "Epoch 00158: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4218 - accuracy: 0.8482 - val_loss: 0.2074 - val_accuracy: 0.9622\n", - "Epoch 159/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4368 - accuracy: 0.8450\n", - "Epoch 00159: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4420 - accuracy: 0.8426 - val_loss: 0.2090 - val_accuracy: 0.9637\n", - "Epoch 160/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4331 - accuracy: 0.8431\n", - "Epoch 00160: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4306 - accuracy: 0.8469 - val_loss: 0.2087 - val_accuracy: 0.9645\n", - "Epoch 161/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4576 - accuracy: 0.8400\n", - "Epoch 00161: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4504 - accuracy: 0.8404 - val_loss: 0.2059 - val_accuracy: 0.9645\n", - "Epoch 162/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4418 - accuracy: 0.8419\n", - "Epoch 00162: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4515 - accuracy: 0.8401 - val_loss: 0.2073 - val_accuracy: 0.9645\n", - "Epoch 163/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4191 - accuracy: 0.8444\n", - "Epoch 00163: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4207 - accuracy: 0.8477 - val_loss: 0.2066 - val_accuracy: 0.9615\n", - "Epoch 164/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4432 - accuracy: 0.8450\n", - "Epoch 00164: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4362 - accuracy: 0.8469 - val_loss: 0.2086 - val_accuracy: 0.9630\n", - "Epoch 165/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4218 - accuracy: 0.8453\n", - "Epoch 00165: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4329 - accuracy: 0.8421 - val_loss: 0.2062 - val_accuracy: 0.9637\n", - "Epoch 166/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4230 - accuracy: 0.8481\n", - "Epoch 00166: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4261 - accuracy: 0.8459 - val_loss: 0.2097 - val_accuracy: 0.9637\n", - "Epoch 167/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4407 - accuracy: 0.8388\n", - "Epoch 00167: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4283 - accuracy: 0.8416 - val_loss: 0.2070 - val_accuracy: 0.9645\n", - "Epoch 168/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4286 - accuracy: 0.8407\n", - "Epoch 00168: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4270 - accuracy: 0.8411 - val_loss: 0.2038 - val_accuracy: 0.9653\n", - "Epoch 169/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4126 - accuracy: 0.8450\n", - "Epoch 00169: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4118 - accuracy: 0.8457 - val_loss: 0.2016 - val_accuracy: 0.9630\n", - "Epoch 170/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4269 - accuracy: 0.8375\n", - "Epoch 00170: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4304 - accuracy: 0.8364 - val_loss: 0.2017 - val_accuracy: 0.9653\n", - "Epoch 171/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4282 - accuracy: 0.8419\n", - "Epoch 00171: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4291 - accuracy: 0.8406 - val_loss: 0.2011 - val_accuracy: 0.9660\n", - "Epoch 172/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.4177 - accuracy: 0.8453\n", - "Epoch 00172: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4199 - accuracy: 0.8449 - val_loss: 0.1993 - val_accuracy: 0.9653\n", - "Epoch 173/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3980 - accuracy: 0.8492\n", - "Epoch 00173: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.4059 - accuracy: 0.8439 - val_loss: 0.1997 - val_accuracy: 0.9653\n", - "Epoch 174/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4266 - accuracy: 0.8395\n", - "Epoch 00174: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4194 - accuracy: 0.8429 - val_loss: 0.1983 - val_accuracy: 0.9660\n", - "Epoch 175/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4328 - accuracy: 0.8369\n", - "Epoch 00175: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.4328 - accuracy: 0.8369 - val_loss: 0.2009 - val_accuracy: 0.9660\n", - "Epoch 176/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4045 - accuracy: 0.8562\n", - "Epoch 00176: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.4045 - accuracy: 0.8562 - val_loss: 0.1980 - val_accuracy: 0.9645\n", - "Epoch 177/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3965 - accuracy: 0.8569\n", - "Epoch 00177: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4061 - accuracy: 0.8507 - val_loss: 0.1951 - val_accuracy: 0.9653\n", - "Epoch 178/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4231 - accuracy: 0.8468\n", - "Epoch 00178: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4147 - accuracy: 0.8499 - val_loss: 0.1957 - val_accuracy: 0.9660\n", - "Epoch 179/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4098 - accuracy: 0.8487\n", - "Epoch 00179: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4150 - accuracy: 0.8479 - val_loss: 0.1940 - val_accuracy: 0.9675\n", - "Epoch 180/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3973 - accuracy: 0.8561\n", - "Epoch 00180: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3999 - accuracy: 0.8573 - val_loss: 0.1942 - val_accuracy: 0.9668\n", - "Epoch 181/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4120 - accuracy: 0.8540\n", - "Epoch 00181: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4055 - accuracy: 0.8562 - val_loss: 0.1932 - val_accuracy: 0.9668\n", - "Epoch 182/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4321 - accuracy: 0.8457\n", - "Epoch 00182: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4321 - accuracy: 0.8457 - val_loss: 0.1927 - val_accuracy: 0.9660\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 183/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4351 - accuracy: 0.8459\n", - "Epoch 00183: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4335 - accuracy: 0.8482 - val_loss: 0.1944 - val_accuracy: 0.9645\n", - "Epoch 184/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4186 - accuracy: 0.8422\n", - "Epoch 00184: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4222 - accuracy: 0.8454 - val_loss: 0.1945 - val_accuracy: 0.9645\n", - "Epoch 185/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4106 - accuracy: 0.8459\n", - "Epoch 00185: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4106 - accuracy: 0.8459 - val_loss: 0.1939 - val_accuracy: 0.9660\n", - "Epoch 186/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4146 - accuracy: 0.8478\n", - "Epoch 00186: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4052 - accuracy: 0.8502 - val_loss: 0.1958 - val_accuracy: 0.9653\n", - "Epoch 187/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4220 - accuracy: 0.8566\n", - "Epoch 00187: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4220 - accuracy: 0.8575 - val_loss: 0.1955 - val_accuracy: 0.9660\n", - "Epoch 188/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4061 - accuracy: 0.8562\n", - "Epoch 00188: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4066 - accuracy: 0.8552 - val_loss: 0.1928 - val_accuracy: 0.9645\n", - "Epoch 189/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4161 - accuracy: 0.8486\n", - "Epoch 00189: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4174 - accuracy: 0.8459 - val_loss: 0.1945 - val_accuracy: 0.9653\n", - "Epoch 190/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3969 - accuracy: 0.8597\n", - "Epoch 00190: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4110 - accuracy: 0.8580 - val_loss: 0.1907 - val_accuracy: 0.9645\n", - "Epoch 191/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4214 - accuracy: 0.8432\n", - "Epoch 00191: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4214 - accuracy: 0.8432 - val_loss: 0.1925 - val_accuracy: 0.9630\n", - "Epoch 192/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4095 - accuracy: 0.8471\n", - "Epoch 00192: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4095 - accuracy: 0.8464 - val_loss: 0.1931 - val_accuracy: 0.9637\n", - "Epoch 193/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4241 - accuracy: 0.8492\n", - "Epoch 00193: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4146 - accuracy: 0.8510 - val_loss: 0.1926 - val_accuracy: 0.9645\n", - "Epoch 194/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4242 - accuracy: 0.8520\n", - "Epoch 00194: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4242 - accuracy: 0.8520 - val_loss: 0.1934 - val_accuracy: 0.9630\n", - "Epoch 195/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4063 - accuracy: 0.8505\n", - "Epoch 00195: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4063 - accuracy: 0.8505 - val_loss: 0.1918 - val_accuracy: 0.9637\n", - "Epoch 196/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4147 - accuracy: 0.8438\n", - "Epoch 00196: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4158 - accuracy: 0.8419 - val_loss: 0.1922 - val_accuracy: 0.9653\n", - "Epoch 197/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4135 - accuracy: 0.8475\n", - "Epoch 00197: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4124 - accuracy: 0.8502 - val_loss: 0.1919 - val_accuracy: 0.9660\n", - "Epoch 198/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4024 - accuracy: 0.8556\n", - "Epoch 00198: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4041 - accuracy: 0.8525 - val_loss: 0.1923 - val_accuracy: 0.9653\n", - "Epoch 199/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4030 - accuracy: 0.8562\n", - "Epoch 00199: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4089 - accuracy: 0.8560 - val_loss: 0.1907 - val_accuracy: 0.9660\n", - "Epoch 200/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.4057 - accuracy: 0.8491\n", - "Epoch 00200: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4102 - accuracy: 0.8474 - val_loss: 0.1917 - val_accuracy: 0.9653\n", - "Epoch 201/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4163 - accuracy: 0.8559\n", - "Epoch 00201: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4107 - accuracy: 0.8573 - val_loss: 0.1913 - val_accuracy: 0.9660\n", - "Epoch 202/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4054 - accuracy: 0.8503\n", - "Epoch 00202: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4091 - accuracy: 0.8482 - val_loss: 0.1881 - val_accuracy: 0.9668\n", - "Epoch 203/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4213 - accuracy: 0.8512\n", - "Epoch 00203: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4200 - accuracy: 0.8527 - val_loss: 0.1891 - val_accuracy: 0.9668\n", - "Epoch 204/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4040 - accuracy: 0.8544\n", - "Epoch 00204: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3927 - accuracy: 0.8588 - val_loss: 0.1875 - val_accuracy: 0.9668\n", - "Epoch 205/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.4046 - accuracy: 0.8454\n", - "Epoch 00205: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4003 - accuracy: 0.8469 - val_loss: 0.1835 - val_accuracy: 0.9660\n", - "Epoch 206/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3951 - accuracy: 0.8491\n", - "Epoch 00206: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4090 - accuracy: 0.8447 - val_loss: 0.1851 - val_accuracy: 0.9668\n", - "Epoch 207/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4145 - accuracy: 0.8469\n", - "Epoch 00207: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4180 - accuracy: 0.8439 - val_loss: 0.1863 - val_accuracy: 0.9675\n", - "Epoch 208/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4117 - accuracy: 0.8517\n", - "Epoch 00208: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4117 - accuracy: 0.8517 - val_loss: 0.1864 - val_accuracy: 0.9645\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 209/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4140 - accuracy: 0.8407\n", - "Epoch 00209: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4080 - accuracy: 0.8444 - val_loss: 0.1874 - val_accuracy: 0.9645\n", - "Epoch 210/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.4091 - accuracy: 0.8567\n", - "Epoch 00210: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4091 - accuracy: 0.8567 - val_loss: 0.1879 - val_accuracy: 0.9683\n", - "Epoch 211/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.4135 - accuracy: 0.8418\n", - "Epoch 00211: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4142 - accuracy: 0.8429 - val_loss: 0.1873 - val_accuracy: 0.9675\n", - "Epoch 212/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3887 - accuracy: 0.8600\n", - "Epoch 00212: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3889 - accuracy: 0.8580 - val_loss: 0.1868 - val_accuracy: 0.9645\n", - "Epoch 213/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3821 - accuracy: 0.8537\n", - "Epoch 00213: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3945 - accuracy: 0.8494 - val_loss: 0.1874 - val_accuracy: 0.9645\n", - "Epoch 214/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3953 - accuracy: 0.8531\n", - "Epoch 00214: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3957 - accuracy: 0.8535 - val_loss: 0.1881 - val_accuracy: 0.9645\n", - "Epoch 215/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3830 - accuracy: 0.8603\n", - "Epoch 00215: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3836 - accuracy: 0.8630 - val_loss: 0.1843 - val_accuracy: 0.9668\n", - "Epoch 216/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3839 - accuracy: 0.8588\n", - "Epoch 00216: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3831 - accuracy: 0.8623 - val_loss: 0.1822 - val_accuracy: 0.9668\n", - "Epoch 217/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3974 - accuracy: 0.8509\n", - "Epoch 00217: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3966 - accuracy: 0.8525 - val_loss: 0.1835 - val_accuracy: 0.9668\n", - "Epoch 218/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3907 - accuracy: 0.8572\n", - "Epoch 00218: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3962 - accuracy: 0.8550 - val_loss: 0.1864 - val_accuracy: 0.9690\n", - "Epoch 219/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3961 - accuracy: 0.8597\n", - "Epoch 00219: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3976 - accuracy: 0.8575 - val_loss: 0.1851 - val_accuracy: 0.9668\n", - "Epoch 220/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.4082 - accuracy: 0.8530\n", - "Epoch 00220: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4082 - accuracy: 0.8520 - val_loss: 0.1877 - val_accuracy: 0.9653\n", - "Epoch 221/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3963 - accuracy: 0.8588\n", - "Epoch 00221: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3989 - accuracy: 0.8562 - val_loss: 0.1850 - val_accuracy: 0.9675\n", - "Epoch 222/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3959 - accuracy: 0.8491\n", - "Epoch 00222: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4026 - accuracy: 0.8464 - val_loss: 0.1819 - val_accuracy: 0.9675\n", - "Epoch 223/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3829 - accuracy: 0.8576\n", - "Epoch 00223: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3892 - accuracy: 0.8557 - val_loss: 0.1818 - val_accuracy: 0.9683\n", - "Epoch 224/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4184 - accuracy: 0.8491\n", - "Epoch 00224: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4080 - accuracy: 0.8537 - val_loss: 0.1834 - val_accuracy: 0.9675\n", - "Epoch 225/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3915 - accuracy: 0.8575\n", - "Epoch 00225: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3959 - accuracy: 0.8567 - val_loss: 0.1817 - val_accuracy: 0.9683\n", - "Epoch 226/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3692 - accuracy: 0.8616\n", - "Epoch 00226: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3785 - accuracy: 0.8603 - val_loss: 0.1795 - val_accuracy: 0.9660\n", - "Epoch 227/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3888 - accuracy: 0.8646\n", - "Epoch 00227: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3913 - accuracy: 0.8628 - val_loss: 0.1802 - val_accuracy: 0.9698\n", - "Epoch 228/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3877 - accuracy: 0.8622\n", - "Epoch 00228: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3884 - accuracy: 0.8630 - val_loss: 0.1800 - val_accuracy: 0.9690\n", - "Epoch 229/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3978 - accuracy: 0.8568\n", - "Epoch 00229: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3927 - accuracy: 0.8565 - val_loss: 0.1780 - val_accuracy: 0.9698\n", - "Epoch 230/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4260 - accuracy: 0.8434\n", - "Epoch 00230: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4161 - accuracy: 0.8487 - val_loss: 0.1788 - val_accuracy: 0.9690\n", - "Epoch 231/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4188 - accuracy: 0.8486\n", - "Epoch 00231: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4204 - accuracy: 0.8484 - val_loss: 0.1831 - val_accuracy: 0.9683\n", - "Epoch 232/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3895 - accuracy: 0.8556\n", - "Epoch 00232: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4008 - accuracy: 0.8512 - val_loss: 0.1822 - val_accuracy: 0.9690\n", - "Epoch 233/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3864 - accuracy: 0.8555\n", - "Epoch 00233: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3864 - accuracy: 0.8555 - val_loss: 0.1806 - val_accuracy: 0.9683\n", - "Epoch 234/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3975 - accuracy: 0.8547\n", - "Epoch 00234: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3973 - accuracy: 0.8555 - val_loss: 0.1793 - val_accuracy: 0.9675\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 235/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3989 - accuracy: 0.8610\n", - "Epoch 00235: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3989 - accuracy: 0.8610 - val_loss: 0.1768 - val_accuracy: 0.9705\n", - "Epoch 236/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.4107 - accuracy: 0.8539\n", - "Epoch 00236: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.4055 - accuracy: 0.8540 - val_loss: 0.1794 - val_accuracy: 0.9668\n", - "Epoch 237/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3972 - accuracy: 0.8484\n", - "Epoch 00237: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4037 - accuracy: 0.8474 - val_loss: 0.1788 - val_accuracy: 0.9683\n", - "Epoch 238/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4146 - accuracy: 0.8434\n", - "Epoch 00238: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4144 - accuracy: 0.8469 - val_loss: 0.1790 - val_accuracy: 0.9690\n", - "Epoch 239/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3965 - accuracy: 0.8555\n", - "Epoch 00239: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3964 - accuracy: 0.8542 - val_loss: 0.1792 - val_accuracy: 0.9698\n", - "Epoch 240/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3815 - accuracy: 0.8672\n", - "Epoch 00240: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3920 - accuracy: 0.8610 - val_loss: 0.1770 - val_accuracy: 0.9683\n", - "Epoch 241/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3868 - accuracy: 0.8599\n", - "Epoch 00241: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3964 - accuracy: 0.8573 - val_loss: 0.1806 - val_accuracy: 0.9690\n", - "Epoch 242/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3872 - accuracy: 0.8620\n", - "Epoch 00242: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3890 - accuracy: 0.8595 - val_loss: 0.1780 - val_accuracy: 0.9690\n", - "Epoch 243/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4022 - accuracy: 0.8522\n", - "Epoch 00243: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3918 - accuracy: 0.8583 - val_loss: 0.1765 - val_accuracy: 0.9713\n", - "Epoch 244/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.3980 - accuracy: 0.8536\n", - "Epoch 00244: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 9ms/step - loss: 0.3987 - accuracy: 0.8520 - val_loss: 0.1775 - val_accuracy: 0.9713\n", - "Epoch 245/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3966 - accuracy: 0.8546\n", - "Epoch 00245: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3903 - accuracy: 0.8550 - val_loss: 0.1756 - val_accuracy: 0.9713\n", - "Epoch 246/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3880 - accuracy: 0.8686\n", - "Epoch 00246: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3901 - accuracy: 0.8648 - val_loss: 0.1742 - val_accuracy: 0.9690\n", - "Epoch 247/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3851 - accuracy: 0.8569\n", - "Epoch 00247: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3908 - accuracy: 0.8557 - val_loss: 0.1742 - val_accuracy: 0.9675\n", - "Epoch 248/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4120 - accuracy: 0.8512\n", - "Epoch 00248: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4064 - accuracy: 0.8530 - val_loss: 0.1757 - val_accuracy: 0.9690\n", - "Epoch 249/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3972 - accuracy: 0.8585\n", - "Epoch 00249: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3918 - accuracy: 0.8605 - val_loss: 0.1774 - val_accuracy: 0.9668\n", - "Epoch 250/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3972 - accuracy: 0.8530\n", - "Epoch 00250: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3940 - accuracy: 0.8547 - val_loss: 0.1753 - val_accuracy: 0.9690\n", - "Epoch 251/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3748 - accuracy: 0.8619\n", - "Epoch 00251: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3883 - accuracy: 0.8598 - val_loss: 0.1729 - val_accuracy: 0.9690\n", - "Epoch 252/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4063 - accuracy: 0.8534\n", - "Epoch 00252: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4004 - accuracy: 0.8545 - val_loss: 0.1749 - val_accuracy: 0.9690\n", - "Epoch 253/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3931 - accuracy: 0.8569\n", - "Epoch 00253: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3982 - accuracy: 0.8555 - val_loss: 0.1753 - val_accuracy: 0.9683\n", - "Epoch 254/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3887 - accuracy: 0.8602\n", - "Epoch 00254: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3944 - accuracy: 0.8575 - val_loss: 0.1766 - val_accuracy: 0.9705\n", - "Epoch 255/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3992 - accuracy: 0.8653\n", - "Epoch 00255: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3885 - accuracy: 0.8656 - val_loss: 0.1767 - val_accuracy: 0.9675\n", - "Epoch 256/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3829 - accuracy: 0.8591\n", - "Epoch 00256: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3933 - accuracy: 0.8593 - val_loss: 0.1748 - val_accuracy: 0.9705\n", - "Epoch 257/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3618 - accuracy: 0.8720\n", - "Epoch 00257: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3659 - accuracy: 0.8713 - val_loss: 0.1724 - val_accuracy: 0.9705\n", - "Epoch 258/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3713 - accuracy: 0.8669\n", - "Epoch 00258: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3778 - accuracy: 0.8638 - val_loss: 0.1717 - val_accuracy: 0.9690\n", - "Epoch 259/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3893 - accuracy: 0.8609\n", - "Epoch 00259: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3861 - accuracy: 0.8623 - val_loss: 0.1704 - val_accuracy: 0.9653\n", - "Epoch 260/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4058 - accuracy: 0.8541\n", - "Epoch 00260: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4047 - accuracy: 0.8555 - val_loss: 0.1697 - val_accuracy: 0.9698\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 261/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3938 - accuracy: 0.8637\n", - "Epoch 00261: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4018 - accuracy: 0.8595 - val_loss: 0.1723 - val_accuracy: 0.9683\n", - "Epoch 262/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3979 - accuracy: 0.8621\n", - "Epoch 00262: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3969 - accuracy: 0.8610 - val_loss: 0.1716 - val_accuracy: 0.9660\n", - "Epoch 263/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3927 - accuracy: 0.8541\n", - "Epoch 00263: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3899 - accuracy: 0.8552 - val_loss: 0.1736 - val_accuracy: 0.9683\n", - "Epoch 264/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3762 - accuracy: 0.8662\n", - "Epoch 00264: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3780 - accuracy: 0.8643 - val_loss: 0.1716 - val_accuracy: 0.9690\n", - "Epoch 265/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3918 - accuracy: 0.8612\n", - "Epoch 00265: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3974 - accuracy: 0.8578 - val_loss: 0.1706 - val_accuracy: 0.9683\n", - "Epoch 266/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3890 - accuracy: 0.8581\n", - "Epoch 00266: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3820 - accuracy: 0.8618 - val_loss: 0.1705 - val_accuracy: 0.9683\n", - "Epoch 267/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3909 - accuracy: 0.8582\n", - "Epoch 00267: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3994 - accuracy: 0.8532 - val_loss: 0.1732 - val_accuracy: 0.9698\n", - "Epoch 268/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3903 - accuracy: 0.8594\n", - "Epoch 00268: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3876 - accuracy: 0.8615 - val_loss: 0.1714 - val_accuracy: 0.9683\n", - "Epoch 269/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4032 - accuracy: 0.8547\n", - "Epoch 00269: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3948 - accuracy: 0.8580 - val_loss: 0.1709 - val_accuracy: 0.9690\n", - "Epoch 270/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3851 - accuracy: 0.8609\n", - "Epoch 00270: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3878 - accuracy: 0.8598 - val_loss: 0.1708 - val_accuracy: 0.9675\n", - "Epoch 271/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4082 - accuracy: 0.8474\n", - "Epoch 00271: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4066 - accuracy: 0.8494 - val_loss: 0.1715 - val_accuracy: 0.9683\n", - "Epoch 272/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.3856 - accuracy: 0.8574\n", - "Epoch 00272: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3856 - accuracy: 0.8573 - val_loss: 0.1743 - val_accuracy: 0.9698\n", - "Epoch 273/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3818 - accuracy: 0.8650\n", - "Epoch 00273: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3703 - accuracy: 0.8676 - val_loss: 0.1717 - val_accuracy: 0.9675\n", - "Epoch 274/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.4070 - accuracy: 0.8522\n", - "Epoch 00274: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3981 - accuracy: 0.8560 - val_loss: 0.1698 - val_accuracy: 0.9690\n", - "Epoch 275/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3911 - accuracy: 0.8567\n", - "Epoch 00275: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3911 - accuracy: 0.8567 - val_loss: 0.1697 - val_accuracy: 0.9690\n", - "Epoch 276/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3829 - accuracy: 0.8628\n", - "Epoch 00276: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3829 - accuracy: 0.8628 - val_loss: 0.1688 - val_accuracy: 0.9705\n", - "Epoch 277/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3661 - accuracy: 0.8681\n", - "Epoch 00277: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3750 - accuracy: 0.8666 - val_loss: 0.1685 - val_accuracy: 0.9683\n", - "Epoch 278/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.3851 - accuracy: 0.8556\n", - "Epoch 00278: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3849 - accuracy: 0.8557 - val_loss: 0.1695 - val_accuracy: 0.9698\n", - "Epoch 279/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3657 - accuracy: 0.8675\n", - "Epoch 00279: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3664 - accuracy: 0.8661 - val_loss: 0.1672 - val_accuracy: 0.9698\n", - "Epoch 280/1000\n", - "29/32 [==========================>...] - ETA: 0s - loss: 0.3869 - accuracy: 0.8637\n", - "Epoch 00280: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3895 - accuracy: 0.8615 - val_loss: 0.1682 - val_accuracy: 0.9698\n", - "Epoch 281/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3819 - accuracy: 0.8593\n", - "Epoch 00281: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3819 - accuracy: 0.8593 - val_loss: 0.1682 - val_accuracy: 0.9683\n", - "Epoch 282/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3578 - accuracy: 0.8775\n", - "Epoch 00282: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3634 - accuracy: 0.8721 - val_loss: 0.1655 - val_accuracy: 0.9683\n", - "Epoch 283/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3916 - accuracy: 0.8609\n", - "Epoch 00283: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3908 - accuracy: 0.8638 - val_loss: 0.1647 - val_accuracy: 0.9698\n", - "Epoch 284/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3779 - accuracy: 0.8645\n", - "Epoch 00284: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3798 - accuracy: 0.8643 - val_loss: 0.1665 - val_accuracy: 0.9675\n", - "Epoch 285/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3760 - accuracy: 0.8658\n", - "Epoch 00285: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3767 - accuracy: 0.8643 - val_loss: 0.1663 - val_accuracy: 0.9683\n", - "Epoch 286/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3719 - accuracy: 0.8591\n", - "Epoch 00286: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3740 - accuracy: 0.8562 - val_loss: 0.1688 - val_accuracy: 0.9690\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 287/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3942 - accuracy: 0.8609\n", - "Epoch 00287: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3916 - accuracy: 0.8605 - val_loss: 0.1672 - val_accuracy: 0.9675\n", - "Epoch 288/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3862 - accuracy: 0.8577\n", - "Epoch 00288: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3879 - accuracy: 0.8593 - val_loss: 0.1700 - val_accuracy: 0.9690\n", - "Epoch 289/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3733 - accuracy: 0.8625\n", - "Epoch 00289: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3798 - accuracy: 0.8608 - val_loss: 0.1680 - val_accuracy: 0.9698\n", - "Epoch 290/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3767 - accuracy: 0.8641\n", - "Epoch 00290: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3827 - accuracy: 0.8610 - val_loss: 0.1643 - val_accuracy: 0.9683\n", - "Epoch 291/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3873 - accuracy: 0.8625\n", - "Epoch 00291: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3927 - accuracy: 0.8608 - val_loss: 0.1667 - val_accuracy: 0.9675\n", - "Epoch 292/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3734 - accuracy: 0.8606\n", - "Epoch 00292: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3780 - accuracy: 0.8595 - val_loss: 0.1688 - val_accuracy: 0.9653\n", - "Epoch 293/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3803 - accuracy: 0.8641\n", - "Epoch 00293: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3885 - accuracy: 0.8590 - val_loss: 0.1683 - val_accuracy: 0.9660\n", - "Epoch 294/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3849 - accuracy: 0.8585\n", - "Epoch 00294: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3875 - accuracy: 0.8578 - val_loss: 0.1665 - val_accuracy: 0.9683\n", - "Epoch 295/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3917 - accuracy: 0.8544\n", - "Epoch 00295: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3914 - accuracy: 0.8527 - val_loss: 0.1677 - val_accuracy: 0.9675\n", - "Epoch 296/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3881 - accuracy: 0.8603\n", - "Epoch 00296: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3874 - accuracy: 0.8593 - val_loss: 0.1686 - val_accuracy: 0.9690\n", - "Epoch 297/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3823 - accuracy: 0.8588\n", - "Epoch 00297: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3829 - accuracy: 0.8583 - val_loss: 0.1652 - val_accuracy: 0.9675\n", - "Epoch 298/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3711 - accuracy: 0.8606\n", - "Epoch 00298: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3771 - accuracy: 0.8590 - val_loss: 0.1657 - val_accuracy: 0.9675\n", - "Epoch 299/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3764 - accuracy: 0.8600\n", - "Epoch 00299: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3771 - accuracy: 0.8648 - val_loss: 0.1669 - val_accuracy: 0.9698\n", - "Epoch 300/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3796 - accuracy: 0.8602\n", - "Epoch 00300: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3816 - accuracy: 0.8585 - val_loss: 0.1641 - val_accuracy: 0.9675\n", - "Epoch 301/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3891 - accuracy: 0.8635\n", - "Epoch 00301: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3891 - accuracy: 0.8635 - val_loss: 0.1655 - val_accuracy: 0.9683\n", - "Epoch 302/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3829 - accuracy: 0.8567\n", - "Epoch 00302: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3900 - accuracy: 0.8550 - val_loss: 0.1646 - val_accuracy: 0.9698\n", - "Epoch 303/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3580 - accuracy: 0.8634\n", - "Epoch 00303: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3671 - accuracy: 0.8595 - val_loss: 0.1645 - val_accuracy: 0.9690\n", - "Epoch 304/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3653 - accuracy: 0.8642\n", - "Epoch 00304: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3768 - accuracy: 0.8628 - val_loss: 0.1642 - val_accuracy: 0.9675\n", - "Epoch 305/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3804 - accuracy: 0.8576\n", - "Epoch 00305: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3831 - accuracy: 0.8575 - val_loss: 0.1649 - val_accuracy: 0.9675\n", - "Epoch 306/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3689 - accuracy: 0.86 - ETA: 0s - loss: 0.3818 - accuracy: 0.8641\n", - "Epoch 00306: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3771 - accuracy: 0.8648 - val_loss: 0.1658 - val_accuracy: 0.9705\n", - "Epoch 307/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.4086 - accuracy: 0.8466\n", - "Epoch 00307: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4042 - accuracy: 0.8497 - val_loss: 0.1663 - val_accuracy: 0.9690\n", - "Epoch 308/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.4046 - accuracy: 0.8606\n", - "Epoch 00308: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.4043 - accuracy: 0.8608 - val_loss: 0.1667 - val_accuracy: 0.9683\n", - "Epoch 309/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3712 - accuracy: 0.8716\n", - "Epoch 00309: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3728 - accuracy: 0.8683 - val_loss: 0.1658 - val_accuracy: 0.9690\n", - "Epoch 310/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3840 - accuracy: 0.8587\n", - "Epoch 00310: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3871 - accuracy: 0.8580 - val_loss: 0.1650 - val_accuracy: 0.9668\n", - "Epoch 311/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3780 - accuracy: 0.8583\n", - "Epoch 00311: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3780 - accuracy: 0.8583 - val_loss: 0.1625 - val_accuracy: 0.9690\n", - "Epoch 312/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3764 - accuracy: 0.8653\n", - "Epoch 00312: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3791 - accuracy: 0.8620 - val_loss: 0.1642 - val_accuracy: 0.9675\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 313/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3702 - accuracy: 0.8725\n", - "Epoch 00313: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3745 - accuracy: 0.8673 - val_loss: 0.1671 - val_accuracy: 0.9690\n", - "Epoch 314/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3874 - accuracy: 0.8639\n", - "Epoch 00314: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3850 - accuracy: 0.8658 - val_loss: 0.1636 - val_accuracy: 0.9705\n", - "Epoch 315/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3865 - accuracy: 0.8628\n", - "Epoch 00315: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3923 - accuracy: 0.8603 - val_loss: 0.1645 - val_accuracy: 0.9705\n", - "Epoch 316/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3751 - accuracy: 0.8634\n", - "Epoch 00316: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3751 - accuracy: 0.8630 - val_loss: 0.1648 - val_accuracy: 0.9698\n", - "Epoch 317/1000\n", - "27/32 [========================>.....] - ETA: 0s - loss: 0.3950 - accuracy: 0.8576\n", - "Epoch 00317: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3887 - accuracy: 0.8598 - val_loss: 0.1630 - val_accuracy: 0.9690\n", - "Epoch 318/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3613 - accuracy: 0.8684\n", - "Epoch 00318: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3663 - accuracy: 0.8643 - val_loss: 0.1622 - val_accuracy: 0.9675\n", - "Epoch 319/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3709 - accuracy: 0.8633\n", - "Epoch 00319: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3700 - accuracy: 0.8638 - val_loss: 0.1607 - val_accuracy: 0.9690\n", - "Epoch 320/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3685 - accuracy: 0.8594\n", - "Epoch 00320: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3713 - accuracy: 0.8595 - val_loss: 0.1633 - val_accuracy: 0.9660\n", - "Epoch 321/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3802 - accuracy: 0.8613\n", - "Epoch 00321: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3802 - accuracy: 0.8613 - val_loss: 0.1630 - val_accuracy: 0.9683\n", - "Epoch 322/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3504 - accuracy: 0.8694\n", - "Epoch 00322: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3655 - accuracy: 0.8640 - val_loss: 0.1601 - val_accuracy: 0.9690\n", - "Epoch 323/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3704 - accuracy: 0.8603\n", - "Epoch 00323: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3704 - accuracy: 0.8603 - val_loss: 0.1600 - val_accuracy: 0.9675\n", - "Epoch 324/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3675 - accuracy: 0.8608\n", - "Epoch 00324: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3675 - accuracy: 0.8608 - val_loss: 0.1600 - val_accuracy: 0.9668\n", - "Epoch 325/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3735 - accuracy: 0.8602\n", - "Epoch 00325: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3718 - accuracy: 0.8610 - val_loss: 0.1629 - val_accuracy: 0.9690\n", - "Epoch 326/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3637 - accuracy: 0.8631\n", - "Epoch 00326: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3738 - accuracy: 0.8590 - val_loss: 0.1627 - val_accuracy: 0.9705\n", - "Epoch 327/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3681 - accuracy: 0.8691\n", - "Epoch 00327: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3681 - accuracy: 0.8691 - val_loss: 0.1621 - val_accuracy: 0.9683\n", - "Epoch 328/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3702 - accuracy: 0.8628\n", - "Epoch 00328: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3737 - accuracy: 0.8613 - val_loss: 0.1605 - val_accuracy: 0.9675\n", - "Epoch 329/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3924 - accuracy: 0.8602\n", - "Epoch 00329: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3923 - accuracy: 0.8600 - val_loss: 0.1633 - val_accuracy: 0.9705\n", - "Epoch 330/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3870 - accuracy: 0.8509\n", - "Epoch 00330: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3840 - accuracy: 0.8540 - val_loss: 0.1613 - val_accuracy: 0.9713\n", - "Epoch 331/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3729 - accuracy: 0.8641\n", - "Epoch 00331: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3792 - accuracy: 0.8610 - val_loss: 0.1590 - val_accuracy: 0.9705\n", - "Epoch 332/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3809 - accuracy: 0.8634\n", - "Epoch 00332: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3784 - accuracy: 0.8666 - val_loss: 0.1589 - val_accuracy: 0.9705\n", - "Epoch 333/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.3621 - accuracy: 0.8690\n", - "Epoch 00333: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3607 - accuracy: 0.8701 - val_loss: 0.1596 - val_accuracy: 0.9698\n", - "Epoch 334/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3794 - accuracy: 0.8576\n", - "Epoch 00334: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3713 - accuracy: 0.8605 - val_loss: 0.1589 - val_accuracy: 0.9690\n", - "Epoch 335/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3656 - accuracy: 0.8650\n", - "Epoch 00335: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3624 - accuracy: 0.8663 - val_loss: 0.1588 - val_accuracy: 0.9698\n", - "Epoch 336/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3751 - accuracy: 0.8609\n", - "Epoch 00336: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3773 - accuracy: 0.8600 - val_loss: 0.1557 - val_accuracy: 0.9683\n", - "Epoch 337/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.3691 - accuracy: 0.8641\n", - "Epoch 00337: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3670 - accuracy: 0.8653 - val_loss: 0.1569 - val_accuracy: 0.9713\n", - "Epoch 338/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3592 - accuracy: 0.8597\n", - "Epoch 00338: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3578 - accuracy: 0.8598 - val_loss: 0.1565 - val_accuracy: 0.9713\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 339/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3769 - accuracy: 0.8633\n", - "Epoch 00339: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3769 - accuracy: 0.8633 - val_loss: 0.1553 - val_accuracy: 0.9683\n", - "Epoch 340/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3625 - accuracy: 0.8669\n", - "Epoch 00340: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3648 - accuracy: 0.8653 - val_loss: 0.1565 - val_accuracy: 0.9698\n", - "Epoch 341/1000\n", - "26/32 [=======================>......] - ETA: 0s - loss: 0.3605 - accuracy: 0.8669\n", - "Epoch 00341: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3588 - accuracy: 0.8688 - val_loss: 0.1580 - val_accuracy: 0.9675\n", - "Epoch 342/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3730 - accuracy: 0.8650\n", - "Epoch 00342: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3672 - accuracy: 0.8686 - val_loss: 0.1579 - val_accuracy: 0.9675\n", - "Epoch 343/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.3742 - accuracy: 0.8616\n", - "Epoch 00343: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 8ms/step - loss: 0.3748 - accuracy: 0.8615 - val_loss: 0.1585 - val_accuracy: 0.9660\n", - "Epoch 344/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3826 - accuracy: 0.8641\n", - "Epoch 00344: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3755 - accuracy: 0.8668 - val_loss: 0.1620 - val_accuracy: 0.9675\n", - "Epoch 345/1000\n", - "31/32 [============================>.] - ETA: 0s - loss: 0.3707 - accuracy: 0.8644\n", - "Epoch 00345: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3706 - accuracy: 0.8646 - val_loss: 0.1571 - val_accuracy: 0.9698\n", - "Epoch 346/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3740 - accuracy: 0.8537\n", - "Epoch 00346: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3666 - accuracy: 0.8578 - val_loss: 0.1587 - val_accuracy: 0.9683\n", - "Epoch 347/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3786 - accuracy: 0.8583\n", - "Epoch 00347: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3786 - accuracy: 0.8583 - val_loss: 0.1588 - val_accuracy: 0.9698\n", - "Epoch 348/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3673 - accuracy: 0.8694\n", - "Epoch 00348: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3631 - accuracy: 0.8696 - val_loss: 0.1585 - val_accuracy: 0.9690\n", - "Epoch 349/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3887 - accuracy: 0.8557\n", - "Epoch 00349: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3887 - accuracy: 0.8557 - val_loss: 0.1573 - val_accuracy: 0.9690\n", - "Epoch 350/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3770 - accuracy: 0.8575\n", - "Epoch 00350: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3770 - accuracy: 0.8575 - val_loss: 0.1573 - val_accuracy: 0.9683\n", - "Epoch 351/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3831 - accuracy: 0.8603\n", - "Epoch 00351: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3783 - accuracy: 0.8610 - val_loss: 0.1587 - val_accuracy: 0.9683\n", - "Epoch 352/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.3559 - accuracy: 0.8708\n", - "Epoch 00352: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3571 - accuracy: 0.8698 - val_loss: 0.1571 - val_accuracy: 0.9690\n", - "Epoch 353/1000\n", - "30/32 [===========================>..] - ETA: 0s - loss: 0.3684 - accuracy: 0.8641\n", - "Epoch 00353: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3686 - accuracy: 0.8635 - val_loss: 0.1579 - val_accuracy: 0.9690\n", - "Epoch 354/1000\n", - "28/32 [=========================>....] - ETA: 0s - loss: 0.3689 - accuracy: 0.8652\n", - "Epoch 00354: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3731 - accuracy: 0.8633 - val_loss: 0.1575 - val_accuracy: 0.9705\n", - "Epoch 355/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3796 - accuracy: 0.8584\n", - "Epoch 00355: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3829 - accuracy: 0.8588 - val_loss: 0.1584 - val_accuracy: 0.9675\n", - "Epoch 356/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3776 - accuracy: 0.8591\n", - "Epoch 00356: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 12ms/step - loss: 0.3737 - accuracy: 0.8623 - val_loss: 0.1568 - val_accuracy: 0.9675\n", - "Epoch 357/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3539 - accuracy: 0.8697\n", - "Epoch 00357: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 10ms/step - loss: 0.3696 - accuracy: 0.8635 - val_loss: 0.1571 - val_accuracy: 0.9683\n", - "Epoch 358/1000\n", - "32/32 [==============================] - ETA: 0s - loss: 0.3729 - accuracy: 0.8671\n", - "Epoch 00358: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3729 - accuracy: 0.8671 - val_loss: 0.1568 - val_accuracy: 0.9675\n", - "Epoch 359/1000\n", - "25/32 [======================>.......] - ETA: 0s - loss: 0.3893 - accuracy: 0.8666\n", - "Epoch 00359: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", - "32/32 [==============================] - 0s 11ms/step - loss: 0.3871 - accuracy: 0.8666 - val_loss: 0.1558 - val_accuracy: 0.9683\n", - "Epoch 00359: early stopping\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.fit(\n", - " X_train,\n", - " y_train,\n", - " epochs=1000,\n", - " batch_size=128,\n", - " validation_data=(X_test, y_test),\n", - " callbacks=[cp_callback, es_callback]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# 保存したモデルのロード\n", - "model = tf.keras.models.load_model(model_save_path)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.9438375 0.01624594 0.01188833 0.02802826]\n", - "0\n" - ] - } - ], - "source": [ - "# 推論テスト\n", - "predict_result = model.predict(np.array([X_test[0]]))\n", - "print(np.squeeze(predict_result))\n", - "print(np.argmax(np.squeeze(predict_result)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 混同行列" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAFlCAYAAAAjyXUiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjKUlEQVR4nO3deZxcZZno8d/TexLWAIZsTlA2cRlAEkAGLgJCiEvABWFGwYg3eicofMbrCI4b2wyjgCNXBycOSHAEkxEZtqjEGESUJQEDZiEhbCadhLAmhCXdXfXeP/qAJSbdoft06lT178vnfFL11jl1njq29fTzPuecjpQSkiTloaHaAUiS6odJRZKUG5OKJCk3JhVJUm5MKpKk3JhUJEm5aRroHXQ+9YjnLPfBkFGHVzsESVuhq6M98nqvPL4vm3d9U27x9MWAJxVJ0lYql6odQb85/SVJyo2ViiQVRSpXO4J+M6lIUlGUTSqSpJykOqhU7KlIknJjpSJJReH0lyQpN3Uw/WVSkaSiqIPrVEwqklQUdVCp2KiXJOXGSkWSisJGvSQpL/VwnYpJRZKKwkpFkpSbOqhUbNRLknJjpSJJReF1KpKk3NTB9JdJRZKKog4a9fZUJEm5sVKRpKJw+kuSlJs6mP4yqUhSQaTk2V+SpLzUwfSXjXpJUm6sVCSpKOypSJJyUwfTXyYVSSoKb9MiScpNHVQqNuolSbmxUpGkorBRL0nKjdNfkqTclMv9X3oQEW0RcU9E3B8RiyPi3Gz8qoh4NCIWZsv+2XhExGURsSIiHoiIA3v7CFYqkjR4bAKOSiltjIhm4I6I+Fn22hdSSj95zfrHA3tly8HA5dm/W2RSkaSiGOCeSkopARuzp83ZknrYZDJwdbbdXRGxU0SMTCmt2dIGdTv9tWlTByd/6kw+eNrfM/nvPs13/vOHANx970I+MuUMTvjYZ/jS+RfT1dV9Xvg99z3AIcd+iA+dNo0PnTaNy6/8UTXDL6zjjj2SxYtu58Eld/CPX5hW7XBqhsetbwbbcUup1O+lNxHRGBELgXXAnJTS3dlLF2ZTXN+KiNZsbDSwsmLzVdnYFtVtpdLS0syVl13E0KFD6Ozq4tT/83857OB38qULLuGKb/8L4944hu98/2pu+Nkv+dD7jwPgwL9+G//+zXOrHHlxNTQ0cNm3L2TipFNYtWoNd905m5tuvpWlSx+qdmiF5nHrm0F53HKoVCJiKjC1Ymh6Smn6K09Sd+bZPyJ2Aq6PiLcB5wBrgRZgOvBF4Ly+7L/XSiUi9o2IL2bNmsuyx2/py862pYhg6NAhAHR1ddHV1UVjQwPNTU2Me+MYAA4dfyC/vO2OaoZZUyaMP4CHH36MRx/9I52dncyadQMfyBKytszj1jeD8rilcr+XlNL0lNJBFcv0ze4qpeeAecDElNKa1G0T8ANgQrZaOzC2YrMx2dgW9ZhUIuKLwI+BAO7JlgCujYizez1AVVYqlfjQadM44n2ncOj4A3j7fvtQKpVZtHQ5ALfedgdr1z316vr3L1rKB0/7ez7z+a+w4pHHqxV2YY0avTsrV61+9fmq9jWMGrV7FSOqDR63vvG45S8idssqFCJiCPAe4MGIGJmNBXACsCjb5Ebg1OwssEOA9T31U6D36a/TgbemlDpfE9ilwGLgoi0E/mr59e+XXMCnTj2ll90MjMbGRq6b8V02PL+RM885nxWPPs43zzubb1w2nY7OTt414UAaGrrz6n77vJk5181g6NAh3P67e/jcOecxe+YVVYlb0iA18Bc/jgRmREQj3UXFrJTSzRHxq4jYje6iYSHwmWz92cAkYAXwIjCltx30llTKwCjgtb+2j8xe26ys3JoO0PnUIz2dWbBN7LD9dkw48B3ccdcCpvzth7n68osB+O3d9/L4yu5Kbrthw15d/4h3TeCCS77Ls8+tZ+eddqxKzEW0un0tY8eMevX5mNEjWb16bRUjqg0et74ZlMdtgC9+TCk9ABywmfGjtrB+Al7XGRK99VTOAuZGxM8iYnq2/ByYC5z5ena0rT3z7HNseL77zLmXN23izvm/Z4+/GsvTzz4HQEdHB1f+6L856YRJADz19DN0Hz/4w5JllFNipx13qErsRTV/wUL23HMPxo0bS3NzMyedNJmbbr612mEVnsetbwblcRvgix+3hR4rlZTSzyNib7qbNq+cRtYOzE8F/2PKTz79LP90wcWUymVSOXHcUYdz5GEHc/F3/pNf/+4eUrnMR098Lwe/c38Abp13BzOvv4XGpkbaWlr45rln0z29qFeUSiXOPOvLzL7lGhobGrhqxkyWLFle7bAKz+PWN4PyuNXBbVrild/OB0oRpr9q0ZBRh1c7BElboaujPbffPl/6xXf6/X055LgzqvrbcN1epyJJNacA01f9ZVKRpKIwqUiSclMHPZW6vfeXJGnbs1KRpKJw+kuSlJs6mP4yqUhSUVipSJJyUweVio16SVJurFQkqSic/pIk5cakIknKzQDfi3FbMKlIUlHUQaVio16SlBsrFUkqijqoVEwqklQUdXCdiklFkoqiDioVeyqSpNxYqUhSUXhKsSQpN3Uw/WVSkaSiMKlIknJTB2d/2aiXJOXGSkWSCiKVbdRLkvJiT0WSlJs66KmYVCSpKOpg+stGvSQpN1YqklQU9lQkSbmpg6Ti9JckFUVK/V96EBFtEXFPRNwfEYsj4txsfI+IuDsiVkTEzIhoycZbs+crstfH9fYRTCqSNHhsAo5KKf01sD8wMSIOAf4V+FZKaU/gWeD0bP3TgWez8W9l6/XIpCJJRVEu93/pQeq2MXvanC0JOAr4STY+Azghezw5e072+tERET3tw6QiSUVRTv1eImJqRCyoWKZW7iIiGiNiIbAOmAM8DDyXUurKVlkFjM4ejwZWAmSvrwd26ekj2KiXpKLI4eLHlNJ0YHoPr5eA/SNiJ+B6YN9+77SCSUWSimIbXvyYUnouIuYBhwI7RURTVo2MAdqz1dqBscCqiGgCdgSe7ul9BzypDBl1+EDvoi6t/+q7qx1CTdrxvHnVDqEm9ThJrroREbsBnVlCGQK8h+7m+zzgw8CPgdOAG7JNbsye35m9/quUej7FzEpFkgoiDfx1KiOBGRHRSHdPfVZK6eaIWAL8OCIuAH4PXJGtfwXww4hYATwDnNzbDkwqklQUAzz9lVJ6ADhgM+OPABM2M/4y8JHXsw+TiiQVRR3cpdhTiiVJubFSkaSiqINb35tUJKko6uCGkiYVSSoKKxVJUm5s1EuS9CdWKpJUFE5/SZLysg2uqB9wJhVJKgorFUlSbuogqdiolyTlxkpFkoqiDk4pNqlIUlHUwfSXSUWSCiLVQVKxpyJJyo2ViiQVRR1UKiYVSSoKL36UJOXGSkWSlJs6SCo26iVJubFSkaSCSKn2KxWTiiQVRR1Mf5lUJKkoTCqSpLx4Rb0kSRWsVCSpKOqgUjGpSFJR1P4F9SYVSSoKeyqSJFWwUpGkoqiDSsWkIklFUQc9Fae/JKkgUjn1e+lJRIyNiHkRsSQiFkfEmdn41yOiPSIWZsukim3OiYgVEbEsIo7r7TNYqUhSUQx8pdIFfD6ldF9EbA/cGxFzste+lVK6uHLliNgPOBl4KzAK+GVE7J1SKm1pB4M2qRx37JFceul5NDY0cOUPruUb3/xutUMqjNhhOK0f+AwxbEcg0XnfPLrm/4KGN7yRlklTiJY2ys89yab/uRw6XqJhj7fRctRHicYmUqmLjrnXUn5sSbU/RqH48/b6tba2Mu9X19Ha2kpjUyM//ektnHfeJdUOq6allNYAa7LHz0fEUmB0D5tMBn6cUtoEPBoRK4AJwJ1b2mBQJpWGhgYu+/aFTJx0CqtWreGuO2dz0823snTpQ9UOrRjKZTp+eQ3ltY9BSxtDTj+f0qN/oOV9n+oe/+ODNP31ETQf+l46f/0TePF5Ns28hLTxOWK3MbSd8o+8dNnnqv0pCsOft77ZtGkT7zn2JF544UWampr49W3X84ufz+Pue+6rdmgDJo9TiiNiKjC1Ymh6Smn6ZtYbBxwA3A0cBpwREacCC+iuZp6lO+HcVbHZKnpOQoOzpzJh/AE8/PBjPProH+ns7GTWrBv4wPt7nSocNNLG57oTCkDHy5SfWk1sP5yG4btT/uODAJQeXUTTvuMBKD/xOGnjc93bPrmKaG6BxkH5+8pm+fPWdy+88CIAzc1NNDc318Wt4XtU7v+SUpqeUjqoYtlcQtkOuA44K6W0AbgceDOwP92VTJ9Lwj4nlYiY0tdtq23U6N1ZuWr1q89Xta9h1KjdqxhRccWOu9Kw+19Rbn+Y8pOraNz7nQA0vuVgYofhf7F+477juxNSqWsbR1pc/rz1XUNDAwvm38rq9gf45dzbuWf+76sd0oBK5f4vvYmIZroTyo9SSj8FSCk9kVIqpZTKwPfpnuICaAfGVmw+Jhvbov5UKuf2EPTUiFgQEQvK5Rf6sQtVVXMrrR8+k45b/ws6XmLTzd+n+aBjaDv9fKKl7S8SR+w6mpajT2bT7CurFLDqTblc5qDxxzJuj4MYf9ABvPWt+1Q7pIGVQ6XSk4gI4ApgaUrp0orxkRWrnQgsyh7fCJwcEa0RsQewF3BPT/vocY4iIh7Y0kvAiC1tl5Vb0wGaWkYXrl5d3b6WsWNGvfp8zOiRrF69tooRFVBDI60fPpOuRb+jtGwBAOnpNbx8zb8CEMN3p3HP/V9dPbYfTttHzmLTDd8jPbuuGhEXlj9v/bd+/QZu+/VvOfbYI1m8eFm1w6llhwEfB/4QEQuzsS8Bp0TE/kACHgM+DZBSWhwRs4AldJ85Nq2nM7+g90b9COA44NnXjAfwu639FEUzf8FC9txzD8aNG0t7+1pOOmkyHz91WrXDKpSW932K9NRquu7+2Z8Gh+4AL24Agua/mUzXfXO7x1uH0nry5+n41UzKq2w+v5Y/b32z667D6ezsYv36DbS1tXHM0UfwzYv/vdphDaitmb7q1/undAfd39+vNbuHbS4ELtzaffSWVG4GtkspLXztCxFx29bupGhKpRJnnvVlZt9yDY0NDVw1YyZLliyvdliF0TB2b5rfcTjlJ/5I26e6f5Y6580ihu9O80HHAND14AK67r8dgObx76Fh5xE0H34izYefCNBd0by4oTofoGD8eeubkSNHcOUV/0ZjYwPR0MBPfnITs2f/stphDaw6uKI+BvpsiiJOf9WC9V99d7VDqEk7njev2iHUpM396qqt09nRntvhe/I9/6vf35e7zfl1Vf/nHJSnFEuSBoYXE0hSQQx0T2VbMKlIUkGYVCRJ+Um1390yqUhSQdRDpWKjXpKUGysVSSqIVHb6S5KUk3qY/jKpSFJBJBv1kqS81EOlYqNekpQbKxVJKggb9ZKk3NTDX0s2qUhSQdRDpWJPRZKUGysVSSqIeqhUTCqSVBD2VCRJubFSkSTlph6uqLdRL0nKjZWKJBVEPdymxaQiSQVRroPpL5OKJBVEPfRUTCqSVBD1cPaXjXpJUm6sVCSpILz4UZKUm3qY/jKpSFJB1MPZX/ZUJEm5sVKRpIKoh1OKrVQkqSBS6v/Sk4gYGxHzImJJRCyOiDOz8eERMSciHsr+3Tkbj4i4LCJWRMQDEXFgb5/BpCJJBVFO0e+lF13A51NK+wGHANMiYj/gbGBuSmkvYG72HOB4YK9smQpc3tsOTCqSVBApRb+Xnt8/rUkp3Zc9fh5YCowGJgMzstVmACdkjycDV6dudwE7RcTInvZhUpGkQSgixgEHAHcDI1JKa7KX1gIjssejgZUVm63KxrbIpCJJBZFHTyUipkbEgopl6mv3ExHbAdcBZ6WUNvx5DCkBfb4M07O/CmrH8+ZVO4SatOHC46odQk3a5atzqx2CyOc6lZTSdGD6ll6PiGa6E8qPUko/zYafiIiRKaU12fTWumy8HRhbsfmYbGyLrFQkqSAGuqcSEQFcASxNKV1a8dKNwGnZ49OAGyrGT83OAjsEWF8xTbZZViqSVBDb4Ir6w4CPA3+IiIXZ2JeAi4BZEXE68DhwUvbabGASsAJ4EZjS2w5MKpI0SKSU7gC2lLmO3sz6CZj2evZhUpGkgqiDmxSbVCSpKOrhhpImFUkqCO/9JUlSBSsVSSqIcrUDyIFJRZIKIm3xxKzaYVKRpIIo18HpXyYVSSqIch1UKjbqJUm5sVKRpIKwpyJJyo1nf0mSclMPlYo9FUlSbqxUJKkgnP6SJOXGpCJJyk099FRMKpJUEOXazyk26iVJ+bFSkaSCqIfbtJhUJKkg6uB+kiYVSSoKz/6SJOWmHLU//WWjXpKUGysVSSoIeyqSpNzYU5Ek5caLHyVJqmClIkkF4cWPkqTc2KiXJOWmHnoqJhVJKoh6OPvLRr0kKTdWKpJUEPXQUxm0lcpxxx7J4kW38+CSO/jHL0yrdjg1w+O2ZbH9zrR+9Au0TbmAtinn03TgMd3ju42l9e++RNsnzqP1xM9BS1v3Bg2NtBx/Om2fOI+2T15A08GTqhh9MU2bNoUFC27l3nvncMYZn6x2OAOuHP1fehMRV0bEuohYVDH29Yhoj4iF2TKp4rVzImJFRCyLiON6e/9BWak0NDRw2bcvZOKkU1i1ag133Tmbm26+laVLH6p2aIXmcetZKpfpmDeTtO6P0NxG26lfpfT4ElqO+wSdt82kvGo5jW/7G5rHH0/nb6+ncZ+DoLGJl6/6KjS10PbJCygtvZu04elqf5RC2G+/vZky5RQOP/wDdHR0cuONVzN79lweeeTxaoc2YLZRT+Uq4DvA1a8Z/1ZK6eLKgYjYDzgZeCswCvhlROydUipt6c17rVQiYt+IODoitnvN+MSti794Jow/gIcffoxHH/0jnZ2dzJp1Ax94f68JeNDzuPXihfXdCQWg82XKT68httuJhuEjKK9aDkD58cU07v3O7nUSRHMrRAM0NUOpi9TxcpWCL559992T+fMX8tJLL1MqlfjNb+7mhBNq9mtnq5RzWHqTUrodeGYrQ5oM/DiltCml9CiwApjQ0wY9JpWI+BxwA/BZYFFETK54+Z+3MqjCGTV6d1auWv3q81Xtaxg1avcqRlQbPG5bL3bYhYYRb6S85hHKT62mcc8DAGjcZzyxw3AASssXkDo3MeTvv8WQT19M5/xfwMsvVDPsQlm8eDmHHTae4cN3YsiQNiZOfDdjxoyqdliFFxFTI2JBxTJ1Kzc9IyIeyKbHds7GRgMrK9ZZlY1tUW/TX/8beGdKaWNEjAN+EhHjUkrfhi1f+pl9iKkA0bgjDQ3DetmNVEeaW2mdPI3OX10LHS/T8fMraTn6b2k+9P10PbwQSl0ANIzcA1KZly7/B2gbStsp51B+fAlp/ZPVjb8gli1bwSWXfI+bbvovXnzxRe6/fzGl0hZnXepCyuE6lZTSdGD669zscuB8us8VOB+4BOhTE6u3pNKQUtoIkFJ6LCKOpDux/BU9JJXKD9XUMrpwJzSsbl/L2IrfeMaMHsnq1WurGFFt8LhthYZGWidPo2vpXZQeug+A9MxaNv33pQDEziNofNM7AGh8yyGUHl0E5RK8+Dzl9odo2H0cJZPKq2bMmMmMGTMBOPfcL9DeXt8/b9W6TiWl9MQrjyPi+8DN2dN2YGzFqmOysS3qrafyRETsX7HjjcD7gF2Bt299yMUyf8FC9txzD8aNG0tzczMnnTSZm26+tdphFZ7HrXctE6dQfnoNXQsqjsvQ7bMH0V2tLLwNgLThaRrf+Jbul5pbaBj5ZsrPrNmm8RbdbrvtAsDYsaOYPHkiM2feUOWIBta26KlsTkSMrHh6IvDKmWE3AidHRGtE7AHsBdzT03v1VqmcCnRVDqSUuoBTI+I/XlfUBVIqlTjzrC8z+5ZraGxo4KoZM1myZHm1wyo8j1vPGkbvRdNb30X5yZU0nvZ1ADpuv46GnUfQdMBRAJQeuo/SojsA6Pr9r2g5/pO0TTkfCLoW3UF6clWVoi+ma6/9HsOH70xnZydnnfVV1q/fUO2Qal5EXAscCewaEauArwFHZgVEAh4DPg2QUlocEbOAJXTngmk9nfkFECkN7OxUEae/VL82XOjZaH2xy1fnVjuEmvXSS4/ndseu/zf2Y/3+vvzsyv+q6h3EBuV1KpJURN5QUpKUm3q4oaRJRZIKoh6SyqC995ckKX9WKpJUEPVwVpNJRZIKwka9JCk39dBTMalIUkHUw/SXjXpJUm6sVCSpIMp1UKuYVCSpIOypSJJyU/t1ij0VSVKOrFQkqSCc/pIk5caLHyVJufHsL0lSbmo/pdiolyTlyEpFkgrCRr0kKTf2VCRJuan9lGJSkaTCqIfpLxv1kqTcWKlIUkHYU5Ek5ab2U4pJRZIKw56KJEkVrFQkqSBSHUyAmVQkqSDqYfrLpCJJBeHZX5Kk3NR+SrFRL0nKkUlFkgqiTOr30puIuDIi1kXEooqx4RExJyIeyv7dORuPiLgsIlZExAMRcWBv729SkaSCKOewbIWrgImvGTsbmJtS2guYmz0HOB7YK1umApf39uYmFUkqiJTDf73uI6XbgWdeMzwZmJE9ngGcUDF+dep2F7BTRIzs6f1NKpJUEHlUKhExNSIWVCxTt2LXI1JKa7LHa4ER2ePRwMqK9VZlY1s04Gd/NUQM9C7q0o5tw6odQk3a+Stzqh1CTXr23GOqHYJyklKaDkzvx/YpIvp8IpqnFEtSQVTxivonImJkSmlNNr21LhtvB8ZWrDcmG9sip78kqSC2UaN+c24ETssenwbcUDF+anYW2CHA+oppss2yUpGkgiinga9UIuJa4Ehg14hYBXwNuAiYFRGnA48DJ2WrzwYmASuAF4Epvb2/SUWSBpGU0ilbeOnozaybgGmv5/1NKpJUEPVwmxaTiiQVhDeUlCTlxr+nIknKTT38PRVPKZYk5cZKRZIKwp6KJCk39lQkSbmph56KSUWSCiJtgyvqB5qNeklSbqxUJKkgbNRLknJjT0WSlJt6OPvLnookKTdWKpJUEPZUJEm5qYdTik0qklQQNuolSbmxUS9JUgUrFUkqCBv1kqTc2KiXJOWmHioVeyqSpNxYqUhSQdTD2V8mFUkqiLI9FUlSXmo/pZhUJKkwbNRLklTBSkWSCqIeKhWTiiQVhBc/SpJyY6UiScqN16nUuIaGBu66czbtq9dy4omfqHY4hTRq9O5893vfYLc37EJKiR9eNYvp37uaD5wwkS+cfQZ77/Nmjj3qI9z/+0XVDrXQli37HRuff4FSqURXV4l3HfbeaodUGLH9cFre+yli2A4AdC38NV33ziF2G0vLcacSLW2k9U+x6ab/gI6XadzvEJonHP+n7d8whpev+jpp3cpqfYSaEhGPAc8DJaArpXRQRAwHZgLjgMeAk1JKz/bl/Qd1UvnsZ0/nwQdXsP0O21U7lMIqdZX42pcv4oH7lzBsu2HM/fV13DbvtyxdspxPfOyzXPJv51Y7xJpx7HEn8fTTffr/aV1L5RId82aSnngcWtpoO+1rlB5bTMvxU+icN5PyymU0vv1wmg8+ns7fXE9pyV2UltwFQOw6htYPfrZuEso27Km8O6X0VMXzs4G5KaWLIuLs7PkX+/LGvZ5SHBETImJ89ni/iPiHiJjUl50VyejRIzn++KO58gfXVDuUQnviiSd54P4lALyw8QWWL3uEkaNG8NDyR3h4xaNVjk514YX13QkFoONlyk+vIbbfiYbhIyivXAZA+bHFNO79zr/YtGm/gyktvXtbRjugyqR+L300GZiRPZ4BnNDXN+oxqUTE14DLgMsj4l+A7wDDgLMj4p/6utMiuOTir3POORdSLtf+HOa2MvaNo3n7O97CvQvur3YotSclbrn5R9z5u1s4/fS/rXY0hRU77ELDiDdSXv0I5adW07jXAQA07nsQsf3wv1i/cd8JdNVRUkkp9XvZmt0At0bEvRExNRsbkVJakz1eC4zo62fobfrrw8D+QGu2ozEppQ0RcTFwN3Dh5jbKAp0K0Ni4Ew2Nw/oa34CYNOlo1j35FL///R844ohDqx1OTRg2bCg/+OFlfPmcf2bj8y9UO5ya8+6jPsTq1WvZbbddmH3LNSxb9jB33FE/X4a5aG6l9cQz6Jx7LXS8TMfsK2g55u9oftcH6FqxEMqlP1u9YeSboKuD9FR7deItqMrv38z0lNL0iud/k1Jqj4g3AHMi4sHK7VNKKSL6/Nt2b0mlK6VUAl6MiIdTShuynb4UEeUtbZR9gOkALa1jClcKvOvQ8bzvvccy8bijaGtrZYcdtueqH1zGJ6Z8rtqhFVJTUxM/+OFl/GTWTdxy05xqh1OTVq9eC8CTTz7NDTf+nPEH7W9SqdTQSOuJZ9C15E5Ky+8FID2zlk2zLgEgdh5B45ve8WebNL5lAl1Zb6Ve5HFKceX37xZeb8/+XRcR1wMTgCciYmRKaU1EjATW9XX/vfVUOiJiaPb41QnNiNgR2GJSKbovf+Ui3vTm8ey9z6F87OPTmHfbb00oPfi371zI8mWP8L3vXlXtUGrS0KFD2G67Ya8+PuboI1i8eFmVoyqWluOnUH56NV3zb/3T4NDtswdB87veT9fC2yq2CBr3nUBp6T3bMMqBl3L4rycRMSwitn/lMXAssAi4ETgtW+004Ia+fobeKpUjUkqbAFJKlUmkuSIA1bGDD3knHz3lBBYvWsa83/wPABeedyktrS38yze+wi67DueaWf/B4j8s5aQPfqq6wRbUiBG7MWvm9wFoamrkxzNv4NY5t1U3qAJpGL0XTW87jPK6lTR+ovtswo7br6Nh5xE0HXgUAKXl91L6w2/+tM3YvUnPP0Na/2RVYh4o2+DW9yOA6yMCur//r0kp/Twi5gOzIuJ04HHgpL7uIAb6FLYiTn/Vgh3bitWHqhUbNr1Y7RBq0rPnHlPtEGrW0C/+IPJ6r7eOOLjf35eLn7g7t3j6wrsUS5JyM6gvfpSkIvEvP0qScuO9vyRJubFSkSTlph4qFRv1kqTcWKlIUkE4/SVJyk09TH+ZVCSpIP78xiW1yZ6KJCk3ViqSVBB53KW42kwqklQQ2/DPCQ8Yk4okFYSViiQpN/VQqdiolyTlxkpFkgrCix8lSbnx4kdJUm7qoadiUpGkgqiHs79s1EuScmOlIkkF4fSXJCk3nv0lScpNPVQq9lQkSbmxUpGkgqiHs79MKpJUEPUw/WVSkaSCsFEvScpNPdymxUa9JCk3ViqSVBBOf0mScmOjXpKUG3sqkqTcpJT6vfQmIiZGxLKIWBERZ+f9GUwqkjRIREQj8F3geGA/4JSI2C/PfTj9JUkFsQ16KhOAFSmlRwAi4sfAZGBJXjuwUpGkgkg5LL0YDayseL4qG8vNgFcqHZtWxUDvo68iYmpKaXq146g1Hre+89j1zWA5bl0d7f3+voyIqcDUiqHp2/LYDfZKZWrvq2gzPG5957HrG4/bVkopTU8pHVSxVCaUdmBsxfMx2VhuBntSkaTBZD6wV0TsEREtwMnAjXnuwEa9JA0SKaWuiDgD+AXQCFyZUlqc5z4Ge1Kp+znaAeJx6zuPXd943HKSUpoNzB6o9496uC2AJKkY7KlIknIzaJPKQN+qoB5FxJURsS4iFlU7lloSEWMjYl5ELImIxRFxZrVjqgUR0RYR90TE/dlxO7faMal3g3L6K7tVwXLgPXRf/DMfOCWllNtVpfUoIo4ANgJXp5TeVu14akVEjARGppTui4jtgXuBE/x561lEBDAspbQxIpqBO4AzU0p3VTk09WCwViqv3qogpdQBvHKrAvUgpXQ78Ey146g1KaU1KaX7ssfPA0vJ+SrmepS6bcyeNmfL4PstuMYM1qQy4LcqkDYnIsYBBwB3VzmUmhARjRGxEFgHzEkpedwKbrAmFWmbi4jtgOuAs1JKG6odTy1IKZVSSvvTfeX3hIhw2rXgBmtSGfBbFUiVsp7AdcCPUko/rXY8tSal9BwwD5hY5VDUi8GaVAb8VgXSK7KG8xXA0pTSpdWOp1ZExG4RsVP2eAjdJ9Y8WNWg1KtBmVRSSl3AK7cqWArMyvtWBfUoIq4F7gT2iYhVEXF6tWOqEYcBHweOioiF2TKp2kHVgJHAvIh4gO5fBOeklG6uckzqxaA8pViSNDAGZaUiSRoYJhVJUm5MKpKk3JhUJEm5MalIknJjUpEk5cakIknKjUlFkpSb/w8J9yzUaL6/qwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Classification Report\n", - " precision recall f1-score support\n", - "\n", - " 0 0.99 1.00 0.99 395\n", - " 1 0.93 0.99 0.96 295\n", - " 2 0.98 0.97 0.98 307\n", - " 3 0.96 0.91 0.93 327\n", - "\n", - " accuracy 0.97 1324\n", - " macro avg 0.97 0.97 0.97 1324\n", - "weighted avg 0.97 0.97 0.97 1324\n", - "\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "from sklearn.metrics import confusion_matrix, classification_report\n", - "\n", - "def print_confusion_matrix(y_true, y_pred, report=True):\n", - " labels = sorted(list(set(y_true)))\n", - " cmx_data = confusion_matrix(y_true, y_pred, labels=labels)\n", - " \n", - " df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels)\n", - " \n", - " fig, ax = plt.subplots(figsize=(7, 6))\n", - " sns.heatmap(df_cmx, annot=True, fmt='g' ,square=False)\n", - " ax.set_ylim(len(set(y_true)), 0)\n", - " plt.show()\n", - " \n", - " if report:\n", - " print('Classification Report')\n", - " print(classification_report(y_test, y_pred))\n", - "\n", - "Y_pred = model.predict(X_test)\n", - "y_pred = np.argmax(Y_pred, axis=1)\n", - "\n", - "print_confusion_matrix(y_test, y_pred)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tensorflow-Lite用のモデルへ変換" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# 推論専用のモデルとして保存\n", - "model.save(model_save_path, include_optimizer=False)\n", - "model = tf.keras.models.load_model(model_save_path)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "tflite_save_path = 'model/point_history_classifier/point_history_classifier.tflite'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# モデルを変換(量子化\n", - "converter = tf.lite.TFLiteConverter.from_keras_model(model) # converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_path)\n", - "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", - "tflite_quantized_model = converter.convert()\n", - "\n", - "open(tflite_save_path, 'wb').write(tflite_quantized_model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 推論テスト" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "interpreter = tf.lite.Interpreter(model_path=tflite_save_path)\n", - "interpreter.allocate_tensors()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'name': 'input_1', 'index': 0, 'shape': array([ 1, 32]), 'shape_signature': array([-1, 32]), 'dtype': , 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}}]\n" - ] - } - ], - "source": [ - "# 入出力テンソルを取得\n", - "input_details = interpreter.get_input_details()\n", - "output_details = interpreter.get_output_details()\n", - "print(input_details)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Wall time: 0 ns\n" - ] - } - ], - "source": [ - "%%time\n", - "# 推論実施\n", - "interpreter.invoke()\n", - "tflite_results = interpreter.get_tensor(output_details[0]['index'])" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.9579909 0.01342559 0.00907356 0.01950999]\n", - "0\n" - ] - } - ], - "source": [ - "print(np.squeeze(tflite_results))\n", - "print(np.argmax(np.squeeze(tflite_results)))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} +{ + "cells": [ + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.579371Z", + "start_time": "2025-04-06T14:36:08.972242Z" + } + }, + "source": [ + "import csv\n", + "\n", + "import numpy as np\n", + "import tensorflow as tf\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "RANDOM_SEED = 42" + ], + "outputs": [], + "execution_count": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 各パス指定" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.595154Z", + "start_time": "2025-04-06T14:36:10.582373Z" + } + }, + "source": [ + "dataset = 'model/point_history_classifier/point_history.csv'\n", + "model_save_path = 'model/point_history_classifier/point_history_classifier.hdf5'" + ], + "outputs": [], + "execution_count": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 分類数設定" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.737285Z", + "start_time": "2025-04-06T14:36:10.722287Z" + } + }, + "source": [ + "NUM_CLASSES = 4" + ], + "outputs": [], + "execution_count": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 入力長" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.768196Z", + "start_time": "2025-04-06T14:36:10.754066Z" + } + }, + "source": [ + "TIME_STEPS = 16\n", + "DIMENSION = 2" + ], + "outputs": [], + "execution_count": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 学習データ読み込み" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.816368Z", + "start_time": "2025-04-06T14:36:10.786257Z" + } + }, + "source": [ + "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (TIME_STEPS * DIMENSION) + 1)))" + ], + "outputs": [], + "execution_count": 5 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.847851Z", + "start_time": "2025-04-06T14:36:10.833239Z" + } + }, + "source": [ + "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))" + ], + "outputs": [], + "execution_count": 6 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.879849Z", + "start_time": "2025-04-06T14:36:10.864853Z" + } + }, + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" + ], + "outputs": [], + "execution_count": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# モデル構築" + ] + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.942614Z", + "start_time": "2025-04-06T14:36:10.896107Z" + } + }, + "source": [ + "use_lstm = False\n", + "model = None\n", + "\n", + "if use_lstm:\n", + " model = tf.keras.models.Sequential([\n", + " tf.keras.layers.InputLayer(input_shape=(TIME_STEPS * DIMENSION, )),\n", + " tf.keras.layers.Reshape((TIME_STEPS, DIMENSION), input_shape=(TIME_STEPS * DIMENSION, )), \n", + " tf.keras.layers.Dropout(0.2),\n", + " tf.keras.layers.LSTM(16, input_shape=[TIME_STEPS, DIMENSION]),\n", + " tf.keras.layers.Dropout(0.5),\n", + " tf.keras.layers.Dense(10, activation='relu'),\n", + " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", + " ])\n", + "else:\n", + " model = tf.keras.models.Sequential([\n", + " tf.keras.layers.InputLayer(input_shape=(TIME_STEPS * DIMENSION, )),\n", + " tf.keras.layers.Dropout(0.2),\n", + " tf.keras.layers.Dense(24, activation='relu'),\n", + " tf.keras.layers.Dropout(0.5),\n", + " tf.keras.layers.Dense(10, activation='relu'),\n", + " tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')\n", + " ])" + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\.venv\\lib\\site-packages\\keras\\src\\layers\\core\\input_layer.py:27: UserWarning: Argument `input_shape` is deprecated. Use `shape` instead.\n", + " warnings.warn(\n" + ] + } + ], + "execution_count": 8 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:10.973905Z", + "start_time": "2025-04-06T14:36:10.958902Z" + } + }, + "source": [ + "model.summary() # tf.keras.utils.plot_model(model, show_shapes=True)" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "\u001B[1mModel: \"sequential\"\u001B[0m\n" + ], + "text/html": [ + "
Model: \"sequential\"\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001B[1m \u001B[0m\u001B[1mLayer (type) \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1mOutput Shape \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1m Param #\u001B[0m\u001B[1m \u001B[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ dropout (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m32\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m24\u001B[0m) │ \u001B[38;5;34m792\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout_1 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m24\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_1 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m10\u001B[0m) │ \u001B[38;5;34m250\u001B[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense_2 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m4\u001B[0m) │ \u001B[38;5;34m44\u001B[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ dropout (Dropout)               │ (None, 32)             │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense (Dense)                   │ (None, 24)             │           792 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout_1 (Dropout)             │ (None, 24)             │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_1 (Dense)                 │ (None, 10)             │           250 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense_2 (Dense)                 │ (None, 4)              │            44 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Total params: \u001B[0m\u001B[38;5;34m1,086\u001B[0m (4.24 KB)\n" + ], + "text/html": [ + "
 Total params: 1,086 (4.24 KB)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Trainable params: \u001B[0m\u001B[38;5;34m1,086\u001B[0m (4.24 KB)\n" + ], + "text/html": [ + "
 Trainable params: 1,086 (4.24 KB)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[1m Non-trainable params: \u001B[0m\u001B[38;5;34m0\u001B[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 9 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2025-04-06T14:36:11.608396Z", + "start_time": "2025-04-06T14:36:10.990909Z" + } + }, + "source": [ + "# モデルチェックポイントのコールバック\n", + "cp_callback = tf.keras.callbacks.ModelCheckpoint(\n", + " model_save_path, verbose=1, save_weights_only=False)\n", + "# 早期打ち切り用コールバック\n", + "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" + ], + "outputs": [ + { + "ename": "ValueError", + "evalue": "The filepath provided must end in `.keras` (Keras model format). Received: filepath=model/point_history_classifier/point_history_classifier.hdf5", + "output_type": "error", + "traceback": [ + "\u001B[1;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[1;31mValueError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[1;32mIn[10], line 2\u001B[0m\n\u001B[0;32m 1\u001B[0m \u001B[38;5;66;03m# モデルチェックポイントのコールバック\u001B[39;00m\n\u001B[1;32m----> 2\u001B[0m cp_callback \u001B[38;5;241m=\u001B[39m \u001B[43mtf\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mkeras\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mModelCheckpoint\u001B[49m\u001B[43m(\u001B[49m\n\u001B[0;32m 3\u001B[0m \u001B[43m \u001B[49m\u001B[43mmodel_save_path\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43msave_weights_only\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m)\u001B[49m\n\u001B[0;32m 4\u001B[0m \u001B[38;5;66;03m# 早期打ち切り用コールバック\u001B[39;00m\n\u001B[0;32m 5\u001B[0m es_callback \u001B[38;5;241m=\u001B[39m tf\u001B[38;5;241m.\u001B[39mkeras\u001B[38;5;241m.\u001B[39mcallbacks\u001B[38;5;241m.\u001B[39mEarlyStopping(patience\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m20\u001B[39m, verbose\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m1\u001B[39m)\n", + "File \u001B[1;32m~\\PycharmProjects\\hand-gesture-recognition-mediapipe\\.venv\\lib\\site-packages\\keras\\src\\callbacks\\model_checkpoint.py:194\u001B[0m, in \u001B[0;36mModelCheckpoint.__init__\u001B[1;34m(self, filepath, monitor, verbose, save_best_only, save_weights_only, mode, save_freq, initial_value_threshold)\u001B[0m\n\u001B[0;32m 190\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m 191\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28many\u001B[39m(\n\u001B[0;32m 192\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfilepath\u001B[38;5;241m.\u001B[39mendswith(ext) \u001B[38;5;28;01mfor\u001B[39;00m ext \u001B[38;5;129;01min\u001B[39;00m (\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m.keras\u001B[39m\u001B[38;5;124m\"\u001B[39m, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m.h5\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 193\u001B[0m ):\n\u001B[1;32m--> 194\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\n\u001B[0;32m 195\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mThe filepath provided must end in `.keras` \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[0;32m 196\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m(Keras model format). Received: \u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[0;32m 197\u001B[0m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mfilepath=\u001B[39m\u001B[38;5;132;01m{\u001B[39;00m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfilepath\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m\"\u001B[39m\n\u001B[0;32m 198\u001B[0m )\n", + "\u001B[1;31mValueError\u001B[0m: The filepath provided must end in `.keras` (Keras model format). Received: filepath=model/point_history_classifier/point_history_classifier.hdf5" + ] + } + ], + "execution_count": 10 + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# モデルコンパイル\n", + "model.compile(\n", + " optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy']\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# モデル訓練" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 1.3800 - accuracy: 0.4279\n", + "Epoch 00001: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 1s 25ms/step - loss: 1.3800 - accuracy: 0.4270 - val_loss: 1.3584 - val_accuracy: 0.5219\n", + "Epoch 2/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 1.3587 - accuracy: 0.5066\n", + "Epoch 00002: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 1.3586 - accuracy: 0.5068 - val_loss: 1.3365 - val_accuracy: 0.5310\n", + "Epoch 3/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 1.3348 - accuracy: 0.5050\n", + "Epoch 00003: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 1.3348 - accuracy: 0.5050 - val_loss: 1.3091 - val_accuracy: 0.5249\n", + "Epoch 4/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 1.3090 - accuracy: 0.5237\n", + "Epoch 00004: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 1.3090 - accuracy: 0.5239 - val_loss: 1.2752 - val_accuracy: 0.5906\n", + "Epoch 5/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 1.2776 - accuracy: 0.5560\n", + "Epoch 00005: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 13ms/step - loss: 1.2768 - accuracy: 0.5554 - val_loss: 1.2332 - val_accuracy: 0.6178\n", + "Epoch 6/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 1.2342 - accuracy: 0.5597\n", + "Epoch 00006: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 1.2342 - accuracy: 0.5599 - val_loss: 1.1817 - val_accuracy: 0.6858\n", + "Epoch 7/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 1.1957 - accuracy: 0.5721\n", + "Epoch 00007: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 1.1932 - accuracy: 0.5780 - val_loss: 1.1206 - val_accuracy: 0.7122\n", + "Epoch 8/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 1.1480 - accuracy: 0.5717\n", + "Epoch 00008: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 1.1455 - accuracy: 0.5743 - val_loss: 1.0555 - val_accuracy: 0.7492\n", + "Epoch 9/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 1.0875 - accuracy: 0.6001\n", + "Epoch 00009: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 1.0879 - accuracy: 0.5997 - val_loss: 0.9879 - val_accuracy: 0.7847\n", + "Epoch 10/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 1.0461 - accuracy: 0.6023\n", + "Epoch 00010: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 1.0451 - accuracy: 0.6037 - val_loss: 0.9241 - val_accuracy: 0.7878\n", + "Epoch 11/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.9968 - accuracy: 0.6238\n", + "Epoch 00011: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.9958 - accuracy: 0.6256 - val_loss: 0.8632 - val_accuracy: 0.8180\n", + "Epoch 12/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.9525 - accuracy: 0.6356\n", + "Epoch 00012: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.9523 - accuracy: 0.6357 - val_loss: 0.8063 - val_accuracy: 0.8270\n", + "Epoch 13/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.9175 - accuracy: 0.6560\n", + "Epoch 00013: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.9174 - accuracy: 0.6558 - val_loss: 0.7573 - val_accuracy: 0.8527\n", + "Epoch 14/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.8813 - accuracy: 0.6709\n", + "Epoch 00014: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.8738 - accuracy: 0.6689 - val_loss: 0.7132 - val_accuracy: 0.8739\n", + "Epoch 15/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.8613 - accuracy: 0.6659\n", + "Epoch 00015: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.8577 - accuracy: 0.6692 - val_loss: 0.6770 - val_accuracy: 0.8897\n", + "Epoch 16/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.8275 - accuracy: 0.6815\n", + "Epoch 00016: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.8273 - accuracy: 0.6815 - val_loss: 0.6460 - val_accuracy: 0.9026\n", + "Epoch 17/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.8088 - accuracy: 0.6958\n", + "Epoch 00017: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.8066 - accuracy: 0.6966 - val_loss: 0.6152 - val_accuracy: 0.9063\n", + "Epoch 18/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.7810 - accuracy: 0.6953\n", + "Epoch 00018: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.7807 - accuracy: 0.6954 - val_loss: 0.5880 - val_accuracy: 0.9162\n", + "Epoch 19/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.7743 - accuracy: 0.6991\n", + "Epoch 00019: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.7695 - accuracy: 0.7029 - val_loss: 0.5688 - val_accuracy: 0.9230\n", + "Epoch 20/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.7537 - accuracy: 0.7121\n", + "Epoch 00020: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.7469 - accuracy: 0.7127 - val_loss: 0.5462 - val_accuracy: 0.9222\n", + "Epoch 21/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.7440 - accuracy: 0.7175\n", + "Epoch 00021: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 1s 31ms/step - loss: 0.7457 - accuracy: 0.7168 - val_loss: 0.5261 - val_accuracy: 0.9313\n", + "Epoch 22/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.7107 - accuracy: 0.7322\n", + "Epoch 00022: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.7106 - accuracy: 0.7329 - val_loss: 0.5073 - val_accuracy: 0.9313\n", + "Epoch 23/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.7039 - accuracy: 0.7356\n", + "Epoch 00023: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.7039 - accuracy: 0.7356 - val_loss: 0.4947 - val_accuracy: 0.9358\n", + "Epoch 24/1000\n", + "24/32 [=====================>........] - ETA: 0s - loss: 0.7048 - accuracy: 0.7279\n", + "Epoch 00024: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.7119 - accuracy: 0.7251 - val_loss: 0.4782 - val_accuracy: 0.9350\n", + "Epoch 25/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.6741 - accuracy: 0.7485\n", + "Epoch 00025: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.6737 - accuracy: 0.7485 - val_loss: 0.4624 - val_accuracy: 0.9366\n", + "Epoch 26/1000\n", + "23/32 [====================>.........] - ETA: 0s - loss: 0.6698 - accuracy: 0.7480\n", + "Epoch 00026: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.6700 - accuracy: 0.7472 - val_loss: 0.4484 - val_accuracy: 0.9388\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 27/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.6723 - accuracy: 0.74 - ETA: 0s - loss: 0.6671 - accuracy: 0.7444\n", + "Epoch 00027: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6640 - accuracy: 0.7447 - val_loss: 0.4387 - val_accuracy: 0.9418\n", + "Epoch 28/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.6625 - accuracy: 0.7533\n", + "Epoch 00028: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.6622 - accuracy: 0.7535 - val_loss: 0.4314 - val_accuracy: 0.9411\n", + "Epoch 29/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.6503 - accuracy: 0.7568\n", + "Epoch 00029: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.6505 - accuracy: 0.7570 - val_loss: 0.4200 - val_accuracy: 0.9449\n", + "Epoch 30/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.6271 - accuracy: 0.7675\n", + "Epoch 00030: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6296 - accuracy: 0.7656 - val_loss: 0.4093 - val_accuracy: 0.9524\n", + "Epoch 31/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.6360 - accuracy: 0.7586\n", + "Epoch 00031: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.6362 - accuracy: 0.7593 - val_loss: 0.4019 - val_accuracy: 0.9479\n", + "Epoch 32/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.6253 - accuracy: 0.7700\n", + "Epoch 00032: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6186 - accuracy: 0.7717 - val_loss: 0.3927 - val_accuracy: 0.9464\n", + "Epoch 33/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.6255 - accuracy: 0.7613\n", + "Epoch 00033: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6217 - accuracy: 0.7623 - val_loss: 0.3868 - val_accuracy: 0.9547\n", + "Epoch 34/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.6175 - accuracy: 0.7678\n", + "Epoch 00034: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6136 - accuracy: 0.7694 - val_loss: 0.3795 - val_accuracy: 0.9547\n", + "Epoch 35/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.6162 - accuracy: 0.7598\n", + "Epoch 00035: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6162 - accuracy: 0.7598 - val_loss: 0.3737 - val_accuracy: 0.9554\n", + "Epoch 36/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.6299 - accuracy: 0.7622\n", + "Epoch 00036: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6154 - accuracy: 0.7711 - val_loss: 0.3709 - val_accuracy: 0.9577\n", + "Epoch 37/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.6147 - accuracy: 0.7734\n", + "Epoch 00037: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6124 - accuracy: 0.7759 - val_loss: 0.3627 - val_accuracy: 0.9517\n", + "Epoch 38/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.5937 - accuracy: 0.7773\n", + "Epoch 00038: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.6087 - accuracy: 0.7722 - val_loss: 0.3583 - val_accuracy: 0.9524\n", + "Epoch 39/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5917 - accuracy: 0.7831\n", + "Epoch 00039: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5975 - accuracy: 0.7782 - val_loss: 0.3579 - val_accuracy: 0.9547\n", + "Epoch 40/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.5938 - accuracy: 0.7749\n", + "Epoch 00040: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5941 - accuracy: 0.7734 - val_loss: 0.3521 - val_accuracy: 0.9569\n", + "Epoch 41/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.5979 - accuracy: 0.7656\n", + "Epoch 00041: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5977 - accuracy: 0.7671 - val_loss: 0.3482 - val_accuracy: 0.9547\n", + "Epoch 42/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5712 - accuracy: 0.7884\n", + "Epoch 00042: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5693 - accuracy: 0.7888 - val_loss: 0.3442 - val_accuracy: 0.9524\n", + "Epoch 43/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.5849 - accuracy: 0.7867\n", + "Epoch 00043: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.5878 - accuracy: 0.7840 - val_loss: 0.3410 - val_accuracy: 0.9577\n", + "Epoch 44/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.5745 - accuracy: 0.7810\n", + "Epoch 00044: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5745 - accuracy: 0.7810 - val_loss: 0.3365 - val_accuracy: 0.9585\n", + "Epoch 45/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.5725 - accuracy: 0.7760\n", + "Epoch 00045: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5731 - accuracy: 0.7754 - val_loss: 0.3323 - val_accuracy: 0.9569\n", + "Epoch 46/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.5730 - accuracy: 0.7781\n", + "Epoch 00046: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5699 - accuracy: 0.7800 - val_loss: 0.3304 - val_accuracy: 0.9554\n", + "Epoch 47/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.5533 - accuracy: 0.7945\n", + "Epoch 00047: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5552 - accuracy: 0.7933 - val_loss: 0.3244 - val_accuracy: 0.9585\n", + "Epoch 48/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5754 - accuracy: 0.7809\n", + "Epoch 00048: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5751 - accuracy: 0.7827 - val_loss: 0.3202 - val_accuracy: 0.9577\n", + "Epoch 49/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5672 - accuracy: 0.7816\n", + "Epoch 00049: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5630 - accuracy: 0.7842 - val_loss: 0.3181 - val_accuracy: 0.9585\n", + "Epoch 50/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.5576 - accuracy: 0.7877\n", + "Epoch 00050: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5561 - accuracy: 0.7888 - val_loss: 0.3148 - val_accuracy: 0.9577\n", + "Epoch 51/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.5451 - accuracy: 0.8011\n", + "Epoch 00051: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5442 - accuracy: 0.8014 - val_loss: 0.3096 - val_accuracy: 0.9532\n", + "Epoch 52/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5685 - accuracy: 0.7884\n", + "Epoch 00052: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5681 - accuracy: 0.7915 - val_loss: 0.3070 - val_accuracy: 0.9569\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 53/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5480 - accuracy: 0.7966\n", + "Epoch 00053: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5476 - accuracy: 0.7983 - val_loss: 0.3045 - val_accuracy: 0.9577\n", + "Epoch 54/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5580 - accuracy: 0.7922\n", + "Epoch 00054: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5476 - accuracy: 0.7931 - val_loss: 0.3040 - val_accuracy: 0.9577\n", + "Epoch 55/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.5455 - accuracy: 0.7933\n", + "Epoch 00055: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5455 - accuracy: 0.7933 - val_loss: 0.3011 - val_accuracy: 0.9554\n", + "Epoch 56/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5667 - accuracy: 0.7822\n", + "Epoch 00056: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5651 - accuracy: 0.7858 - val_loss: 0.2987 - val_accuracy: 0.9554\n", + "Epoch 57/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5463 - accuracy: 0.7900\n", + "Epoch 00057: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5576 - accuracy: 0.7878 - val_loss: 0.3000 - val_accuracy: 0.9592\n", + "Epoch 58/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.5439 - accuracy: 0.7958\n", + "Epoch 00058: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5439 - accuracy: 0.7958 - val_loss: 0.2951 - val_accuracy: 0.9592\n", + "Epoch 59/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5378 - accuracy: 0.8012\n", + "Epoch 00059: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5442 - accuracy: 0.7988 - val_loss: 0.2946 - val_accuracy: 0.9622\n", + "Epoch 60/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5143 - accuracy: 0.8103\n", + "Epoch 00060: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5228 - accuracy: 0.8074 - val_loss: 0.2902 - val_accuracy: 0.9600\n", + "Epoch 61/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5534 - accuracy: 0.7866\n", + "Epoch 00061: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5451 - accuracy: 0.7903 - val_loss: 0.2894 - val_accuracy: 0.9592\n", + "Epoch 62/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.5149 - accuracy: 0.8061\n", + "Epoch 00062: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.5206 - accuracy: 0.8064 - val_loss: 0.2887 - val_accuracy: 0.9600\n", + "Epoch 63/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.5289 - accuracy: 0.7966\n", + "Epoch 00063: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5304 - accuracy: 0.7953 - val_loss: 0.2851 - val_accuracy: 0.9569\n", + "Epoch 64/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.5416 - accuracy: 0.7953\n", + "Epoch 00064: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5416 - accuracy: 0.7953 - val_loss: 0.2861 - val_accuracy: 0.9592\n", + "Epoch 65/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5304 - accuracy: 0.7947\n", + "Epoch 00065: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5350 - accuracy: 0.7966 - val_loss: 0.2838 - val_accuracy: 0.9585\n", + "Epoch 66/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.5162 - accuracy: 0.8056\n", + "Epoch 00066: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5162 - accuracy: 0.8056 - val_loss: 0.2845 - val_accuracy: 0.9600\n", + "Epoch 67/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.5406 - accuracy: 0.7944\n", + "Epoch 00067: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5405 - accuracy: 0.7943 - val_loss: 0.2809 - val_accuracy: 0.9607\n", + "Epoch 68/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5099 - accuracy: 0.8081\n", + "Epoch 00068: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5115 - accuracy: 0.8069 - val_loss: 0.2798 - val_accuracy: 0.9600\n", + "Epoch 69/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.5113 - accuracy: 0.8064\n", + "Epoch 00069: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.5164 - accuracy: 0.8026 - val_loss: 0.2810 - val_accuracy: 0.9592\n", + "Epoch 70/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5161 - accuracy: 0.8028\n", + "Epoch 00070: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5149 - accuracy: 0.8029 - val_loss: 0.2806 - val_accuracy: 0.9600\n", + "Epoch 71/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5159 - accuracy: 0.8138\n", + "Epoch 00071: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5198 - accuracy: 0.8104 - val_loss: 0.2794 - val_accuracy: 0.9577\n", + "Epoch 72/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4899 - accuracy: 0.8138\n", + "Epoch 00072: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4985 - accuracy: 0.8129 - val_loss: 0.2775 - val_accuracy: 0.9592\n", + "Epoch 73/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5159 - accuracy: 0.8109\n", + "Epoch 00073: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5128 - accuracy: 0.8104 - val_loss: 0.2789 - val_accuracy: 0.9592\n", + "Epoch 74/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.5224 - accuracy: 0.8077\n", + "Epoch 00074: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.5225 - accuracy: 0.8077 - val_loss: 0.2753 - val_accuracy: 0.9600\n", + "Epoch 75/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5109 - accuracy: 0.8147\n", + "Epoch 00075: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5102 - accuracy: 0.8134 - val_loss: 0.2728 - val_accuracy: 0.9600\n", + "Epoch 76/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.5054 - accuracy: 0.8116\n", + "Epoch 00076: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.5093 - accuracy: 0.8079 - val_loss: 0.2720 - val_accuracy: 0.9600\n", + "Epoch 77/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4998 - accuracy: 0.8141\n", + "Epoch 00077: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5006 - accuracy: 0.8119 - val_loss: 0.2702 - val_accuracy: 0.9585\n", + "Epoch 78/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5134 - accuracy: 0.8106\n", + "Epoch 00078: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5041 - accuracy: 0.8155 - val_loss: 0.2721 - val_accuracy: 0.9600\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 79/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.5063 - accuracy: 0.8122\n", + "Epoch 00079: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5016 - accuracy: 0.8099 - val_loss: 0.2682 - val_accuracy: 0.9600\n", + "Epoch 80/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4965 - accuracy: 0.8166\n", + "Epoch 00080: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4887 - accuracy: 0.8200 - val_loss: 0.2658 - val_accuracy: 0.9600\n", + "Epoch 81/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4992 - accuracy: 0.8169\n", + "Epoch 00081: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4975 - accuracy: 0.8150 - val_loss: 0.2640 - val_accuracy: 0.9569\n", + "Epoch 82/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4821 - accuracy: 0.8247\n", + "Epoch 00082: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4789 - accuracy: 0.8253 - val_loss: 0.2617 - val_accuracy: 0.9569\n", + "Epoch 83/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4900 - accuracy: 0.8181\n", + "Epoch 00083: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4862 - accuracy: 0.8200 - val_loss: 0.2601 - val_accuracy: 0.9569\n", + "Epoch 84/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.5119 - accuracy: 0.8094\n", + "Epoch 00084: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.5119 - accuracy: 0.8094 - val_loss: 0.2598 - val_accuracy: 0.9577\n", + "Epoch 85/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4991 - accuracy: 0.8095\n", + "Epoch 00085: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4953 - accuracy: 0.8142 - val_loss: 0.2621 - val_accuracy: 0.9592\n", + "Epoch 86/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4927 - accuracy: 0.8175\n", + "Epoch 00086: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4987 - accuracy: 0.8117 - val_loss: 0.2577 - val_accuracy: 0.9569\n", + "Epoch 87/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.5016 - accuracy: 0.8131\n", + "Epoch 00087: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.5003 - accuracy: 0.8114 - val_loss: 0.2605 - val_accuracy: 0.9569\n", + "Epoch 88/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4815 - accuracy: 0.8188\n", + "Epoch 00088: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4806 - accuracy: 0.8205 - val_loss: 0.2572 - val_accuracy: 0.9569\n", + "Epoch 89/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4686 - accuracy: 0.8244\n", + "Epoch 00089: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4705 - accuracy: 0.8230 - val_loss: 0.2551 - val_accuracy: 0.9577\n", + "Epoch 90/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.5002 - accuracy: 0.8131\n", + "Epoch 00090: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4959 - accuracy: 0.8162 - val_loss: 0.2547 - val_accuracy: 0.9569\n", + "Epoch 91/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4894 - accuracy: 0.8159\n", + "Epoch 00091: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4848 - accuracy: 0.8192 - val_loss: 0.2544 - val_accuracy: 0.9585\n", + "Epoch 92/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4848 - accuracy: 0.8209\n", + "Epoch 00092: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4804 - accuracy: 0.8245 - val_loss: 0.2515 - val_accuracy: 0.9577\n", + "Epoch 93/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4998 - accuracy: 0.8116\n", + "Epoch 00093: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4910 - accuracy: 0.8122 - val_loss: 0.2546 - val_accuracy: 0.9600\n", + "Epoch 94/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4816 - accuracy: 0.8194\n", + "Epoch 00094: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4801 - accuracy: 0.8200 - val_loss: 0.2512 - val_accuracy: 0.9607\n", + "Epoch 95/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4954 - accuracy: 0.8239\n", + "Epoch 00095: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4861 - accuracy: 0.8243 - val_loss: 0.2509 - val_accuracy: 0.9607\n", + "Epoch 96/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.4762 - accuracy: 0.8186\n", + "Epoch 00096: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4739 - accuracy: 0.8197 - val_loss: 0.2487 - val_accuracy: 0.9592\n", + "Epoch 97/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4780 - accuracy: 0.8222\n", + "Epoch 00097: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4723 - accuracy: 0.8235 - val_loss: 0.2464 - val_accuracy: 0.9585\n", + "Epoch 98/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.4746 - accuracy: 0.8239\n", + "Epoch 00098: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4751 - accuracy: 0.8258 - val_loss: 0.2460 - val_accuracy: 0.9600\n", + "Epoch 99/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.4791 - accuracy: 0.8198\n", + "Epoch 00099: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4841 - accuracy: 0.8165 - val_loss: 0.2466 - val_accuracy: 0.9600\n", + "Epoch 100/1000\n", + "23/32 [====================>.........] - ETA: 0s - loss: 0.4916 - accuracy: 0.8142\n", + "Epoch 00100: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.4755 - accuracy: 0.8240 - val_loss: 0.2439 - val_accuracy: 0.9592\n", + "Epoch 101/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4731 - accuracy: 0.8285\n", + "Epoch 00101: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4731 - accuracy: 0.8285 - val_loss: 0.2438 - val_accuracy: 0.9585\n", + "Epoch 102/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4815 - accuracy: 0.8200\n", + "Epoch 00102: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4865 - accuracy: 0.8207 - val_loss: 0.2436 - val_accuracy: 0.9592\n", + "Epoch 103/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4595 - accuracy: 0.8338\n", + "Epoch 00103: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4699 - accuracy: 0.8293 - val_loss: 0.2447 - val_accuracy: 0.9577\n", + "Epoch 104/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4708 - accuracy: 0.8284\n", + "Epoch 00104: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4684 - accuracy: 0.8278 - val_loss: 0.2446 - val_accuracy: 0.9562\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 105/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4843 - accuracy: 0.8194\n", + "Epoch 00105: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4775 - accuracy: 0.8207 - val_loss: 0.2425 - val_accuracy: 0.9569\n", + "Epoch 106/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4649 - accuracy: 0.8291\n", + "Epoch 00106: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4692 - accuracy: 0.8293 - val_loss: 0.2411 - val_accuracy: 0.9585\n", + "Epoch 107/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4895 - accuracy: 0.8244\n", + "Epoch 00107: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4843 - accuracy: 0.8253 - val_loss: 0.2416 - val_accuracy: 0.9569\n", + "Epoch 108/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.4617 - accuracy: 0.8294\n", + "Epoch 00108: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.4617 - accuracy: 0.8293 - val_loss: 0.2388 - val_accuracy: 0.9569\n", + "Epoch 109/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4640 - accuracy: 0.8273\n", + "Epoch 00109: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4666 - accuracy: 0.8253 - val_loss: 0.2393 - val_accuracy: 0.9569\n", + "Epoch 110/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4651 - accuracy: 0.8335\n", + "Epoch 00110: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4697 - accuracy: 0.8318 - val_loss: 0.2385 - val_accuracy: 0.9577\n", + "Epoch 111/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4739 - accuracy: 0.8309\n", + "Epoch 00111: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4792 - accuracy: 0.8248 - val_loss: 0.2364 - val_accuracy: 0.9577\n", + "Epoch 112/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4624 - accuracy: 0.8248\n", + "Epoch 00112: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4659 - accuracy: 0.8230 - val_loss: 0.2362 - val_accuracy: 0.9569\n", + "Epoch 113/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4403 - accuracy: 0.8400\n", + "Epoch 00113: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4432 - accuracy: 0.8386 - val_loss: 0.2324 - val_accuracy: 0.9577\n", + "Epoch 114/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4608 - accuracy: 0.8354\n", + "Epoch 00114: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4623 - accuracy: 0.8353 - val_loss: 0.2309 - val_accuracy: 0.9607\n", + "Epoch 115/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4641 - accuracy: 0.8359\n", + "Epoch 00115: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4585 - accuracy: 0.8376 - val_loss: 0.2295 - val_accuracy: 0.9585\n", + "Epoch 116/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4690 - accuracy: 0.8319\n", + "Epoch 00116: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4704 - accuracy: 0.8318 - val_loss: 0.2320 - val_accuracy: 0.9592\n", + "Epoch 117/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4509 - accuracy: 0.8371\n", + "Epoch 00117: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4509 - accuracy: 0.8371 - val_loss: 0.2293 - val_accuracy: 0.9585\n", + "Epoch 118/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4597 - accuracy: 0.8323\n", + "Epoch 00118: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4597 - accuracy: 0.8323 - val_loss: 0.2303 - val_accuracy: 0.9577\n", + "Epoch 119/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4703 - accuracy: 0.8372\n", + "Epoch 00119: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4568 - accuracy: 0.8424 - val_loss: 0.2282 - val_accuracy: 0.9569\n", + "Epoch 120/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4411 - accuracy: 0.8400\n", + "Epoch 00120: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4417 - accuracy: 0.8351 - val_loss: 0.2253 - val_accuracy: 0.9577\n", + "Epoch 121/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4730 - accuracy: 0.8220\n", + "Epoch 00121: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4674 - accuracy: 0.8253 - val_loss: 0.2264 - val_accuracy: 0.9585\n", + "Epoch 122/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4386 - accuracy: 0.8391\n", + "Epoch 00122: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4471 - accuracy: 0.8364 - val_loss: 0.2233 - val_accuracy: 0.9585\n", + "Epoch 123/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4318 - accuracy: 0.8409\n", + "Epoch 00123: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4262 - accuracy: 0.8429 - val_loss: 0.2233 - val_accuracy: 0.9562\n", + "Epoch 124/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4740 - accuracy: 0.8319\n", + "Epoch 00124: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.4678 - accuracy: 0.8336 - val_loss: 0.2233 - val_accuracy: 0.9554\n", + "Epoch 125/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4577 - accuracy: 0.8267\n", + "Epoch 00125: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4563 - accuracy: 0.8283 - val_loss: 0.2235 - val_accuracy: 0.9569\n", + "Epoch 126/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4617 - accuracy: 0.8331\n", + "Epoch 00126: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4529 - accuracy: 0.8336 - val_loss: 0.2229 - val_accuracy: 0.9569\n", + "Epoch 127/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4534 - accuracy: 0.8392\n", + "Epoch 00127: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4512 - accuracy: 0.8416 - val_loss: 0.2239 - val_accuracy: 0.9577\n", + "Epoch 128/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4352 - accuracy: 0.8410\n", + "Epoch 00128: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4357 - accuracy: 0.8411 - val_loss: 0.2234 - val_accuracy: 0.9577\n", + "Epoch 129/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4300 - accuracy: 0.8425\n", + "Epoch 00129: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4386 - accuracy: 0.8416 - val_loss: 0.2206 - val_accuracy: 0.9607\n", + "Epoch 130/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4515 - accuracy: 0.8293\n", + "Epoch 00130: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4515 - accuracy: 0.8293 - val_loss: 0.2227 - val_accuracy: 0.9577\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 131/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4412 - accuracy: 0.8319\n", + "Epoch 00131: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4465 - accuracy: 0.8328 - val_loss: 0.2240 - val_accuracy: 0.9585\n", + "Epoch 132/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4451 - accuracy: 0.8441\n", + "Epoch 00132: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4543 - accuracy: 0.8381 - val_loss: 0.2201 - val_accuracy: 0.9600\n", + "Epoch 133/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4400 - accuracy: 0.8350\n", + "Epoch 00133: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4446 - accuracy: 0.8351 - val_loss: 0.2192 - val_accuracy: 0.9577\n", + "Epoch 134/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4566 - accuracy: 0.8434\n", + "Epoch 00134: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4601 - accuracy: 0.8386 - val_loss: 0.2203 - val_accuracy: 0.9585\n", + "Epoch 135/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4525 - accuracy: 0.8303\n", + "Epoch 00135: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4485 - accuracy: 0.8316 - val_loss: 0.2199 - val_accuracy: 0.9592\n", + "Epoch 136/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4410 - accuracy: 0.8388\n", + "Epoch 00136: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4423 - accuracy: 0.8356 - val_loss: 0.2172 - val_accuracy: 0.9592\n", + "Epoch 137/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4492 - accuracy: 0.8409\n", + "Epoch 00137: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4459 - accuracy: 0.8414 - val_loss: 0.2194 - val_accuracy: 0.9585\n", + "Epoch 138/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4431 - accuracy: 0.8413\n", + "Epoch 00138: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4336 - accuracy: 0.8447 - val_loss: 0.2201 - val_accuracy: 0.9592\n", + "Epoch 139/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4484 - accuracy: 0.8419\n", + "Epoch 00139: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4490 - accuracy: 0.8444 - val_loss: 0.2159 - val_accuracy: 0.9615\n", + "Epoch 140/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4594 - accuracy: 0.8302\n", + "Epoch 00140: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4550 - accuracy: 0.8336 - val_loss: 0.2190 - val_accuracy: 0.9592\n", + "Epoch 141/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4514 - accuracy: 0.8311\n", + "Epoch 00141: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4343 - accuracy: 0.8366 - val_loss: 0.2177 - val_accuracy: 0.9615\n", + "Epoch 142/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4508 - accuracy: 0.8414\n", + "Epoch 00142: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4491 - accuracy: 0.8391 - val_loss: 0.2159 - val_accuracy: 0.9622\n", + "Epoch 143/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4407 - accuracy: 0.8394\n", + "Epoch 00143: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.4407 - accuracy: 0.8394 - val_loss: 0.2144 - val_accuracy: 0.9607\n", + "Epoch 144/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4235 - accuracy: 0.8409\n", + "Epoch 00144: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.4235 - accuracy: 0.8409 - val_loss: 0.2124 - val_accuracy: 0.9607\n", + "Epoch 145/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4487 - accuracy: 0.8388\n", + "Epoch 00145: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4463 - accuracy: 0.8391 - val_loss: 0.2112 - val_accuracy: 0.9622\n", + "Epoch 146/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.4367 - accuracy: 0.8411\n", + "Epoch 00146: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4410 - accuracy: 0.8394 - val_loss: 0.2126 - val_accuracy: 0.9615\n", + "Epoch 147/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4365 - accuracy: 0.8409\n", + "Epoch 00147: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.4375 - accuracy: 0.8396 - val_loss: 0.2132 - val_accuracy: 0.9622\n", + "Epoch 148/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4563 - accuracy: 0.8417\n", + "Epoch 00148: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4547 - accuracy: 0.8406 - val_loss: 0.2151 - val_accuracy: 0.9615\n", + "Epoch 149/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.4672 - accuracy: 0.8306\n", + "Epoch 00149: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4669 - accuracy: 0.8308 - val_loss: 0.2131 - val_accuracy: 0.9577\n", + "Epoch 150/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4482 - accuracy: 0.8469\n", + "Epoch 00150: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4396 - accuracy: 0.8447 - val_loss: 0.2116 - val_accuracy: 0.9585\n", + "Epoch 151/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4280 - accuracy: 0.8394\n", + "Epoch 00151: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4341 - accuracy: 0.8371 - val_loss: 0.2113 - val_accuracy: 0.9637\n", + "Epoch 152/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.4177 - accuracy: 0.8463\n", + "Epoch 00152: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4176 - accuracy: 0.8459 - val_loss: 0.2090 - val_accuracy: 0.9607\n", + "Epoch 153/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4303 - accuracy: 0.8438\n", + "Epoch 00153: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4330 - accuracy: 0.8429 - val_loss: 0.2087 - val_accuracy: 0.9600\n", + "Epoch 154/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4360 - accuracy: 0.8375\n", + "Epoch 00154: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4398 - accuracy: 0.8384 - val_loss: 0.2086 - val_accuracy: 0.9622\n", + "Epoch 155/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4393 - accuracy: 0.8413\n", + "Epoch 00155: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4368 - accuracy: 0.8419 - val_loss: 0.2112 - val_accuracy: 0.9615\n", + "Epoch 156/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4296 - accuracy: 0.8428\n", + "Epoch 00156: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4419 - accuracy: 0.8346 - val_loss: 0.2085 - val_accuracy: 0.9615\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 157/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4322 - accuracy: 0.8384\n", + "Epoch 00157: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4319 - accuracy: 0.8404 - val_loss: 0.2081 - val_accuracy: 0.9615\n", + "Epoch 158/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4179 - accuracy: 0.8522\n", + "Epoch 00158: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4218 - accuracy: 0.8482 - val_loss: 0.2074 - val_accuracy: 0.9622\n", + "Epoch 159/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4368 - accuracy: 0.8450\n", + "Epoch 00159: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4420 - accuracy: 0.8426 - val_loss: 0.2090 - val_accuracy: 0.9637\n", + "Epoch 160/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4331 - accuracy: 0.8431\n", + "Epoch 00160: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4306 - accuracy: 0.8469 - val_loss: 0.2087 - val_accuracy: 0.9645\n", + "Epoch 161/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4576 - accuracy: 0.8400\n", + "Epoch 00161: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4504 - accuracy: 0.8404 - val_loss: 0.2059 - val_accuracy: 0.9645\n", + "Epoch 162/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4418 - accuracy: 0.8419\n", + "Epoch 00162: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4515 - accuracy: 0.8401 - val_loss: 0.2073 - val_accuracy: 0.9645\n", + "Epoch 163/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4191 - accuracy: 0.8444\n", + "Epoch 00163: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4207 - accuracy: 0.8477 - val_loss: 0.2066 - val_accuracy: 0.9615\n", + "Epoch 164/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4432 - accuracy: 0.8450\n", + "Epoch 00164: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4362 - accuracy: 0.8469 - val_loss: 0.2086 - val_accuracy: 0.9630\n", + "Epoch 165/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4218 - accuracy: 0.8453\n", + "Epoch 00165: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4329 - accuracy: 0.8421 - val_loss: 0.2062 - val_accuracy: 0.9637\n", + "Epoch 166/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4230 - accuracy: 0.8481\n", + "Epoch 00166: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4261 - accuracy: 0.8459 - val_loss: 0.2097 - val_accuracy: 0.9637\n", + "Epoch 167/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4407 - accuracy: 0.8388\n", + "Epoch 00167: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4283 - accuracy: 0.8416 - val_loss: 0.2070 - val_accuracy: 0.9645\n", + "Epoch 168/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4286 - accuracy: 0.8407\n", + "Epoch 00168: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4270 - accuracy: 0.8411 - val_loss: 0.2038 - val_accuracy: 0.9653\n", + "Epoch 169/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4126 - accuracy: 0.8450\n", + "Epoch 00169: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4118 - accuracy: 0.8457 - val_loss: 0.2016 - val_accuracy: 0.9630\n", + "Epoch 170/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4269 - accuracy: 0.8375\n", + "Epoch 00170: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4304 - accuracy: 0.8364 - val_loss: 0.2017 - val_accuracy: 0.9653\n", + "Epoch 171/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4282 - accuracy: 0.8419\n", + "Epoch 00171: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4291 - accuracy: 0.8406 - val_loss: 0.2011 - val_accuracy: 0.9660\n", + "Epoch 172/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.4177 - accuracy: 0.8453\n", + "Epoch 00172: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4199 - accuracy: 0.8449 - val_loss: 0.1993 - val_accuracy: 0.9653\n", + "Epoch 173/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3980 - accuracy: 0.8492\n", + "Epoch 00173: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.4059 - accuracy: 0.8439 - val_loss: 0.1997 - val_accuracy: 0.9653\n", + "Epoch 174/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4266 - accuracy: 0.8395\n", + "Epoch 00174: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4194 - accuracy: 0.8429 - val_loss: 0.1983 - val_accuracy: 0.9660\n", + "Epoch 175/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4328 - accuracy: 0.8369\n", + "Epoch 00175: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.4328 - accuracy: 0.8369 - val_loss: 0.2009 - val_accuracy: 0.9660\n", + "Epoch 176/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4045 - accuracy: 0.8562\n", + "Epoch 00176: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.4045 - accuracy: 0.8562 - val_loss: 0.1980 - val_accuracy: 0.9645\n", + "Epoch 177/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3965 - accuracy: 0.8569\n", + "Epoch 00177: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4061 - accuracy: 0.8507 - val_loss: 0.1951 - val_accuracy: 0.9653\n", + "Epoch 178/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4231 - accuracy: 0.8468\n", + "Epoch 00178: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4147 - accuracy: 0.8499 - val_loss: 0.1957 - val_accuracy: 0.9660\n", + "Epoch 179/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4098 - accuracy: 0.8487\n", + "Epoch 00179: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4150 - accuracy: 0.8479 - val_loss: 0.1940 - val_accuracy: 0.9675\n", + "Epoch 180/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3973 - accuracy: 0.8561\n", + "Epoch 00180: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3999 - accuracy: 0.8573 - val_loss: 0.1942 - val_accuracy: 0.9668\n", + "Epoch 181/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4120 - accuracy: 0.8540\n", + "Epoch 00181: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4055 - accuracy: 0.8562 - val_loss: 0.1932 - val_accuracy: 0.9668\n", + "Epoch 182/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4321 - accuracy: 0.8457\n", + "Epoch 00182: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4321 - accuracy: 0.8457 - val_loss: 0.1927 - val_accuracy: 0.9660\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 183/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4351 - accuracy: 0.8459\n", + "Epoch 00183: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4335 - accuracy: 0.8482 - val_loss: 0.1944 - val_accuracy: 0.9645\n", + "Epoch 184/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4186 - accuracy: 0.8422\n", + "Epoch 00184: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4222 - accuracy: 0.8454 - val_loss: 0.1945 - val_accuracy: 0.9645\n", + "Epoch 185/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4106 - accuracy: 0.8459\n", + "Epoch 00185: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4106 - accuracy: 0.8459 - val_loss: 0.1939 - val_accuracy: 0.9660\n", + "Epoch 186/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4146 - accuracy: 0.8478\n", + "Epoch 00186: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4052 - accuracy: 0.8502 - val_loss: 0.1958 - val_accuracy: 0.9653\n", + "Epoch 187/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4220 - accuracy: 0.8566\n", + "Epoch 00187: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4220 - accuracy: 0.8575 - val_loss: 0.1955 - val_accuracy: 0.9660\n", + "Epoch 188/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4061 - accuracy: 0.8562\n", + "Epoch 00188: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4066 - accuracy: 0.8552 - val_loss: 0.1928 - val_accuracy: 0.9645\n", + "Epoch 189/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4161 - accuracy: 0.8486\n", + "Epoch 00189: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4174 - accuracy: 0.8459 - val_loss: 0.1945 - val_accuracy: 0.9653\n", + "Epoch 190/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3969 - accuracy: 0.8597\n", + "Epoch 00190: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4110 - accuracy: 0.8580 - val_loss: 0.1907 - val_accuracy: 0.9645\n", + "Epoch 191/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4214 - accuracy: 0.8432\n", + "Epoch 00191: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4214 - accuracy: 0.8432 - val_loss: 0.1925 - val_accuracy: 0.9630\n", + "Epoch 192/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4095 - accuracy: 0.8471\n", + "Epoch 00192: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4095 - accuracy: 0.8464 - val_loss: 0.1931 - val_accuracy: 0.9637\n", + "Epoch 193/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4241 - accuracy: 0.8492\n", + "Epoch 00193: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4146 - accuracy: 0.8510 - val_loss: 0.1926 - val_accuracy: 0.9645\n", + "Epoch 194/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4242 - accuracy: 0.8520\n", + "Epoch 00194: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4242 - accuracy: 0.8520 - val_loss: 0.1934 - val_accuracy: 0.9630\n", + "Epoch 195/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4063 - accuracy: 0.8505\n", + "Epoch 00195: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4063 - accuracy: 0.8505 - val_loss: 0.1918 - val_accuracy: 0.9637\n", + "Epoch 196/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4147 - accuracy: 0.8438\n", + "Epoch 00196: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4158 - accuracy: 0.8419 - val_loss: 0.1922 - val_accuracy: 0.9653\n", + "Epoch 197/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4135 - accuracy: 0.8475\n", + "Epoch 00197: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4124 - accuracy: 0.8502 - val_loss: 0.1919 - val_accuracy: 0.9660\n", + "Epoch 198/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4024 - accuracy: 0.8556\n", + "Epoch 00198: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4041 - accuracy: 0.8525 - val_loss: 0.1923 - val_accuracy: 0.9653\n", + "Epoch 199/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4030 - accuracy: 0.8562\n", + "Epoch 00199: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4089 - accuracy: 0.8560 - val_loss: 0.1907 - val_accuracy: 0.9660\n", + "Epoch 200/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.4057 - accuracy: 0.8491\n", + "Epoch 00200: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4102 - accuracy: 0.8474 - val_loss: 0.1917 - val_accuracy: 0.9653\n", + "Epoch 201/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4163 - accuracy: 0.8559\n", + "Epoch 00201: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4107 - accuracy: 0.8573 - val_loss: 0.1913 - val_accuracy: 0.9660\n", + "Epoch 202/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4054 - accuracy: 0.8503\n", + "Epoch 00202: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4091 - accuracy: 0.8482 - val_loss: 0.1881 - val_accuracy: 0.9668\n", + "Epoch 203/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4213 - accuracy: 0.8512\n", + "Epoch 00203: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4200 - accuracy: 0.8527 - val_loss: 0.1891 - val_accuracy: 0.9668\n", + "Epoch 204/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4040 - accuracy: 0.8544\n", + "Epoch 00204: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3927 - accuracy: 0.8588 - val_loss: 0.1875 - val_accuracy: 0.9668\n", + "Epoch 205/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.4046 - accuracy: 0.8454\n", + "Epoch 00205: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4003 - accuracy: 0.8469 - val_loss: 0.1835 - val_accuracy: 0.9660\n", + "Epoch 206/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3951 - accuracy: 0.8491\n", + "Epoch 00206: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4090 - accuracy: 0.8447 - val_loss: 0.1851 - val_accuracy: 0.9668\n", + "Epoch 207/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4145 - accuracy: 0.8469\n", + "Epoch 00207: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4180 - accuracy: 0.8439 - val_loss: 0.1863 - val_accuracy: 0.9675\n", + "Epoch 208/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4117 - accuracy: 0.8517\n", + "Epoch 00208: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4117 - accuracy: 0.8517 - val_loss: 0.1864 - val_accuracy: 0.9645\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 209/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4140 - accuracy: 0.8407\n", + "Epoch 00209: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4080 - accuracy: 0.8444 - val_loss: 0.1874 - val_accuracy: 0.9645\n", + "Epoch 210/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.4091 - accuracy: 0.8567\n", + "Epoch 00210: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4091 - accuracy: 0.8567 - val_loss: 0.1879 - val_accuracy: 0.9683\n", + "Epoch 211/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.4135 - accuracy: 0.8418\n", + "Epoch 00211: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4142 - accuracy: 0.8429 - val_loss: 0.1873 - val_accuracy: 0.9675\n", + "Epoch 212/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3887 - accuracy: 0.8600\n", + "Epoch 00212: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3889 - accuracy: 0.8580 - val_loss: 0.1868 - val_accuracy: 0.9645\n", + "Epoch 213/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3821 - accuracy: 0.8537\n", + "Epoch 00213: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3945 - accuracy: 0.8494 - val_loss: 0.1874 - val_accuracy: 0.9645\n", + "Epoch 214/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3953 - accuracy: 0.8531\n", + "Epoch 00214: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3957 - accuracy: 0.8535 - val_loss: 0.1881 - val_accuracy: 0.9645\n", + "Epoch 215/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3830 - accuracy: 0.8603\n", + "Epoch 00215: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3836 - accuracy: 0.8630 - val_loss: 0.1843 - val_accuracy: 0.9668\n", + "Epoch 216/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3839 - accuracy: 0.8588\n", + "Epoch 00216: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3831 - accuracy: 0.8623 - val_loss: 0.1822 - val_accuracy: 0.9668\n", + "Epoch 217/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3974 - accuracy: 0.8509\n", + "Epoch 00217: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3966 - accuracy: 0.8525 - val_loss: 0.1835 - val_accuracy: 0.9668\n", + "Epoch 218/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3907 - accuracy: 0.8572\n", + "Epoch 00218: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3962 - accuracy: 0.8550 - val_loss: 0.1864 - val_accuracy: 0.9690\n", + "Epoch 219/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3961 - accuracy: 0.8597\n", + "Epoch 00219: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3976 - accuracy: 0.8575 - val_loss: 0.1851 - val_accuracy: 0.9668\n", + "Epoch 220/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.4082 - accuracy: 0.8530\n", + "Epoch 00220: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4082 - accuracy: 0.8520 - val_loss: 0.1877 - val_accuracy: 0.9653\n", + "Epoch 221/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3963 - accuracy: 0.8588\n", + "Epoch 00221: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3989 - accuracy: 0.8562 - val_loss: 0.1850 - val_accuracy: 0.9675\n", + "Epoch 222/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3959 - accuracy: 0.8491\n", + "Epoch 00222: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4026 - accuracy: 0.8464 - val_loss: 0.1819 - val_accuracy: 0.9675\n", + "Epoch 223/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3829 - accuracy: 0.8576\n", + "Epoch 00223: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3892 - accuracy: 0.8557 - val_loss: 0.1818 - val_accuracy: 0.9683\n", + "Epoch 224/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4184 - accuracy: 0.8491\n", + "Epoch 00224: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4080 - accuracy: 0.8537 - val_loss: 0.1834 - val_accuracy: 0.9675\n", + "Epoch 225/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3915 - accuracy: 0.8575\n", + "Epoch 00225: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3959 - accuracy: 0.8567 - val_loss: 0.1817 - val_accuracy: 0.9683\n", + "Epoch 226/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3692 - accuracy: 0.8616\n", + "Epoch 00226: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3785 - accuracy: 0.8603 - val_loss: 0.1795 - val_accuracy: 0.9660\n", + "Epoch 227/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3888 - accuracy: 0.8646\n", + "Epoch 00227: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3913 - accuracy: 0.8628 - val_loss: 0.1802 - val_accuracy: 0.9698\n", + "Epoch 228/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3877 - accuracy: 0.8622\n", + "Epoch 00228: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3884 - accuracy: 0.8630 - val_loss: 0.1800 - val_accuracy: 0.9690\n", + "Epoch 229/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3978 - accuracy: 0.8568\n", + "Epoch 00229: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3927 - accuracy: 0.8565 - val_loss: 0.1780 - val_accuracy: 0.9698\n", + "Epoch 230/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4260 - accuracy: 0.8434\n", + "Epoch 00230: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4161 - accuracy: 0.8487 - val_loss: 0.1788 - val_accuracy: 0.9690\n", + "Epoch 231/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4188 - accuracy: 0.8486\n", + "Epoch 00231: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4204 - accuracy: 0.8484 - val_loss: 0.1831 - val_accuracy: 0.9683\n", + "Epoch 232/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3895 - accuracy: 0.8556\n", + "Epoch 00232: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4008 - accuracy: 0.8512 - val_loss: 0.1822 - val_accuracy: 0.9690\n", + "Epoch 233/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3864 - accuracy: 0.8555\n", + "Epoch 00233: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3864 - accuracy: 0.8555 - val_loss: 0.1806 - val_accuracy: 0.9683\n", + "Epoch 234/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3975 - accuracy: 0.8547\n", + "Epoch 00234: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3973 - accuracy: 0.8555 - val_loss: 0.1793 - val_accuracy: 0.9675\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 235/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3989 - accuracy: 0.8610\n", + "Epoch 00235: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3989 - accuracy: 0.8610 - val_loss: 0.1768 - val_accuracy: 0.9705\n", + "Epoch 236/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.4107 - accuracy: 0.8539\n", + "Epoch 00236: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.4055 - accuracy: 0.8540 - val_loss: 0.1794 - val_accuracy: 0.9668\n", + "Epoch 237/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3972 - accuracy: 0.8484\n", + "Epoch 00237: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4037 - accuracy: 0.8474 - val_loss: 0.1788 - val_accuracy: 0.9683\n", + "Epoch 238/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4146 - accuracy: 0.8434\n", + "Epoch 00238: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4144 - accuracy: 0.8469 - val_loss: 0.1790 - val_accuracy: 0.9690\n", + "Epoch 239/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3965 - accuracy: 0.8555\n", + "Epoch 00239: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3964 - accuracy: 0.8542 - val_loss: 0.1792 - val_accuracy: 0.9698\n", + "Epoch 240/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3815 - accuracy: 0.8672\n", + "Epoch 00240: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3920 - accuracy: 0.8610 - val_loss: 0.1770 - val_accuracy: 0.9683\n", + "Epoch 241/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3868 - accuracy: 0.8599\n", + "Epoch 00241: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3964 - accuracy: 0.8573 - val_loss: 0.1806 - val_accuracy: 0.9690\n", + "Epoch 242/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3872 - accuracy: 0.8620\n", + "Epoch 00242: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3890 - accuracy: 0.8595 - val_loss: 0.1780 - val_accuracy: 0.9690\n", + "Epoch 243/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4022 - accuracy: 0.8522\n", + "Epoch 00243: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3918 - accuracy: 0.8583 - val_loss: 0.1765 - val_accuracy: 0.9713\n", + "Epoch 244/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.3980 - accuracy: 0.8536\n", + "Epoch 00244: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 9ms/step - loss: 0.3987 - accuracy: 0.8520 - val_loss: 0.1775 - val_accuracy: 0.9713\n", + "Epoch 245/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3966 - accuracy: 0.8546\n", + "Epoch 00245: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3903 - accuracy: 0.8550 - val_loss: 0.1756 - val_accuracy: 0.9713\n", + "Epoch 246/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3880 - accuracy: 0.8686\n", + "Epoch 00246: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3901 - accuracy: 0.8648 - val_loss: 0.1742 - val_accuracy: 0.9690\n", + "Epoch 247/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3851 - accuracy: 0.8569\n", + "Epoch 00247: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3908 - accuracy: 0.8557 - val_loss: 0.1742 - val_accuracy: 0.9675\n", + "Epoch 248/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4120 - accuracy: 0.8512\n", + "Epoch 00248: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4064 - accuracy: 0.8530 - val_loss: 0.1757 - val_accuracy: 0.9690\n", + "Epoch 249/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3972 - accuracy: 0.8585\n", + "Epoch 00249: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3918 - accuracy: 0.8605 - val_loss: 0.1774 - val_accuracy: 0.9668\n", + "Epoch 250/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3972 - accuracy: 0.8530\n", + "Epoch 00250: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3940 - accuracy: 0.8547 - val_loss: 0.1753 - val_accuracy: 0.9690\n", + "Epoch 251/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3748 - accuracy: 0.8619\n", + "Epoch 00251: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3883 - accuracy: 0.8598 - val_loss: 0.1729 - val_accuracy: 0.9690\n", + "Epoch 252/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4063 - accuracy: 0.8534\n", + "Epoch 00252: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4004 - accuracy: 0.8545 - val_loss: 0.1749 - val_accuracy: 0.9690\n", + "Epoch 253/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3931 - accuracy: 0.8569\n", + "Epoch 00253: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3982 - accuracy: 0.8555 - val_loss: 0.1753 - val_accuracy: 0.9683\n", + "Epoch 254/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3887 - accuracy: 0.8602\n", + "Epoch 00254: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3944 - accuracy: 0.8575 - val_loss: 0.1766 - val_accuracy: 0.9705\n", + "Epoch 255/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3992 - accuracy: 0.8653\n", + "Epoch 00255: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3885 - accuracy: 0.8656 - val_loss: 0.1767 - val_accuracy: 0.9675\n", + "Epoch 256/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3829 - accuracy: 0.8591\n", + "Epoch 00256: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3933 - accuracy: 0.8593 - val_loss: 0.1748 - val_accuracy: 0.9705\n", + "Epoch 257/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3618 - accuracy: 0.8720\n", + "Epoch 00257: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3659 - accuracy: 0.8713 - val_loss: 0.1724 - val_accuracy: 0.9705\n", + "Epoch 258/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3713 - accuracy: 0.8669\n", + "Epoch 00258: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3778 - accuracy: 0.8638 - val_loss: 0.1717 - val_accuracy: 0.9690\n", + "Epoch 259/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3893 - accuracy: 0.8609\n", + "Epoch 00259: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3861 - accuracy: 0.8623 - val_loss: 0.1704 - val_accuracy: 0.9653\n", + "Epoch 260/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4058 - accuracy: 0.8541\n", + "Epoch 00260: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4047 - accuracy: 0.8555 - val_loss: 0.1697 - val_accuracy: 0.9698\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 261/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3938 - accuracy: 0.8637\n", + "Epoch 00261: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4018 - accuracy: 0.8595 - val_loss: 0.1723 - val_accuracy: 0.9683\n", + "Epoch 262/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3979 - accuracy: 0.8621\n", + "Epoch 00262: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3969 - accuracy: 0.8610 - val_loss: 0.1716 - val_accuracy: 0.9660\n", + "Epoch 263/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3927 - accuracy: 0.8541\n", + "Epoch 00263: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3899 - accuracy: 0.8552 - val_loss: 0.1736 - val_accuracy: 0.9683\n", + "Epoch 264/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3762 - accuracy: 0.8662\n", + "Epoch 00264: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3780 - accuracy: 0.8643 - val_loss: 0.1716 - val_accuracy: 0.9690\n", + "Epoch 265/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3918 - accuracy: 0.8612\n", + "Epoch 00265: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3974 - accuracy: 0.8578 - val_loss: 0.1706 - val_accuracy: 0.9683\n", + "Epoch 266/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3890 - accuracy: 0.8581\n", + "Epoch 00266: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3820 - accuracy: 0.8618 - val_loss: 0.1705 - val_accuracy: 0.9683\n", + "Epoch 267/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3909 - accuracy: 0.8582\n", + "Epoch 00267: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3994 - accuracy: 0.8532 - val_loss: 0.1732 - val_accuracy: 0.9698\n", + "Epoch 268/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3903 - accuracy: 0.8594\n", + "Epoch 00268: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3876 - accuracy: 0.8615 - val_loss: 0.1714 - val_accuracy: 0.9683\n", + "Epoch 269/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4032 - accuracy: 0.8547\n", + "Epoch 00269: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3948 - accuracy: 0.8580 - val_loss: 0.1709 - val_accuracy: 0.9690\n", + "Epoch 270/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3851 - accuracy: 0.8609\n", + "Epoch 00270: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3878 - accuracy: 0.8598 - val_loss: 0.1708 - val_accuracy: 0.9675\n", + "Epoch 271/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4082 - accuracy: 0.8474\n", + "Epoch 00271: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4066 - accuracy: 0.8494 - val_loss: 0.1715 - val_accuracy: 0.9683\n", + "Epoch 272/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.3856 - accuracy: 0.8574\n", + "Epoch 00272: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3856 - accuracy: 0.8573 - val_loss: 0.1743 - val_accuracy: 0.9698\n", + "Epoch 273/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3818 - accuracy: 0.8650\n", + "Epoch 00273: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3703 - accuracy: 0.8676 - val_loss: 0.1717 - val_accuracy: 0.9675\n", + "Epoch 274/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.4070 - accuracy: 0.8522\n", + "Epoch 00274: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3981 - accuracy: 0.8560 - val_loss: 0.1698 - val_accuracy: 0.9690\n", + "Epoch 275/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3911 - accuracy: 0.8567\n", + "Epoch 00275: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3911 - accuracy: 0.8567 - val_loss: 0.1697 - val_accuracy: 0.9690\n", + "Epoch 276/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3829 - accuracy: 0.8628\n", + "Epoch 00276: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3829 - accuracy: 0.8628 - val_loss: 0.1688 - val_accuracy: 0.9705\n", + "Epoch 277/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3661 - accuracy: 0.8681\n", + "Epoch 00277: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3750 - accuracy: 0.8666 - val_loss: 0.1685 - val_accuracy: 0.9683\n", + "Epoch 278/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.3851 - accuracy: 0.8556\n", + "Epoch 00278: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3849 - accuracy: 0.8557 - val_loss: 0.1695 - val_accuracy: 0.9698\n", + "Epoch 279/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3657 - accuracy: 0.8675\n", + "Epoch 00279: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3664 - accuracy: 0.8661 - val_loss: 0.1672 - val_accuracy: 0.9698\n", + "Epoch 280/1000\n", + "29/32 [==========================>...] - ETA: 0s - loss: 0.3869 - accuracy: 0.8637\n", + "Epoch 00280: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3895 - accuracy: 0.8615 - val_loss: 0.1682 - val_accuracy: 0.9698\n", + "Epoch 281/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3819 - accuracy: 0.8593\n", + "Epoch 00281: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3819 - accuracy: 0.8593 - val_loss: 0.1682 - val_accuracy: 0.9683\n", + "Epoch 282/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3578 - accuracy: 0.8775\n", + "Epoch 00282: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3634 - accuracy: 0.8721 - val_loss: 0.1655 - val_accuracy: 0.9683\n", + "Epoch 283/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3916 - accuracy: 0.8609\n", + "Epoch 00283: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3908 - accuracy: 0.8638 - val_loss: 0.1647 - val_accuracy: 0.9698\n", + "Epoch 284/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3779 - accuracy: 0.8645\n", + "Epoch 00284: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3798 - accuracy: 0.8643 - val_loss: 0.1665 - val_accuracy: 0.9675\n", + "Epoch 285/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3760 - accuracy: 0.8658\n", + "Epoch 00285: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3767 - accuracy: 0.8643 - val_loss: 0.1663 - val_accuracy: 0.9683\n", + "Epoch 286/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3719 - accuracy: 0.8591\n", + "Epoch 00286: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3740 - accuracy: 0.8562 - val_loss: 0.1688 - val_accuracy: 0.9690\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 287/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3942 - accuracy: 0.8609\n", + "Epoch 00287: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3916 - accuracy: 0.8605 - val_loss: 0.1672 - val_accuracy: 0.9675\n", + "Epoch 288/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3862 - accuracy: 0.8577\n", + "Epoch 00288: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3879 - accuracy: 0.8593 - val_loss: 0.1700 - val_accuracy: 0.9690\n", + "Epoch 289/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3733 - accuracy: 0.8625\n", + "Epoch 00289: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3798 - accuracy: 0.8608 - val_loss: 0.1680 - val_accuracy: 0.9698\n", + "Epoch 290/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3767 - accuracy: 0.8641\n", + "Epoch 00290: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3827 - accuracy: 0.8610 - val_loss: 0.1643 - val_accuracy: 0.9683\n", + "Epoch 291/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3873 - accuracy: 0.8625\n", + "Epoch 00291: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3927 - accuracy: 0.8608 - val_loss: 0.1667 - val_accuracy: 0.9675\n", + "Epoch 292/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3734 - accuracy: 0.8606\n", + "Epoch 00292: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3780 - accuracy: 0.8595 - val_loss: 0.1688 - val_accuracy: 0.9653\n", + "Epoch 293/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3803 - accuracy: 0.8641\n", + "Epoch 00293: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3885 - accuracy: 0.8590 - val_loss: 0.1683 - val_accuracy: 0.9660\n", + "Epoch 294/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3849 - accuracy: 0.8585\n", + "Epoch 00294: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3875 - accuracy: 0.8578 - val_loss: 0.1665 - val_accuracy: 0.9683\n", + "Epoch 295/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3917 - accuracy: 0.8544\n", + "Epoch 00295: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3914 - accuracy: 0.8527 - val_loss: 0.1677 - val_accuracy: 0.9675\n", + "Epoch 296/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3881 - accuracy: 0.8603\n", + "Epoch 00296: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3874 - accuracy: 0.8593 - val_loss: 0.1686 - val_accuracy: 0.9690\n", + "Epoch 297/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3823 - accuracy: 0.8588\n", + "Epoch 00297: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3829 - accuracy: 0.8583 - val_loss: 0.1652 - val_accuracy: 0.9675\n", + "Epoch 298/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3711 - accuracy: 0.8606\n", + "Epoch 00298: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3771 - accuracy: 0.8590 - val_loss: 0.1657 - val_accuracy: 0.9675\n", + "Epoch 299/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3764 - accuracy: 0.8600\n", + "Epoch 00299: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3771 - accuracy: 0.8648 - val_loss: 0.1669 - val_accuracy: 0.9698\n", + "Epoch 300/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3796 - accuracy: 0.8602\n", + "Epoch 00300: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3816 - accuracy: 0.8585 - val_loss: 0.1641 - val_accuracy: 0.9675\n", + "Epoch 301/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3891 - accuracy: 0.8635\n", + "Epoch 00301: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3891 - accuracy: 0.8635 - val_loss: 0.1655 - val_accuracy: 0.9683\n", + "Epoch 302/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3829 - accuracy: 0.8567\n", + "Epoch 00302: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3900 - accuracy: 0.8550 - val_loss: 0.1646 - val_accuracy: 0.9698\n", + "Epoch 303/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3580 - accuracy: 0.8634\n", + "Epoch 00303: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3671 - accuracy: 0.8595 - val_loss: 0.1645 - val_accuracy: 0.9690\n", + "Epoch 304/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3653 - accuracy: 0.8642\n", + "Epoch 00304: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3768 - accuracy: 0.8628 - val_loss: 0.1642 - val_accuracy: 0.9675\n", + "Epoch 305/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3804 - accuracy: 0.8576\n", + "Epoch 00305: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3831 - accuracy: 0.8575 - val_loss: 0.1649 - val_accuracy: 0.9675\n", + "Epoch 306/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3689 - accuracy: 0.86 - ETA: 0s - loss: 0.3818 - accuracy: 0.8641\n", + "Epoch 00306: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3771 - accuracy: 0.8648 - val_loss: 0.1658 - val_accuracy: 0.9705\n", + "Epoch 307/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.4086 - accuracy: 0.8466\n", + "Epoch 00307: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4042 - accuracy: 0.8497 - val_loss: 0.1663 - val_accuracy: 0.9690\n", + "Epoch 308/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.4046 - accuracy: 0.8606\n", + "Epoch 00308: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.4043 - accuracy: 0.8608 - val_loss: 0.1667 - val_accuracy: 0.9683\n", + "Epoch 309/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3712 - accuracy: 0.8716\n", + "Epoch 00309: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3728 - accuracy: 0.8683 - val_loss: 0.1658 - val_accuracy: 0.9690\n", + "Epoch 310/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3840 - accuracy: 0.8587\n", + "Epoch 00310: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3871 - accuracy: 0.8580 - val_loss: 0.1650 - val_accuracy: 0.9668\n", + "Epoch 311/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3780 - accuracy: 0.8583\n", + "Epoch 00311: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3780 - accuracy: 0.8583 - val_loss: 0.1625 - val_accuracy: 0.9690\n", + "Epoch 312/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3764 - accuracy: 0.8653\n", + "Epoch 00312: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3791 - accuracy: 0.8620 - val_loss: 0.1642 - val_accuracy: 0.9675\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 313/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3702 - accuracy: 0.8725\n", + "Epoch 00313: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3745 - accuracy: 0.8673 - val_loss: 0.1671 - val_accuracy: 0.9690\n", + "Epoch 314/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3874 - accuracy: 0.8639\n", + "Epoch 00314: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3850 - accuracy: 0.8658 - val_loss: 0.1636 - val_accuracy: 0.9705\n", + "Epoch 315/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3865 - accuracy: 0.8628\n", + "Epoch 00315: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3923 - accuracy: 0.8603 - val_loss: 0.1645 - val_accuracy: 0.9705\n", + "Epoch 316/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3751 - accuracy: 0.8634\n", + "Epoch 00316: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3751 - accuracy: 0.8630 - val_loss: 0.1648 - val_accuracy: 0.9698\n", + "Epoch 317/1000\n", + "27/32 [========================>.....] - ETA: 0s - loss: 0.3950 - accuracy: 0.8576\n", + "Epoch 00317: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3887 - accuracy: 0.8598 - val_loss: 0.1630 - val_accuracy: 0.9690\n", + "Epoch 318/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3613 - accuracy: 0.8684\n", + "Epoch 00318: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3663 - accuracy: 0.8643 - val_loss: 0.1622 - val_accuracy: 0.9675\n", + "Epoch 319/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3709 - accuracy: 0.8633\n", + "Epoch 00319: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3700 - accuracy: 0.8638 - val_loss: 0.1607 - val_accuracy: 0.9690\n", + "Epoch 320/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3685 - accuracy: 0.8594\n", + "Epoch 00320: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3713 - accuracy: 0.8595 - val_loss: 0.1633 - val_accuracy: 0.9660\n", + "Epoch 321/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3802 - accuracy: 0.8613\n", + "Epoch 00321: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3802 - accuracy: 0.8613 - val_loss: 0.1630 - val_accuracy: 0.9683\n", + "Epoch 322/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3504 - accuracy: 0.8694\n", + "Epoch 00322: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3655 - accuracy: 0.8640 - val_loss: 0.1601 - val_accuracy: 0.9690\n", + "Epoch 323/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3704 - accuracy: 0.8603\n", + "Epoch 00323: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3704 - accuracy: 0.8603 - val_loss: 0.1600 - val_accuracy: 0.9675\n", + "Epoch 324/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3675 - accuracy: 0.8608\n", + "Epoch 00324: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3675 - accuracy: 0.8608 - val_loss: 0.1600 - val_accuracy: 0.9668\n", + "Epoch 325/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3735 - accuracy: 0.8602\n", + "Epoch 00325: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3718 - accuracy: 0.8610 - val_loss: 0.1629 - val_accuracy: 0.9690\n", + "Epoch 326/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3637 - accuracy: 0.8631\n", + "Epoch 00326: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3738 - accuracy: 0.8590 - val_loss: 0.1627 - val_accuracy: 0.9705\n", + "Epoch 327/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3681 - accuracy: 0.8691\n", + "Epoch 00327: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3681 - accuracy: 0.8691 - val_loss: 0.1621 - val_accuracy: 0.9683\n", + "Epoch 328/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3702 - accuracy: 0.8628\n", + "Epoch 00328: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3737 - accuracy: 0.8613 - val_loss: 0.1605 - val_accuracy: 0.9675\n", + "Epoch 329/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3924 - accuracy: 0.8602\n", + "Epoch 00329: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3923 - accuracy: 0.8600 - val_loss: 0.1633 - val_accuracy: 0.9705\n", + "Epoch 330/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3870 - accuracy: 0.8509\n", + "Epoch 00330: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3840 - accuracy: 0.8540 - val_loss: 0.1613 - val_accuracy: 0.9713\n", + "Epoch 331/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3729 - accuracy: 0.8641\n", + "Epoch 00331: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3792 - accuracy: 0.8610 - val_loss: 0.1590 - val_accuracy: 0.9705\n", + "Epoch 332/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3809 - accuracy: 0.8634\n", + "Epoch 00332: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3784 - accuracy: 0.8666 - val_loss: 0.1589 - val_accuracy: 0.9705\n", + "Epoch 333/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.3621 - accuracy: 0.8690\n", + "Epoch 00333: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3607 - accuracy: 0.8701 - val_loss: 0.1596 - val_accuracy: 0.9698\n", + "Epoch 334/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3794 - accuracy: 0.8576\n", + "Epoch 00334: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3713 - accuracy: 0.8605 - val_loss: 0.1589 - val_accuracy: 0.9690\n", + "Epoch 335/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3656 - accuracy: 0.8650\n", + "Epoch 00335: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3624 - accuracy: 0.8663 - val_loss: 0.1588 - val_accuracy: 0.9698\n", + "Epoch 336/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3751 - accuracy: 0.8609\n", + "Epoch 00336: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3773 - accuracy: 0.8600 - val_loss: 0.1557 - val_accuracy: 0.9683\n", + "Epoch 337/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.3691 - accuracy: 0.8641\n", + "Epoch 00337: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3670 - accuracy: 0.8653 - val_loss: 0.1569 - val_accuracy: 0.9713\n", + "Epoch 338/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3592 - accuracy: 0.8597\n", + "Epoch 00338: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3578 - accuracy: 0.8598 - val_loss: 0.1565 - val_accuracy: 0.9713\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 339/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3769 - accuracy: 0.8633\n", + "Epoch 00339: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3769 - accuracy: 0.8633 - val_loss: 0.1553 - val_accuracy: 0.9683\n", + "Epoch 340/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3625 - accuracy: 0.8669\n", + "Epoch 00340: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3648 - accuracy: 0.8653 - val_loss: 0.1565 - val_accuracy: 0.9698\n", + "Epoch 341/1000\n", + "26/32 [=======================>......] - ETA: 0s - loss: 0.3605 - accuracy: 0.8669\n", + "Epoch 00341: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3588 - accuracy: 0.8688 - val_loss: 0.1580 - val_accuracy: 0.9675\n", + "Epoch 342/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3730 - accuracy: 0.8650\n", + "Epoch 00342: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3672 - accuracy: 0.8686 - val_loss: 0.1579 - val_accuracy: 0.9675\n", + "Epoch 343/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.3742 - accuracy: 0.8616\n", + "Epoch 00343: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 8ms/step - loss: 0.3748 - accuracy: 0.8615 - val_loss: 0.1585 - val_accuracy: 0.9660\n", + "Epoch 344/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3826 - accuracy: 0.8641\n", + "Epoch 00344: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3755 - accuracy: 0.8668 - val_loss: 0.1620 - val_accuracy: 0.9675\n", + "Epoch 345/1000\n", + "31/32 [============================>.] - ETA: 0s - loss: 0.3707 - accuracy: 0.8644\n", + "Epoch 00345: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3706 - accuracy: 0.8646 - val_loss: 0.1571 - val_accuracy: 0.9698\n", + "Epoch 346/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3740 - accuracy: 0.8537\n", + "Epoch 00346: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3666 - accuracy: 0.8578 - val_loss: 0.1587 - val_accuracy: 0.9683\n", + "Epoch 347/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3786 - accuracy: 0.8583\n", + "Epoch 00347: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3786 - accuracy: 0.8583 - val_loss: 0.1588 - val_accuracy: 0.9698\n", + "Epoch 348/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3673 - accuracy: 0.8694\n", + "Epoch 00348: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3631 - accuracy: 0.8696 - val_loss: 0.1585 - val_accuracy: 0.9690\n", + "Epoch 349/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3887 - accuracy: 0.8557\n", + "Epoch 00349: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3887 - accuracy: 0.8557 - val_loss: 0.1573 - val_accuracy: 0.9690\n", + "Epoch 350/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3770 - accuracy: 0.8575\n", + "Epoch 00350: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3770 - accuracy: 0.8575 - val_loss: 0.1573 - val_accuracy: 0.9683\n", + "Epoch 351/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3831 - accuracy: 0.8603\n", + "Epoch 00351: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3783 - accuracy: 0.8610 - val_loss: 0.1587 - val_accuracy: 0.9683\n", + "Epoch 352/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.3559 - accuracy: 0.8708\n", + "Epoch 00352: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3571 - accuracy: 0.8698 - val_loss: 0.1571 - val_accuracy: 0.9690\n", + "Epoch 353/1000\n", + "30/32 [===========================>..] - ETA: 0s - loss: 0.3684 - accuracy: 0.8641\n", + "Epoch 00353: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3686 - accuracy: 0.8635 - val_loss: 0.1579 - val_accuracy: 0.9690\n", + "Epoch 354/1000\n", + "28/32 [=========================>....] - ETA: 0s - loss: 0.3689 - accuracy: 0.8652\n", + "Epoch 00354: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3731 - accuracy: 0.8633 - val_loss: 0.1575 - val_accuracy: 0.9705\n", + "Epoch 355/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3796 - accuracy: 0.8584\n", + "Epoch 00355: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3829 - accuracy: 0.8588 - val_loss: 0.1584 - val_accuracy: 0.9675\n", + "Epoch 356/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3776 - accuracy: 0.8591\n", + "Epoch 00356: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 12ms/step - loss: 0.3737 - accuracy: 0.8623 - val_loss: 0.1568 - val_accuracy: 0.9675\n", + "Epoch 357/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3539 - accuracy: 0.8697\n", + "Epoch 00357: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 10ms/step - loss: 0.3696 - accuracy: 0.8635 - val_loss: 0.1571 - val_accuracy: 0.9683\n", + "Epoch 358/1000\n", + "32/32 [==============================] - ETA: 0s - loss: 0.3729 - accuracy: 0.8671\n", + "Epoch 00358: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3729 - accuracy: 0.8671 - val_loss: 0.1568 - val_accuracy: 0.9675\n", + "Epoch 359/1000\n", + "25/32 [======================>.......] - ETA: 0s - loss: 0.3893 - accuracy: 0.8666\n", + "Epoch 00359: saving model to model/point_history_classifier\\point_history_classifier.hdf5\n", + "32/32 [==============================] - 0s 11ms/step - loss: 0.3871 - accuracy: 0.8666 - val_loss: 0.1558 - val_accuracy: 0.9683\n", + "Epoch 00359: early stopping\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.fit(\n", + " X_train,\n", + " y_train,\n", + " epochs=1000,\n", + " batch_size=128,\n", + " validation_data=(X_test, y_test),\n", + " callbacks=[cp_callback, es_callback]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# 保存したモデルのロード\n", + "model = tf.keras.models.load_model(model_save_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.9438375 0.01624594 0.01188833 0.02802826]\n", + "0\n" + ] + } + ], + "source": [ + "# 推論テスト\n", + "predict_result = model.predict(np.array([X_test[0]]))\n", + "print(np.squeeze(predict_result))\n", + "print(np.argmax(np.squeeze(predict_result)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 混同行列" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAFlCAYAAAAjyXUiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjKUlEQVR4nO3deZxcZZno8d/TexLWAIZsTlA2cRlAEkAGLgJCiEvABWFGwYg3eicofMbrCI4b2wyjgCNXBycOSHAEkxEZtqjEGESUJQEDZiEhbCadhLAmhCXdXfXeP/qAJSbdoft06lT178vnfFL11jl1njq29fTzPuecjpQSkiTloaHaAUiS6odJRZKUG5OKJCk3JhVJUm5MKpKk3JhUJEm5aRroHXQ+9YjnLPfBkFGHVzsESVuhq6M98nqvPL4vm3d9U27x9MWAJxVJ0lYql6odQb85/SVJyo2ViiQVRSpXO4J+M6lIUlGUTSqSpJykOqhU7KlIknJjpSJJReH0lyQpN3Uw/WVSkaSiqIPrVEwqklQUdVCp2KiXJOXGSkWSisJGvSQpL/VwnYpJRZKKwkpFkpSbOqhUbNRLknJjpSJJReF1KpKk3NTB9JdJRZKKog4a9fZUJEm5sVKRpKJw+kuSlJs6mP4yqUhSQaTk2V+SpLzUwfSXjXpJUm6sVCSpKOypSJJyUwfTXyYVSSoKb9MiScpNHVQqNuolSbmxUpGkorBRL0nKjdNfkqTclMv9X3oQEW0RcU9E3B8RiyPi3Gz8qoh4NCIWZsv+2XhExGURsSIiHoiIA3v7CFYqkjR4bAKOSiltjIhm4I6I+Fn22hdSSj95zfrHA3tly8HA5dm/W2RSkaSiGOCeSkopARuzp83ZknrYZDJwdbbdXRGxU0SMTCmt2dIGdTv9tWlTByd/6kw+eNrfM/nvPs13/vOHANx970I+MuUMTvjYZ/jS+RfT1dV9Xvg99z3AIcd+iA+dNo0PnTaNy6/8UTXDL6zjjj2SxYtu58Eld/CPX5hW7XBqhsetbwbbcUup1O+lNxHRGBELgXXAnJTS3dlLF2ZTXN+KiNZsbDSwsmLzVdnYFtVtpdLS0syVl13E0KFD6Ozq4tT/83857OB38qULLuGKb/8L4944hu98/2pu+Nkv+dD7jwPgwL9+G//+zXOrHHlxNTQ0cNm3L2TipFNYtWoNd905m5tuvpWlSx+qdmiF5nHrm0F53HKoVCJiKjC1Ymh6Smn6K09Sd+bZPyJ2Aq6PiLcB5wBrgRZgOvBF4Ly+7L/XSiUi9o2IL2bNmsuyx2/py862pYhg6NAhAHR1ddHV1UVjQwPNTU2Me+MYAA4dfyC/vO2OaoZZUyaMP4CHH36MRx/9I52dncyadQMfyBKytszj1jeD8rilcr+XlNL0lNJBFcv0ze4qpeeAecDElNKa1G0T8ANgQrZaOzC2YrMx2dgW9ZhUIuKLwI+BAO7JlgCujYizez1AVVYqlfjQadM44n2ncOj4A3j7fvtQKpVZtHQ5ALfedgdr1z316vr3L1rKB0/7ez7z+a+w4pHHqxV2YY0avTsrV61+9fmq9jWMGrV7FSOqDR63vvG45S8idssqFCJiCPAe4MGIGJmNBXACsCjb5Ebg1OwssEOA9T31U6D36a/TgbemlDpfE9ilwGLgoi0E/mr59e+XXMCnTj2ll90MjMbGRq6b8V02PL+RM885nxWPPs43zzubb1w2nY7OTt414UAaGrrz6n77vJk5181g6NAh3P67e/jcOecxe+YVVYlb0iA18Bc/jgRmREQj3UXFrJTSzRHxq4jYje6iYSHwmWz92cAkYAXwIjCltx30llTKwCjgtb+2j8xe26ys3JoO0PnUIz2dWbBN7LD9dkw48B3ccdcCpvzth7n68osB+O3d9/L4yu5Kbrthw15d/4h3TeCCS77Ls8+tZ+eddqxKzEW0un0tY8eMevX5mNEjWb16bRUjqg0et74ZlMdtgC9+TCk9ABywmfGjtrB+Al7XGRK99VTOAuZGxM8iYnq2/ByYC5z5ena0rT3z7HNseL77zLmXN23izvm/Z4+/GsvTzz4HQEdHB1f+6L856YRJADz19DN0Hz/4w5JllFNipx13qErsRTV/wUL23HMPxo0bS3NzMyedNJmbbr612mEVnsetbwblcRvgix+3hR4rlZTSzyNib7qbNq+cRtYOzE8F/2PKTz79LP90wcWUymVSOXHcUYdz5GEHc/F3/pNf/+4eUrnMR098Lwe/c38Abp13BzOvv4XGpkbaWlr45rln0z29qFeUSiXOPOvLzL7lGhobGrhqxkyWLFle7bAKz+PWN4PyuNXBbVrild/OB0oRpr9q0ZBRh1c7BElboaujPbffPl/6xXf6/X055LgzqvrbcN1epyJJNacA01f9ZVKRpKIwqUiSclMHPZW6vfeXJGnbs1KRpKJw+kuSlJs6mP4yqUhSUVipSJJyUweVio16SVJurFQkqSic/pIk5cakIknKzQDfi3FbMKlIUlHUQaVio16SlBsrFUkqijqoVEwqklQUdXCdiklFkoqiDioVeyqSpNxYqUhSUXhKsSQpN3Uw/WVSkaSiMKlIknJTB2d/2aiXJOXGSkWSCiKVbdRLkvJiT0WSlJs66KmYVCSpKOpg+stGvSQpN1YqklQU9lQkSbmpg6Ti9JckFUVK/V96EBFtEXFPRNwfEYsj4txsfI+IuDsiVkTEzIhoycZbs+crstfH9fYRTCqSNHhsAo5KKf01sD8wMSIOAf4V+FZKaU/gWeD0bP3TgWez8W9l6/XIpCJJRVEu93/pQeq2MXvanC0JOAr4STY+Azghezw5e072+tERET3tw6QiSUVRTv1eImJqRCyoWKZW7iIiGiNiIbAOmAM8DDyXUurKVlkFjM4ejwZWAmSvrwd26ekj2KiXpKLI4eLHlNJ0YHoPr5eA/SNiJ+B6YN9+77SCSUWSimIbXvyYUnouIuYBhwI7RURTVo2MAdqz1dqBscCqiGgCdgSe7ul9BzypDBl1+EDvoi6t/+q7qx1CTdrxvHnVDqEm9ThJrroREbsBnVlCGQK8h+7m+zzgw8CPgdOAG7JNbsye35m9/quUej7FzEpFkgoiDfx1KiOBGRHRSHdPfVZK6eaIWAL8OCIuAH4PXJGtfwXww4hYATwDnNzbDkwqklQUAzz9lVJ6ADhgM+OPABM2M/4y8JHXsw+TiiQVRR3cpdhTiiVJubFSkaSiqINb35tUJKko6uCGkiYVSSoKKxVJUm5s1EuS9CdWKpJUFE5/SZLysg2uqB9wJhVJKgorFUlSbuogqdiolyTlxkpFkoqiDk4pNqlIUlHUwfSXSUWSCiLVQVKxpyJJyo2ViiQVRR1UKiYVSSoKL36UJOXGSkWSlJs6SCo26iVJubFSkaSCSKn2KxWTiiQVRR1Mf5lUJKkoTCqSpLx4Rb0kSRWsVCSpKOqgUjGpSFJR1P4F9SYVSSoKeyqSJFWwUpGkoqiDSsWkIklFUQc9Fae/JKkgUjn1e+lJRIyNiHkRsSQiFkfEmdn41yOiPSIWZsukim3OiYgVEbEsIo7r7TNYqUhSUQx8pdIFfD6ldF9EbA/cGxFzste+lVK6uHLliNgPOBl4KzAK+GVE7J1SKm1pB4M2qRx37JFceul5NDY0cOUPruUb3/xutUMqjNhhOK0f+AwxbEcg0XnfPLrm/4KGN7yRlklTiJY2ys89yab/uRw6XqJhj7fRctRHicYmUqmLjrnXUn5sSbU/RqH48/b6tba2Mu9X19Ha2kpjUyM//ektnHfeJdUOq6allNYAa7LHz0fEUmB0D5tMBn6cUtoEPBoRK4AJwJ1b2mBQJpWGhgYu+/aFTJx0CqtWreGuO2dz0823snTpQ9UOrRjKZTp+eQ3ltY9BSxtDTj+f0qN/oOV9n+oe/+ODNP31ETQf+l46f/0TePF5Ns28hLTxOWK3MbSd8o+8dNnnqv0pCsOft77ZtGkT7zn2JF544UWampr49W3X84ufz+Pue+6rdmgDJo9TiiNiKjC1Ymh6Smn6ZtYbBxwA3A0cBpwREacCC+iuZp6lO+HcVbHZKnpOQoOzpzJh/AE8/PBjPProH+ns7GTWrBv4wPt7nSocNNLG57oTCkDHy5SfWk1sP5yG4btT/uODAJQeXUTTvuMBKD/xOGnjc93bPrmKaG6BxkH5+8pm+fPWdy+88CIAzc1NNDc318Wt4XtU7v+SUpqeUjqoYtlcQtkOuA44K6W0AbgceDOwP92VTJ9Lwj4nlYiY0tdtq23U6N1ZuWr1q89Xta9h1KjdqxhRccWOu9Kw+19Rbn+Y8pOraNz7nQA0vuVgYofhf7F+477juxNSqWsbR1pc/rz1XUNDAwvm38rq9gf45dzbuWf+76sd0oBK5f4vvYmIZroTyo9SSj8FSCk9kVIqpZTKwPfpnuICaAfGVmw+Jhvbov5UKuf2EPTUiFgQEQvK5Rf6sQtVVXMrrR8+k45b/ws6XmLTzd+n+aBjaDv9fKKl7S8SR+w6mpajT2bT7CurFLDqTblc5qDxxzJuj4MYf9ABvPWt+1Q7pIGVQ6XSk4gI4ApgaUrp0orxkRWrnQgsyh7fCJwcEa0RsQewF3BPT/vocY4iIh7Y0kvAiC1tl5Vb0wGaWkYXrl5d3b6WsWNGvfp8zOiRrF69tooRFVBDI60fPpOuRb+jtGwBAOnpNbx8zb8CEMN3p3HP/V9dPbYfTttHzmLTDd8jPbuuGhEXlj9v/bd+/QZu+/VvOfbYI1m8eFm1w6llhwEfB/4QEQuzsS8Bp0TE/kACHgM+DZBSWhwRs4AldJ85Nq2nM7+g90b9COA44NnXjAfwu639FEUzf8FC9txzD8aNG0t7+1pOOmkyHz91WrXDKpSW932K9NRquu7+2Z8Gh+4AL24Agua/mUzXfXO7x1uH0nry5+n41UzKq2w+v5Y/b32z667D6ezsYv36DbS1tXHM0UfwzYv/vdphDaitmb7q1/undAfd39+vNbuHbS4ELtzaffSWVG4GtkspLXztCxFx29bupGhKpRJnnvVlZt9yDY0NDVw1YyZLliyvdliF0TB2b5rfcTjlJ/5I26e6f5Y6580ihu9O80HHAND14AK67r8dgObx76Fh5xE0H34izYefCNBd0by4oTofoGD8eeubkSNHcOUV/0ZjYwPR0MBPfnITs2f/stphDaw6uKI+BvpsiiJOf9WC9V99d7VDqEk7njev2iHUpM396qqt09nRntvhe/I9/6vf35e7zfl1Vf/nHJSnFEuSBoYXE0hSQQx0T2VbMKlIUkGYVCRJ+Um1390yqUhSQdRDpWKjXpKUGysVSSqIVHb6S5KUk3qY/jKpSFJBJBv1kqS81EOlYqNekpQbKxVJKggb9ZKk3NTDX0s2qUhSQdRDpWJPRZKUGysVSSqIeqhUTCqSVBD2VCRJubFSkSTlph6uqLdRL0nKjZWKJBVEPdymxaQiSQVRroPpL5OKJBVEPfRUTCqSVBD1cPaXjXpJUm6sVCSpILz4UZKUm3qY/jKpSFJB1MPZX/ZUJEm5sVKRpIKoh1OKrVQkqSBS6v/Sk4gYGxHzImJJRCyOiDOz8eERMSciHsr+3Tkbj4i4LCJWRMQDEXFgb5/BpCJJBVFO0e+lF13A51NK+wGHANMiYj/gbGBuSmkvYG72HOB4YK9smQpc3tsOTCqSVBApRb+Xnt8/rUkp3Zc9fh5YCowGJgMzstVmACdkjycDV6dudwE7RcTInvZhUpGkQSgixgEHAHcDI1JKa7KX1gIjssejgZUVm63KxrbIpCJJBZFHTyUipkbEgopl6mv3ExHbAdcBZ6WUNvx5DCkBfb4M07O/CmrH8+ZVO4SatOHC46odQk3a5atzqx2CyOc6lZTSdGD6ll6PiGa6E8qPUko/zYafiIiRKaU12fTWumy8HRhbsfmYbGyLrFQkqSAGuqcSEQFcASxNKV1a8dKNwGnZ49OAGyrGT83OAjsEWF8xTbZZViqSVBDb4Ir6w4CPA3+IiIXZ2JeAi4BZEXE68DhwUvbabGASsAJ4EZjS2w5MKpI0SKSU7gC2lLmO3sz6CZj2evZhUpGkgqiDmxSbVCSpKOrhhpImFUkqCO/9JUlSBSsVSSqIcrUDyIFJRZIKIm3xxKzaYVKRpIIo18HpXyYVSSqIch1UKjbqJUm5sVKRpIKwpyJJyo1nf0mSclMPlYo9FUlSbqxUJKkgnP6SJOXGpCJJyk099FRMKpJUEOXazyk26iVJ+bFSkaSCqIfbtJhUJKkg6uB+kiYVSSoKz/6SJOWmHLU//WWjXpKUGysVSSoIeyqSpNzYU5Ek5caLHyVJqmClIkkF4cWPkqTc2KiXJOWmHnoqJhVJKoh6OPvLRr0kKTdWKpJUEPXQUxm0lcpxxx7J4kW38+CSO/jHL0yrdjg1w+O2ZbH9zrR+9Au0TbmAtinn03TgMd3ju42l9e++RNsnzqP1xM9BS1v3Bg2NtBx/Om2fOI+2T15A08GTqhh9MU2bNoUFC27l3nvncMYZn6x2OAOuHP1fehMRV0bEuohYVDH29Yhoj4iF2TKp4rVzImJFRCyLiON6e/9BWak0NDRw2bcvZOKkU1i1ag133Tmbm26+laVLH6p2aIXmcetZKpfpmDeTtO6P0NxG26lfpfT4ElqO+wSdt82kvGo5jW/7G5rHH0/nb6+ncZ+DoLGJl6/6KjS10PbJCygtvZu04elqf5RC2G+/vZky5RQOP/wDdHR0cuONVzN79lweeeTxaoc2YLZRT+Uq4DvA1a8Z/1ZK6eLKgYjYDzgZeCswCvhlROydUipt6c17rVQiYt+IODoitnvN+MSti794Jow/gIcffoxHH/0jnZ2dzJp1Ax94f68JeNDzuPXihfXdCQWg82XKT68httuJhuEjKK9aDkD58cU07v3O7nUSRHMrRAM0NUOpi9TxcpWCL559992T+fMX8tJLL1MqlfjNb+7mhBNq9mtnq5RzWHqTUrodeGYrQ5oM/DiltCml9CiwApjQ0wY9JpWI+BxwA/BZYFFETK54+Z+3MqjCGTV6d1auWv3q81Xtaxg1avcqRlQbPG5bL3bYhYYRb6S85hHKT62mcc8DAGjcZzyxw3AASssXkDo3MeTvv8WQT19M5/xfwMsvVDPsQlm8eDmHHTae4cN3YsiQNiZOfDdjxoyqdliFFxFTI2JBxTJ1Kzc9IyIeyKbHds7GRgMrK9ZZlY1tUW/TX/8beGdKaWNEjAN+EhHjUkrfhi1f+pl9iKkA0bgjDQ3DetmNVEeaW2mdPI3OX10LHS/T8fMraTn6b2k+9P10PbwQSl0ANIzcA1KZly7/B2gbStsp51B+fAlp/ZPVjb8gli1bwSWXfI+bbvovXnzxRe6/fzGl0hZnXepCyuE6lZTSdGD669zscuB8us8VOB+4BOhTE6u3pNKQUtoIkFJ6LCKOpDux/BU9JJXKD9XUMrpwJzSsbl/L2IrfeMaMHsnq1WurGFFt8LhthYZGWidPo2vpXZQeug+A9MxaNv33pQDEziNofNM7AGh8yyGUHl0E5RK8+Dzl9odo2H0cJZPKq2bMmMmMGTMBOPfcL9DeXt8/b9W6TiWl9MQrjyPi+8DN2dN2YGzFqmOysS3qrafyRETsX7HjjcD7gF2Bt299yMUyf8FC9txzD8aNG0tzczMnnTSZm26+tdphFZ7HrXctE6dQfnoNXQsqjsvQ7bMH0V2tLLwNgLThaRrf+Jbul5pbaBj5ZsrPrNmm8RbdbrvtAsDYsaOYPHkiM2feUOWIBta26KlsTkSMrHh6IvDKmWE3AidHRGtE7AHsBdzT03v1VqmcCnRVDqSUuoBTI+I/XlfUBVIqlTjzrC8z+5ZraGxo4KoZM1myZHm1wyo8j1vPGkbvRdNb30X5yZU0nvZ1ADpuv46GnUfQdMBRAJQeuo/SojsA6Pr9r2g5/pO0TTkfCLoW3UF6clWVoi+ma6/9HsOH70xnZydnnfVV1q/fUO2Qal5EXAscCewaEauArwFHZgVEAh4DPg2QUlocEbOAJXTngmk9nfkFECkN7OxUEae/VL82XOjZaH2xy1fnVjuEmvXSS4/ndseu/zf2Y/3+vvzsyv+q6h3EBuV1KpJURN5QUpKUm3q4oaRJRZIKoh6SyqC995ckKX9WKpJUEPVwVpNJRZIKwka9JCk39dBTMalIUkHUw/SXjXpJUm6sVCSpIMp1UKuYVCSpIOypSJJyU/t1ij0VSVKOrFQkqSCc/pIk5caLHyVJufHsL0lSbmo/pdiolyTlyEpFkgrCRr0kKTf2VCRJuan9lGJSkaTCqIfpLxv1kqTcWKlIUkHYU5Ek5ab2U4pJRZIKw56KJEkVrFQkqSBSHUyAmVQkqSDqYfrLpCJJBeHZX5Kk3NR+SrFRL0nKkUlFkgqiTOr30puIuDIi1kXEooqx4RExJyIeyv7dORuPiLgsIlZExAMRcWBv729SkaSCKOewbIWrgImvGTsbmJtS2guYmz0HOB7YK1umApf39uYmFUkqiJTDf73uI6XbgWdeMzwZmJE9ngGcUDF+dep2F7BTRIzs6f1NKpJUEHlUKhExNSIWVCxTt2LXI1JKa7LHa4ER2ePRwMqK9VZlY1s04Gd/NUQM9C7q0o5tw6odQk3a+Stzqh1CTXr23GOqHYJyklKaDkzvx/YpIvp8IpqnFEtSQVTxivonImJkSmlNNr21LhtvB8ZWrDcmG9sip78kqSC2UaN+c24ETssenwbcUDF+anYW2CHA+oppss2yUpGkgiinga9UIuJa4Ehg14hYBXwNuAiYFRGnA48DJ2WrzwYmASuAF4Epvb2/SUWSBpGU0ilbeOnozaybgGmv5/1NKpJUEPVwmxaTiiQVhDeUlCTlxr+nIknKTT38PRVPKZYk5cZKRZIKwp6KJCk39lQkSbmph56KSUWSCiJtgyvqB5qNeklSbqxUJKkgbNRLknJjT0WSlJt6OPvLnookKTdWKpJUEPZUJEm5qYdTik0qklQQNuolSbmxUS9JUgUrFUkqCBv1kqTc2KiXJOWmHioVeyqSpNxYqUhSQdTD2V8mFUkqiLI9FUlSXmo/pZhUJKkwbNRLklTBSkWSCqIeKhWTiiQVhBc/SpJyY6UiScqN16nUuIaGBu66czbtq9dy4omfqHY4hTRq9O5893vfYLc37EJKiR9eNYvp37uaD5wwkS+cfQZ77/Nmjj3qI9z/+0XVDrXQli37HRuff4FSqURXV4l3HfbeaodUGLH9cFre+yli2A4AdC38NV33ziF2G0vLcacSLW2k9U+x6ab/gI6XadzvEJonHP+n7d8whpev+jpp3cpqfYSaEhGPAc8DJaArpXRQRAwHZgLjgMeAk1JKz/bl/Qd1UvnsZ0/nwQdXsP0O21U7lMIqdZX42pcv4oH7lzBsu2HM/fV13DbvtyxdspxPfOyzXPJv51Y7xJpx7HEn8fTTffr/aV1L5RId82aSnngcWtpoO+1rlB5bTMvxU+icN5PyymU0vv1wmg8+ns7fXE9pyV2UltwFQOw6htYPfrZuEso27Km8O6X0VMXzs4G5KaWLIuLs7PkX+/LGvZ5SHBETImJ89ni/iPiHiJjUl50VyejRIzn++KO58gfXVDuUQnviiSd54P4lALyw8QWWL3uEkaNG8NDyR3h4xaNVjk514YX13QkFoONlyk+vIbbfiYbhIyivXAZA+bHFNO79zr/YtGm/gyktvXtbRjugyqR+L300GZiRPZ4BnNDXN+oxqUTE14DLgMsj4l+A7wDDgLMj4p/6utMiuOTir3POORdSLtf+HOa2MvaNo3n7O97CvQvur3YotSclbrn5R9z5u1s4/fS/rXY0hRU77ELDiDdSXv0I5adW07jXAQA07nsQsf3wv1i/cd8JdNVRUkkp9XvZmt0At0bEvRExNRsbkVJakz1eC4zo62fobfrrw8D+QGu2ozEppQ0RcTFwN3Dh5jbKAp0K0Ni4Ew2Nw/oa34CYNOlo1j35FL///R844ohDqx1OTRg2bCg/+OFlfPmcf2bj8y9UO5ya8+6jPsTq1WvZbbddmH3LNSxb9jB33FE/X4a5aG6l9cQz6Jx7LXS8TMfsK2g55u9oftcH6FqxEMqlP1u9YeSboKuD9FR7deItqMrv38z0lNL0iud/k1Jqj4g3AHMi4sHK7VNKKSL6/Nt2b0mlK6VUAl6MiIdTShuynb4UEeUtbZR9gOkALa1jClcKvOvQ8bzvvccy8bijaGtrZYcdtueqH1zGJ6Z8rtqhFVJTUxM/+OFl/GTWTdxy05xqh1OTVq9eC8CTTz7NDTf+nPEH7W9SqdTQSOuJZ9C15E5Ky+8FID2zlk2zLgEgdh5B45ve8WebNL5lAl1Zb6Ve5HFKceX37xZeb8/+XRcR1wMTgCciYmRKaU1EjATW9XX/vfVUOiJiaPb41QnNiNgR2GJSKbovf+Ui3vTm8ey9z6F87OPTmHfbb00oPfi371zI8mWP8L3vXlXtUGrS0KFD2G67Ya8+PuboI1i8eFmVoyqWluOnUH56NV3zb/3T4NDtswdB87veT9fC2yq2CBr3nUBp6T3bMMqBl3L4rycRMSwitn/lMXAssAi4ETgtW+004Ia+fobeKpUjUkqbAFJKlUmkuSIA1bGDD3knHz3lBBYvWsa83/wPABeedyktrS38yze+wi67DueaWf/B4j8s5aQPfqq6wRbUiBG7MWvm9wFoamrkxzNv4NY5t1U3qAJpGL0XTW87jPK6lTR+ovtswo7br6Nh5xE0HXgUAKXl91L6w2/+tM3YvUnPP0Na/2RVYh4o2+DW9yOA6yMCur//r0kp/Twi5gOzIuJ04HHgpL7uIAb6FLYiTn/Vgh3bitWHqhUbNr1Y7RBq0rPnHlPtEGrW0C/+IPJ6r7eOOLjf35eLn7g7t3j6wrsUS5JyM6gvfpSkIvEvP0qScuO9vyRJubFSkSTlph4qFRv1kqTcWKlIUkE4/SVJyk09TH+ZVCSpIP78xiW1yZ6KJCk3ViqSVBB53KW42kwqklQQ2/DPCQ8Yk4okFYSViiQpN/VQqdiolyTlxkpFkgrCix8lSbnx4kdJUm7qoadiUpGkgqiHs79s1EuScmOlIkkF4fSXJCk3nv0lScpNPVQq9lQkSbmxUpGkgqiHs79MKpJUEPUw/WVSkaSCsFEvScpNPdymxUa9JCk3ViqSVBBOf0mScmOjXpKUG3sqkqTcpJT6vfQmIiZGxLKIWBERZ+f9GUwqkjRIREQj8F3geGA/4JSI2C/PfTj9JUkFsQ16KhOAFSmlRwAi4sfAZGBJXjuwUpGkgkg5LL0YDayseL4qG8vNgFcqHZtWxUDvo68iYmpKaXq146g1Hre+89j1zWA5bl0d7f3+voyIqcDUiqHp2/LYDfZKZWrvq2gzPG5957HrG4/bVkopTU8pHVSxVCaUdmBsxfMx2VhuBntSkaTBZD6wV0TsEREtwMnAjXnuwEa9JA0SKaWuiDgD+AXQCFyZUlqc5z4Ge1Kp+znaAeJx6zuPXd943HKSUpoNzB6o9496uC2AJKkY7KlIknIzaJPKQN+qoB5FxJURsS4iFlU7lloSEWMjYl5ELImIxRFxZrVjqgUR0RYR90TE/dlxO7faMal3g3L6K7tVwXLgPXRf/DMfOCWllNtVpfUoIo4ANgJXp5TeVu14akVEjARGppTui4jtgXuBE/x561lEBDAspbQxIpqBO4AzU0p3VTk09WCwViqv3qogpdQBvHKrAvUgpXQ78Ey146g1KaU1KaX7ssfPA0vJ+SrmepS6bcyeNmfL4PstuMYM1qQy4LcqkDYnIsYBBwB3VzmUmhARjRGxEFgHzEkpedwKbrAmFWmbi4jtgOuAs1JKG6odTy1IKZVSSvvTfeX3hIhw2rXgBmtSGfBbFUiVsp7AdcCPUko/rXY8tSal9BwwD5hY5VDUi8GaVAb8VgXSK7KG8xXA0pTSpdWOp1ZExG4RsVP2eAjdJ9Y8WNWg1KtBmVRSSl3AK7cqWArMyvtWBfUoIq4F7gT2iYhVEXF6tWOqEYcBHweOioiF2TKp2kHVgJHAvIh4gO5fBOeklG6uckzqxaA8pViSNDAGZaUiSRoYJhVJUm5MKpKk3JhUJEm5MalIknJjUpEk5cakIknKjUlFkpSb/w8J9yzUaL6/qwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classification Report\n", + " precision recall f1-score support\n", + "\n", + " 0 0.99 1.00 0.99 395\n", + " 1 0.93 0.99 0.96 295\n", + " 2 0.98 0.97 0.98 307\n", + " 3 0.96 0.91 0.93 327\n", + "\n", + " accuracy 0.97 1324\n", + " macro avg 0.97 0.97 0.97 1324\n", + "weighted avg 0.97 0.97 0.97 1324\n", + "\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import confusion_matrix, classification_report\n", + "\n", + "def print_confusion_matrix(y_true, y_pred, report=True):\n", + " labels = sorted(list(set(y_true)))\n", + " cmx_data = confusion_matrix(y_true, y_pred, labels=labels)\n", + " \n", + " df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels)\n", + " \n", + " fig, ax = plt.subplots(figsize=(7, 6))\n", + " sns.heatmap(df_cmx, annot=True, fmt='g' ,square=False)\n", + " ax.set_ylim(len(set(y_true)), 0)\n", + " plt.show()\n", + " \n", + " if report:\n", + " print('Classification Report')\n", + " print(classification_report(y_test, y_pred))\n", + "\n", + "Y_pred = model.predict(X_test)\n", + "y_pred = np.argmax(Y_pred, axis=1)\n", + "\n", + "print_confusion_matrix(y_test, y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tensorflow-Lite用のモデルへ変換" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 推論専用のモデルとして保存\n", + "model.save(model_save_path, include_optimizer=False)\n", + "model = tf.keras.models.load_model(model_save_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "tflite_save_path = 'model/point_history_classifier/point_history_classifier.tflite'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# モデルを変換(量子化\n", + "converter = tf.lite.TFLiteConverter.from_keras_model(model) # converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_path)\n", + "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", + "tflite_quantized_model = converter.convert()\n", + "\n", + "open(tflite_save_path, 'wb').write(tflite_quantized_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 推論テスト" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "interpreter = tf.lite.Interpreter(model_path=tflite_save_path)\n", + "interpreter.allocate_tensors()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'name': 'input_1', 'index': 0, 'shape': array([ 1, 32]), 'shape_signature': array([-1, 32]), 'dtype': , 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}}]\n" + ] + } + ], + "source": [ + "# 入出力テンソルを取得\n", + "input_details = interpreter.get_input_details()\n", + "output_details = interpreter.get_output_details()\n", + "print(input_details)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wall time: 0 ns\n" + ] + } + ], + "source": [ + "%%time\n", + "# 推論実施\n", + "interpreter.invoke()\n", + "tflite_results = interpreter.get_tensor(output_details[0]['index'])" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.9579909 0.01342559 0.00907356 0.01950999]\n", + "0\n" + ] + } + ], + "source": [ + "print(np.squeeze(tflite_results))\n", + "print(np.argmax(np.squeeze(tflite_results)))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 1f0622e88cf665ade471d89e9dfa64ec3147e8f4 Mon Sep 17 00:00:00 2001 From: Grimspen66 Date: Sun, 6 Apr 2025 20:28:02 -0500 Subject: [PATCH 2/3] Update app.py added a comment --- app.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/app.py b/app.py index df953dab..0f3317e2 100644 --- a/app.py +++ b/app.py @@ -61,6 +61,8 @@ def main(): mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=use_static_image_mode, + + #Changed this to recognize 2 hands max_num_hands=2, min_detection_confidence=min_detection_confidence, min_tracking_confidence=min_tracking_confidence, From 6305fe937f4a9437c39ec358d84fbb1b9c00915d Mon Sep 17 00:00:00 2001 From: grimm Date: Sun, 6 Apr 2025 20:56:39 -0500 Subject: [PATCH 3/3] getting the project back to speed with correct fork from original branch --- .gitignore | 135 -- app.py | 4 +- keypoint_classification.ipynb | 1156 +++++++---------- model/keypoint_classifier/keypoint.csv | 1038 +++++++-------- .../keypoint_classifier.hdf5 | Bin 22264 -> 0 bytes .../keypoint_classifier.keras | Bin 0 -> 43080 bytes .../keypoint_classifier.tflite | Bin 6352 -> 6644 bytes .../keypoint_classifier_label.csv | 4 +- 8 files changed, 887 insertions(+), 1450 deletions(-) delete mode 100644 .gitignore delete mode 100644 model/keypoint_classifier/keypoint_classifier.hdf5 create mode 100644 model/keypoint_classifier/keypoint_classifier.keras diff --git a/.gitignore b/.gitignore deleted file mode 100644 index 241bf184..00000000 --- a/.gitignore +++ /dev/null @@ -1,135 +0,0 @@ -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -pip-wheel-metadata/ -share/python-wheels/ -*.egg-info/ -.installed.cfg -*.egg -MANIFEST - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.nox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -*.py,cover -.hypothesis/ -.pytest_cache/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py -db.sqlite3 -db.sqlite3-journal - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# IPython -profile_default/ -ipython_config.py - -# pyenv -.python-version - -# pipenv -# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. -# However, in case of collaboration, if having platform-specific dependencies or dependencies -# having no cross-platform support, pipenv may install dependencies that don't work, or not -# install all needed dependencies. -#Pipfile.lock - -# PEP 582; used by e.g. github.com/David-OConnor/pyflow -__pypackages__/ - -# Celery stuff -celerybeat-schedule -celerybeat.pid - -# SageMath parsed files -*.sage.py - -# Environments -.env -.venv -env/ -venv/ -ENV/ -env.bak/ -venv.bak/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ -.dmypy.json -dmypy.json - -# Pyre type checker -.pyre/ - -# bat -*.bat -.idea/ - -.DS_Store diff --git a/app.py b/app.py index 0f3317e2..3dadce2b 100644 --- a/app.py +++ b/app.py @@ -61,8 +61,6 @@ def main(): mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=use_static_image_mode, - - #Changed this to recognize 2 hands max_num_hands=2, min_detection_confidence=min_detection_confidence, min_tracking_confidence=min_tracking_confidence, @@ -141,7 +139,7 @@ def main(): logging_csv(number, mode, pre_processed_landmark_list, pre_processed_point_history_list) - # Hand sign classification + #Hand sign classification hand_sign_id = keypoint_classifier(pre_processed_landmark_list) if hand_sign_id == 2: # Point gesture point_history.append(landmark_list[8]) diff --git a/keypoint_classification.ipynb b/keypoint_classification.ipynb index 1b1f4500..afe91123 100644 --- a/keypoint_classification.ipynb +++ b/keypoint_classification.ipynb @@ -4,8 +4,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:19.924935Z", - "start_time": "2025-04-06T15:09:19.920937Z" + "end_time": "2025-04-07T01:32:07.043144Z", + "start_time": "2025-04-07T01:32:05.172985Z" } }, "source": [ @@ -18,7 +18,7 @@ "RANDOM_SEED = 42" ], "outputs": [], - "execution_count": 23 + "execution_count": 1 }, { "cell_type": "markdown", @@ -31,8 +31,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:19.940212Z", - "start_time": "2025-04-06T15:09:19.927609Z" + "end_time": "2025-04-07T01:32:07.121511Z", + "start_time": "2025-04-07T01:32:07.047147Z" } }, "source": [ @@ -52,7 +52,7 @@ "# model.fit(X_train, y_train, epochs=100, callbacks=[cp_callback, es_callback])\n" ], "outputs": [], - "execution_count": 24 + "execution_count": 2 }, { "cell_type": "markdown", @@ -65,13 +65,13 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:19.972212Z", - "start_time": "2025-04-06T15:09:19.957213Z" + "end_time": "2025-04-07T01:32:07.436206Z", + "start_time": "2025-04-07T01:32:07.421206Z" } }, "source": "NUM_CLASSES = 6", "outputs": [], - "execution_count": 25 + "execution_count": 3 }, { "cell_type": "markdown", @@ -84,41 +84,41 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.034998Z", - "start_time": "2025-04-06T15:09:19.989213Z" + "end_time": "2025-04-07T01:32:07.498522Z", + "start_time": "2025-04-07T01:32:07.454210Z" } }, "source": [ "X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (21 * 2) + 1)))" ], "outputs": [], - "execution_count": 26 + "execution_count": 4 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.066452Z", - "start_time": "2025-04-06T15:09:20.051453Z" + "end_time": "2025-04-07T01:32:07.530529Z", + "start_time": "2025-04-07T01:32:07.515530Z" } }, "source": "y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))", "outputs": [], - "execution_count": 27 + "execution_count": 5 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.097742Z", - "start_time": "2025-04-06T15:09:20.082910Z" + "end_time": "2025-04-07T01:32:07.562532Z", + "start_time": "2025-04-07T01:32:07.547533Z" } }, "source": [ "X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=RANDOM_SEED)" ], "outputs": [], - "execution_count": 28 + "execution_count": 6 }, { "cell_type": "markdown", @@ -131,8 +131,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.144382Z", - "start_time": "2025-04-06T15:09:20.114353Z" + "end_time": "2025-04-07T01:32:07.625657Z", + "start_time": "2025-04-07T01:32:07.579540Z" } }, "source": [ @@ -146,14 +146,14 @@ "])" ], "outputs": [], - "execution_count": 29 + "execution_count": 7 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.175513Z", - "start_time": "2025-04-06T15:09:20.160513Z" + "end_time": "2025-04-07T01:32:07.735177Z", + "start_time": "2025-04-07T01:32:07.642660Z" } }, "source": [ @@ -163,10 +163,10 @@ { "data": { "text/plain": [ - "\u001B[1mModel: \"sequential_1\"\u001B[0m\n" + "\u001B[1mModel: \"sequential\"\u001B[0m\n" ], "text/html": [ - "
Model: \"sequential_1\"\n",
+       "
Model: \"sequential\"\n",
        "
\n" ] }, @@ -179,30 +179,30 @@ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001B[1m \u001B[0m\u001B[1mLayer (type) \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1mOutput Shape \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1m Param #\u001B[0m\u001B[1m \u001B[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", - "│ dropout_2 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m42\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "│ dropout (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m42\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", - "│ dense_3 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m860\u001B[0m │\n", + "│ dense (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m860\u001B[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", - "│ dropout_3 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", + "│ dropout_1 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m20\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", - "│ dense_4 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m10\u001B[0m) │ \u001B[38;5;34m210\u001B[0m │\n", + "│ dense_1 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m10\u001B[0m) │ \u001B[38;5;34m210\u001B[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", - "│ dense_5 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m6\u001B[0m) │ \u001B[38;5;34m66\u001B[0m │\n", + "│ dense_2 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m6\u001B[0m) │ \u001B[38;5;34m66\u001B[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
        "┃ Layer (type)                     Output Shape                  Param # ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
-       "│ dropout_2 (Dropout)             │ (None, 42)             │             0 │\n",
+       "│ dropout (Dropout)               │ (None, 42)             │             0 │\n",
        "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dense_3 (Dense)                 │ (None, 20)             │           860 │\n",
+       "│ dense (Dense)                   │ (None, 20)             │           860 │\n",
        "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dropout_3 (Dropout)             │ (None, 20)             │             0 │\n",
+       "│ dropout_1 (Dropout)             │ (None, 20)             │             0 │\n",
        "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dense_4 (Dense)                 │ (None, 10)             │           210 │\n",
+       "│ dense_1 (Dense)                 │ (None, 10)             │           210 │\n",
        "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
-       "│ dense_5 (Dense)                 │ (None, 6)              │            66 │\n",
+       "│ dense_2 (Dense)                 │ (None, 6)              │            66 │\n",
        "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
        "
\n" ] @@ -250,14 +250,14 @@ "output_type": "display_data" } ], - "execution_count": 30 + "execution_count": 8 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.205753Z", - "start_time": "2025-04-06T15:09:20.191513Z" + "end_time": "2025-04-07T01:32:07.766179Z", + "start_time": "2025-04-07T01:32:07.752178Z" } }, "source": [ @@ -268,14 +268,14 @@ "es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)" ], "outputs": [], - "execution_count": 31 + "execution_count": 9 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:09:20.236662Z", - "start_time": "2025-04-06T15:09:20.221662Z" + "end_time": "2025-04-07T01:32:07.797220Z", + "start_time": "2025-04-07T01:32:07.782184Z" } }, "source": [ @@ -287,7 +287,7 @@ ")" ], "outputs": [], - "execution_count": 32 + "execution_count": 10 }, { "cell_type": "markdown", @@ -301,8 +301,8 @@ "metadata": { "scrolled": true, "ExecuteTime": { - "end_time": "2025-04-06T15:09:41.367793Z", - "start_time": "2025-04-06T15:09:20.252911Z" + "end_time": "2025-04-07T01:32:22.951110Z", + "start_time": "2025-04-07T01:32:07.813608Z" } }, "source": [ @@ -321,963 +321,675 @@ "output_type": "stream", "text": [ "Epoch 1/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m9s\u001B[0m 349ms/step - accuracy: 0.0625 - loss: 2.0222\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m10s\u001B[0m 391ms/step - accuracy: 0.2031 - loss: 1.8582\n", "Epoch 1: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 5ms/step - accuracy: 0.0773 - loss: 1.9791 - val_accuracy: 0.2572 - val_loss: 1.7389\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m1s\u001B[0m 6ms/step - accuracy: 0.2346 - loss: 1.7867 - val_accuracy: 0.3752 - val_loss: 1.6365\n", "Epoch 2/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.2109 - loss: 1.7578\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.3281 - loss: 1.6746\n", "Epoch 2: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.2342 - loss: 1.7574 - val_accuracy: 0.4045 - val_loss: 1.6213\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.3264 - loss: 1.6345 - val_accuracy: 0.4312 - val_loss: 1.5136\n", "Epoch 3/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.3438 - loss: 1.6719\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.3047 - loss: 1.5937\n", "Epoch 3: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.3428 - loss: 1.6372 - val_accuracy: 0.4080 - val_loss: 1.5256\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.3706 - loss: 1.5399 - val_accuracy: 0.5129 - val_loss: 1.3903\n", "Epoch 4/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.2734 - loss: 1.5504\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.4297 - loss: 1.4812\n", "Epoch 4: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.3527 - loss: 1.5440 - val_accuracy: 0.4568 - val_loss: 1.4422\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4189 - loss: 1.4393 - val_accuracy: 0.5680 - val_loss: 1.2911\n", "Epoch 5/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.4219 - loss: 1.5022\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.4609 - loss: 1.3419\n", "Epoch 5: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4197 - loss: 1.4810 - val_accuracy: 0.5283 - val_loss: 1.3709\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4306 - loss: 1.3669 - val_accuracy: 0.5783 - val_loss: 1.2160\n", "Epoch 6/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4062 - loss: 1.4479\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5391 - loss: 1.2843\n", "Epoch 6: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4316 - loss: 1.4221 - val_accuracy: 0.5388 - val_loss: 1.3062\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4702 - loss: 1.3001 - val_accuracy: 0.5878 - val_loss: 1.1506\n", "Epoch 7/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.3906 - loss: 1.4662\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5000 - loss: 1.2149\n", "Epoch 7: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4453 - loss: 1.3788 - val_accuracy: 0.5632 - val_loss: 1.2367\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4694 - loss: 1.2643 - val_accuracy: 0.6179 - val_loss: 1.0986\n", "Epoch 8/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.4688 - loss: 1.3573\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5156 - loss: 1.1944\n", "Epoch 8: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4599 - loss: 1.3226 - val_accuracy: 0.5859 - val_loss: 1.1669\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5048 - loss: 1.2167 - val_accuracy: 0.6489 - val_loss: 1.0489\n", "Epoch 9/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4609 - loss: 1.2706\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4922 - loss: 1.3093\n", "Epoch 9: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.4964 - loss: 1.2402 - val_accuracy: 0.6085 - val_loss: 1.0906\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5100 - loss: 1.1991 - val_accuracy: 0.6523 - val_loss: 1.0065\n", "Epoch 10/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5234 - loss: 1.2300\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5234 - loss: 1.1329\n", "Epoch 10: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5111 - loss: 1.1958 - val_accuracy: 0.6173 - val_loss: 1.0209\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5074 - loss: 1.1542 - val_accuracy: 0.6532 - val_loss: 0.9697\n", "Epoch 11/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5391 - loss: 1.1013\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5625 - loss: 1.0692\n", "Epoch 11: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5180 - loss: 1.1655 - val_accuracy: 0.6460 - val_loss: 0.9645\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5286 - loss: 1.1447 - val_accuracy: 0.6566 - val_loss: 0.9418\n", "Epoch 12/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5625 - loss: 1.1091\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4766 - loss: 1.1607\n", "Epoch 12: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5249 - loss: 1.1306 - val_accuracy: 0.6879 - val_loss: 0.9138\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5491 - loss: 1.1235 - val_accuracy: 0.7212 - val_loss: 0.9057\n", "Epoch 13/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5469 - loss: 1.0677\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5469 - loss: 1.0851\n", "Epoch 13: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5443 - loss: 1.1049 - val_accuracy: 0.7306 - val_loss: 0.8627\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5515 - loss: 1.0980 - val_accuracy: 0.7315 - val_loss: 0.8763\n", "Epoch 14/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.4766 - loss: 1.1436\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5703 - loss: 1.0917\n", "Epoch 14: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5409 - loss: 1.0798 - val_accuracy: 0.7384 - val_loss: 0.8244\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5622 - loss: 1.0640 - val_accuracy: 0.7349 - val_loss: 0.8491\n", "Epoch 15/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6328 - loss: 0.9176\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6016 - loss: 0.9433\n", "Epoch 15: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5931 - loss: 1.0027 - val_accuracy: 0.7515 - val_loss: 0.7856\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5726 - loss: 1.0341 - val_accuracy: 0.7410 - val_loss: 0.8234\n", "Epoch 16/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5547 - loss: 1.0661\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5781 - loss: 1.0564\n", "Epoch 16: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5589 - loss: 1.0331 - val_accuracy: 0.7454 - val_loss: 0.7571\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5815 - loss: 1.0361 - val_accuracy: 0.7410 - val_loss: 0.7998\n", "Epoch 17/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6797 - loss: 0.9360\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5625 - loss: 1.1101\n", "Epoch 17: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5960 - loss: 0.9712 - val_accuracy: 0.7733 - val_loss: 0.7259\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5799 - loss: 1.0349 - val_accuracy: 0.7410 - val_loss: 0.7795\n", "Epoch 18/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6406 - loss: 0.9400\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5938 - loss: 0.9689\n", "Epoch 18: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.5959 - loss: 0.9798 - val_accuracy: 0.7951 - val_loss: 0.6978\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6052 - loss: 0.9979 - val_accuracy: 0.7556 - val_loss: 0.7609\n", "Epoch 19/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5547 - loss: 1.0904\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.9491\n", "Epoch 19: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6070 - loss: 0.9680 - val_accuracy: 0.8073 - val_loss: 0.6693\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6192 - loss: 0.9721 - val_accuracy: 0.7556 - val_loss: 0.7409\n", "Epoch 20/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6641 - loss: 0.8054\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5781 - loss: 0.9907\n", "Epoch 20: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6246 - loss: 0.9202 - val_accuracy: 0.8152 - val_loss: 0.6566\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6130 - loss: 0.9839 - val_accuracy: 0.7539 - val_loss: 0.7239\n", "Epoch 21/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6328 - loss: 0.8654\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6016 - loss: 1.0174\n", "Epoch 21: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6358 - loss: 0.8990 - val_accuracy: 0.8204 - val_loss: 0.6292\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6171 - loss: 0.9808 - val_accuracy: 0.7754 - val_loss: 0.7056\n", "Epoch 22/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6484 - loss: 0.8508\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5781 - loss: 1.0118\n", "Epoch 22: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6250 - loss: 0.9057 - val_accuracy: 0.8387 - val_loss: 0.6121\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6163 - loss: 0.9518 - val_accuracy: 0.7806 - val_loss: 0.6868\n", "Epoch 23/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7031 - loss: 0.8454\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6094 - loss: 0.9426\n", "Epoch 23: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6503 - loss: 0.8875 - val_accuracy: 0.8370 - val_loss: 0.5931\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6464 - loss: 0.9330 - val_accuracy: 0.7978 - val_loss: 0.6692\n", "Epoch 24/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6328 - loss: 0.9711\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.5625 - loss: 1.0196\n", "Epoch 24: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6464 - loss: 0.8882 - val_accuracy: 0.8439 - val_loss: 0.5758\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6322 - loss: 0.9297 - val_accuracy: 0.7995 - val_loss: 0.6616\n", "Epoch 25/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.5938 - loss: 1.0014\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.8983\n", "Epoch 25: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6365 - loss: 0.9033 - val_accuracy: 0.8457 - val_loss: 0.5629\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6306 - loss: 0.9202 - val_accuracy: 0.7935 - val_loss: 0.6470\n", "Epoch 26/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.8698\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6484 - loss: 0.8380\n", "Epoch 26: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6581 - loss: 0.8625 - val_accuracy: 0.8527 - val_loss: 0.5412\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6354 - loss: 0.9170 - val_accuracy: 0.7995 - val_loss: 0.6350\n", "Epoch 27/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6719 - loss: 0.7902\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.7610\n", "Epoch 27: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6539 - loss: 0.8377 - val_accuracy: 0.8596 - val_loss: 0.5299\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6436 - loss: 0.8954 - val_accuracy: 0.8150 - val_loss: 0.6187\n", "Epoch 28/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6250 - loss: 0.8936\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6016 - loss: 0.9117\n", "Epoch 28: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6500 - loss: 0.8674 - val_accuracy: 0.8666 - val_loss: 0.5235\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6634 - loss: 0.8719 - val_accuracy: 0.8158 - val_loss: 0.6031\n", "Epoch 29/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7589\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6094 - loss: 0.9059\n", "Epoch 29: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6793 - loss: 0.8141 - val_accuracy: 0.8684 - val_loss: 0.5123\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6440 - loss: 0.8866 - val_accuracy: 0.8244 - val_loss: 0.5950\n", "Epoch 30/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6250 - loss: 0.8867\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.5938 - loss: 0.9291\n", "Epoch 30: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6680 - loss: 0.8343 - val_accuracy: 0.8710 - val_loss: 0.4999\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6517 - loss: 0.8803 - val_accuracy: 0.8305 - val_loss: 0.5826\n", "Epoch 31/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.9109\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6016 - loss: 0.8839\n", "Epoch 31: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6822 - loss: 0.8166 - val_accuracy: 0.8718 - val_loss: 0.4865\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6588 - loss: 0.8540 - val_accuracy: 0.8348 - val_loss: 0.5723\n", "Epoch 32/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 19ms/step - accuracy: 0.7266 - loss: 0.7984\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6641 - loss: 0.8743\n", "Epoch 32: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6785 - loss: 0.8232 - val_accuracy: 0.8666 - val_loss: 0.4868\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6526 - loss: 0.8670 - val_accuracy: 0.8305 - val_loss: 0.5630\n", "Epoch 33/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7727\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6094 - loss: 0.9990\n", "Epoch 33: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6978 - loss: 0.7922 - val_accuracy: 0.8701 - val_loss: 0.4778\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6605 - loss: 0.8517 - val_accuracy: 0.8408 - val_loss: 0.5448\n", "Epoch 34/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.7798\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.8068\n", "Epoch 34: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7039 - loss: 0.7837 - val_accuracy: 0.8745 - val_loss: 0.4668\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6727 - loss: 0.8343 - val_accuracy: 0.8434 - val_loss: 0.5375\n", "Epoch 35/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6172 - loss: 0.8736\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6953 - loss: 0.8557\n", "Epoch 35: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6690 - loss: 0.8212 - val_accuracy: 0.8771 - val_loss: 0.4574\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6901 - loss: 0.8066 - val_accuracy: 0.8494 - val_loss: 0.5259\n", "Epoch 36/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m2s\u001B[0m 78ms/step - accuracy: 0.6953 - loss: 0.6885\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6719 - loss: 0.8049\n", "Epoch 36: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6829 - loss: 0.7829 - val_accuracy: 0.8858 - val_loss: 0.4441\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6569 - loss: 0.8250 - val_accuracy: 0.8468 - val_loss: 0.5155\n", "Epoch 37/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.9419\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6953 - loss: 0.8077\n", "Epoch 37: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6929 - loss: 0.8005 - val_accuracy: 0.8788 - val_loss: 0.4418\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6761 - loss: 0.8154 - val_accuracy: 0.8537 - val_loss: 0.5109\n", "Epoch 38/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6905\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.7073\n", "Epoch 38: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7031 - loss: 0.7612 - val_accuracy: 0.8788 - val_loss: 0.4334\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6825 - loss: 0.7886 - val_accuracy: 0.8589 - val_loss: 0.5002\n", "Epoch 39/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6797 - loss: 0.8182\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.7702\n", "Epoch 39: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6940 - loss: 0.7918 - val_accuracy: 0.9024 - val_loss: 0.4231\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6793 - loss: 0.8211 - val_accuracy: 0.8503 - val_loss: 0.4984\n", "Epoch 40/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.8019\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7109 - loss: 0.8079\n", "Epoch 40: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6839 - loss: 0.7694 - val_accuracy: 0.9032 - val_loss: 0.4128\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6851 - loss: 0.7898 - val_accuracy: 0.8503 - val_loss: 0.4901\n", "Epoch 41/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6641 - loss: 0.9634\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6953 - loss: 0.7663\n", "Epoch 41: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6943 - loss: 0.7897 - val_accuracy: 0.8858 - val_loss: 0.4184\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6789 - loss: 0.8184 - val_accuracy: 0.8589 - val_loss: 0.4887\n", "Epoch 42/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5583\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7031 - loss: 0.7185\n", "Epoch 42: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7236 - loss: 0.7259 - val_accuracy: 0.8963 - val_loss: 0.4082\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7046 - loss: 0.7474 - val_accuracy: 0.8632 - val_loss: 0.4769\n", "Epoch 43/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6077\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.7371\n", "Epoch 43: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7190 - loss: 0.7192 - val_accuracy: 0.8971 - val_loss: 0.4047\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6986 - loss: 0.7808 - val_accuracy: 0.8735 - val_loss: 0.4713\n", "Epoch 44/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7500 - loss: 0.6481\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.8347\n", "Epoch 44: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7204 - loss: 0.7467 - val_accuracy: 0.8875 - val_loss: 0.3997\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6944 - loss: 0.7750 - val_accuracy: 0.8657 - val_loss: 0.4664\n", "Epoch 45/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6998\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7636\n", "Epoch 45: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7163 - loss: 0.7389 - val_accuracy: 0.8945 - val_loss: 0.3954\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7002 - loss: 0.7671 - val_accuracy: 0.8709 - val_loss: 0.4525\n", "Epoch 46/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.7393\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.8086\n", "Epoch 46: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7241 - loss: 0.7325 - val_accuracy: 0.9058 - val_loss: 0.3874\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7115 - loss: 0.7537 - val_accuracy: 0.8735 - val_loss: 0.4425\n", "Epoch 47/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6875 - loss: 0.7247\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.7727\n", "Epoch 47: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7255 - loss: 0.7239 - val_accuracy: 0.9058 - val_loss: 0.3832\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7123 - loss: 0.7438 - val_accuracy: 0.8709 - val_loss: 0.4342\n", "Epoch 48/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7031 - loss: 0.8094\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5850\n", "Epoch 48: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7219 - loss: 0.7399 - val_accuracy: 0.8989 - val_loss: 0.3788\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7007 - loss: 0.7578 - val_accuracy: 0.8890 - val_loss: 0.4388\n", "Epoch 49/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.7648\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.8205\n", "Epoch 49: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7165 - loss: 0.7276 - val_accuracy: 0.9067 - val_loss: 0.3711\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7089 - loss: 0.7593 - val_accuracy: 0.8821 - val_loss: 0.4268\n", "Epoch 50/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7365\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6484 - loss: 0.8416\n", "Epoch 50: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7138 - loss: 0.7280 - val_accuracy: 0.9102 - val_loss: 0.3631\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.6965 - loss: 0.7558 - val_accuracy: 0.8787 - val_loss: 0.4253\n", "Epoch 51/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.6953\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6631\n", "Epoch 51: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7216 - loss: 0.7328 - val_accuracy: 0.9224 - val_loss: 0.3581\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7139 - loss: 0.7293 - val_accuracy: 0.8881 - val_loss: 0.4171\n", "Epoch 52/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.8351\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.7197\n", "Epoch 52: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7119 - loss: 0.7598 - val_accuracy: 0.9198 - val_loss: 0.3601\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7032 - loss: 0.7491 - val_accuracy: 0.8976 - val_loss: 0.4164\n", "Epoch 53/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 32ms/step - accuracy: 0.6172 - loss: 0.8963\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6719 - loss: 0.7503\n", "Epoch 53: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7344 - loss: 0.7193 - val_accuracy: 0.9128 - val_loss: 0.3577\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7227 - loss: 0.7238 - val_accuracy: 0.8950 - val_loss: 0.4040\n", "Epoch 54/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6406 - loss: 0.9208\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 34ms/step - accuracy: 0.7734 - loss: 0.6965\n", "Epoch 54: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7072 - loss: 0.7303 - val_accuracy: 0.9180 - val_loss: 0.3552\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7255 - loss: 0.7256 - val_accuracy: 0.9002 - val_loss: 0.4023\n", "Epoch 55/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6616\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 19ms/step - accuracy: 0.6328 - loss: 0.8631\n", "Epoch 55: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7326 - loss: 0.6984 - val_accuracy: 0.9250 - val_loss: 0.3499\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7152 - loss: 0.7355 - val_accuracy: 0.8976 - val_loss: 0.3992\n", "Epoch 56/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6953 - loss: 0.7095\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.6186\n", "Epoch 56: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7316 - loss: 0.7040 - val_accuracy: 0.9085 - val_loss: 0.3502\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7322 - loss: 0.6887 - val_accuracy: 0.9114 - val_loss: 0.3900\n", "Epoch 57/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7031 - loss: 0.6687\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.8086\n", "Epoch 57: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7242 - loss: 0.7037 - val_accuracy: 0.9276 - val_loss: 0.3347\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7209 - loss: 0.7228 - val_accuracy: 0.9122 - val_loss: 0.3883\n", "Epoch 58/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5950\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.5965\n", "Epoch 58: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7249 - loss: 0.7049 - val_accuracy: 0.9224 - val_loss: 0.3354\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7405 - loss: 0.6989 - val_accuracy: 0.9053 - val_loss: 0.3824\n", "Epoch 59/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6875 - loss: 0.7105\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.7023\n", "Epoch 59: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7245 - loss: 0.6898 - val_accuracy: 0.9076 - val_loss: 0.3374\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7173 - loss: 0.7465 - val_accuracy: 0.9148 - val_loss: 0.3846\n", "Epoch 60/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.7135\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6516\n", "Epoch 60: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7400 - loss: 0.6977 - val_accuracy: 0.9224 - val_loss: 0.3325\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7283 - loss: 0.7035 - val_accuracy: 0.9071 - val_loss: 0.3754\n", "Epoch 61/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.7222\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.6875 - loss: 0.6921\n", "Epoch 61: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7408 - loss: 0.6716 - val_accuracy: 0.9303 - val_loss: 0.3204\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7357 - loss: 0.6865 - val_accuracy: 0.9174 - val_loss: 0.3667\n", "Epoch 62/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.7629\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.6512\n", "Epoch 62: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7210 - loss: 0.7136 - val_accuracy: 0.9215 - val_loss: 0.3329\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7288 - loss: 0.7069 - val_accuracy: 0.9260 - val_loss: 0.3686\n", "Epoch 63/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7956\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6649\n", "Epoch 63: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7465 - loss: 0.6779 - val_accuracy: 0.9346 - val_loss: 0.3217\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7419 - loss: 0.6831 - val_accuracy: 0.9165 - val_loss: 0.3661\n", "Epoch 64/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6471\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.7692\n", "Epoch 64: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7539 - loss: 0.6725 - val_accuracy: 0.9381 - val_loss: 0.3256\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7325 - loss: 0.7048 - val_accuracy: 0.9122 - val_loss: 0.3651\n", "Epoch 65/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7500 - loss: 0.7264\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7266 - loss: 0.7385\n", "Epoch 65: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7441 - loss: 0.7074 - val_accuracy: 0.9364 - val_loss: 0.3285\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7279 - loss: 0.7036 - val_accuracy: 0.9200 - val_loss: 0.3632\n", "Epoch 66/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.7449\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5607\n", "Epoch 66: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7395 - loss: 0.6798 - val_accuracy: 0.9364 - val_loss: 0.3282\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7346 - loss: 0.6827 - val_accuracy: 0.9139 - val_loss: 0.3599\n", "Epoch 67/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7946\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.6296\n", "Epoch 67: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7326 - loss: 0.6987 - val_accuracy: 0.9268 - val_loss: 0.3246\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7379 - loss: 0.6967 - val_accuracy: 0.9200 - val_loss: 0.3534\n", "Epoch 68/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.7638\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7500 - loss: 0.7527\n", "Epoch 68: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7447 - loss: 0.6932 - val_accuracy: 0.9381 - val_loss: 0.3191\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7229 - loss: 0.7117 - val_accuracy: 0.9200 - val_loss: 0.3477\n", "Epoch 69/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7415\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.7847\n", "Epoch 69: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7433 - loss: 0.6551 - val_accuracy: 0.9390 - val_loss: 0.3144\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7465 - loss: 0.6864 - val_accuracy: 0.9243 - val_loss: 0.3472\n", "Epoch 70/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6711\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.7225\n", "Epoch 70: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7574 - loss: 0.6524 - val_accuracy: 0.9329 - val_loss: 0.3120\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7452 - loss: 0.6903 - val_accuracy: 0.9251 - val_loss: 0.3453\n", "Epoch 71/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6528\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6907\n", "Epoch 71: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7535 - loss: 0.6642 - val_accuracy: 0.9355 - val_loss: 0.3092\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7332 - loss: 0.6949 - val_accuracy: 0.9303 - val_loss: 0.3446\n", "Epoch 72/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.7630\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7031 - loss: 0.7499\n", "Epoch 72: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7539 - loss: 0.6652 - val_accuracy: 0.9416 - val_loss: 0.3094\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7478 - loss: 0.6780 - val_accuracy: 0.9286 - val_loss: 0.3437\n", "Epoch 73/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.6481\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6485\n", "Epoch 73: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7373 - loss: 0.6876 - val_accuracy: 0.9337 - val_loss: 0.3103\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7472 - loss: 0.6539 - val_accuracy: 0.9329 - val_loss: 0.3288\n", "Epoch 74/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.7056\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7500 - loss: 0.6294\n", "Epoch 74: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7349 - loss: 0.6759 - val_accuracy: 0.9425 - val_loss: 0.3064\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7493 - loss: 0.6633 - val_accuracy: 0.9449 - val_loss: 0.3229\n", "Epoch 75/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6441\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6618\n", "Epoch 75: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7595 - loss: 0.6500 - val_accuracy: 0.9547 - val_loss: 0.2963\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7498 - loss: 0.6739 - val_accuracy: 0.9441 - val_loss: 0.3313\n", "Epoch 76/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5595\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7812 - loss: 0.5738\n", "Epoch 76: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7595 - loss: 0.6330 - val_accuracy: 0.9538 - val_loss: 0.2915\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7566 - loss: 0.6539 - val_accuracy: 0.9389 - val_loss: 0.3255\n", "Epoch 77/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.5877\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.7673\n", "Epoch 77: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7503 - loss: 0.6423 - val_accuracy: 0.9529 - val_loss: 0.2879\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7556 - loss: 0.6532 - val_accuracy: 0.9475 - val_loss: 0.3217\n", "Epoch 78/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6448\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6526\n", "Epoch 78: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7581 - loss: 0.6498 - val_accuracy: 0.9582 - val_loss: 0.2861\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7499 - loss: 0.6605 - val_accuracy: 0.9432 - val_loss: 0.3215\n", "Epoch 79/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.7513\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6546\n", "Epoch 79: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7631 - loss: 0.6580 - val_accuracy: 0.9529 - val_loss: 0.2934\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7505 - loss: 0.6706 - val_accuracy: 0.9398 - val_loss: 0.3178\n", "Epoch 80/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 20ms/step - accuracy: 0.7422 - loss: 0.6293\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5725\n", "Epoch 80: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7506 - loss: 0.6667 - val_accuracy: 0.9390 - val_loss: 0.2949\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7589 - loss: 0.6338 - val_accuracy: 0.9406 - val_loss: 0.3098\n", "Epoch 81/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6252\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5650\n", "Epoch 81: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7688 - loss: 0.6295 - val_accuracy: 0.9538 - val_loss: 0.2898\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7575 - loss: 0.6452 - val_accuracy: 0.9441 - val_loss: 0.3083\n", "Epoch 82/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.6518\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6175\n", "Epoch 82: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7460 - loss: 0.6422 - val_accuracy: 0.9573 - val_loss: 0.2781\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7636 - loss: 0.6282 - val_accuracy: 0.9501 - val_loss: 0.3053\n", "Epoch 83/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.6937\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.7500\n", "Epoch 83: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7439 - loss: 0.6609 - val_accuracy: 0.9503 - val_loss: 0.2829\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7653 - loss: 0.6613 - val_accuracy: 0.9492 - val_loss: 0.2988\n", "Epoch 84/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5661\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7891 - loss: 0.5794\n", "Epoch 84: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7619 - loss: 0.6163 - val_accuracy: 0.9660 - val_loss: 0.2658\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7537 - loss: 0.6509 - val_accuracy: 0.9596 - val_loss: 0.2937\n", "Epoch 85/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.5787\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.6468\n", "Epoch 85: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7615 - loss: 0.6401 - val_accuracy: 0.9660 - val_loss: 0.2697\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7535 - loss: 0.6399 - val_accuracy: 0.9561 - val_loss: 0.3011\n", "Epoch 86/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.5988\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5994\n", "Epoch 86: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7484 - loss: 0.6443 - val_accuracy: 0.9590 - val_loss: 0.2783\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7553 - loss: 0.6433 - val_accuracy: 0.9570 - val_loss: 0.2936\n", "Epoch 87/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7500 - loss: 0.6345\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.7525\n", "Epoch 87: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7585 - loss: 0.6592 - val_accuracy: 0.9538 - val_loss: 0.2806\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7589 - loss: 0.6469 - val_accuracy: 0.9570 - val_loss: 0.2972\n", "Epoch 88/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.7078\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6422\n", "Epoch 88: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7586 - loss: 0.6501 - val_accuracy: 0.9582 - val_loss: 0.2738\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7740 - loss: 0.6129 - val_accuracy: 0.9527 - val_loss: 0.2888\n", "Epoch 89/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6031\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5555\n", "Epoch 89: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7550 - loss: 0.6698 - val_accuracy: 0.9564 - val_loss: 0.2767\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7594 - loss: 0.6345 - val_accuracy: 0.9544 - val_loss: 0.2935\n", "Epoch 90/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6736\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6284\n", "Epoch 90: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7487 - loss: 0.6666 - val_accuracy: 0.9564 - val_loss: 0.2798\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7506 - loss: 0.6513 - val_accuracy: 0.9501 - val_loss: 0.2933\n", "Epoch 91/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6264\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6719 - loss: 0.7132\n", "Epoch 91: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7578 - loss: 0.6019 - val_accuracy: 0.9520 - val_loss: 0.2776\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7531 - loss: 0.6450 - val_accuracy: 0.9484 - val_loss: 0.3018\n", "Epoch 92/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6732\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6180\n", "Epoch 92: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7549 - loss: 0.6583 - val_accuracy: 0.9643 - val_loss: 0.2647\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7723 - loss: 0.6284 - val_accuracy: 0.9501 - val_loss: 0.2897\n", "Epoch 93/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.5483\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7344 - loss: 0.6934\n", "Epoch 93: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7742 - loss: 0.6153 - val_accuracy: 0.9547 - val_loss: 0.2792\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7581 - loss: 0.6604 - val_accuracy: 0.9518 - val_loss: 0.2963\n", "Epoch 94/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.7038\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.7213\n", "Epoch 94: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7667 - loss: 0.6522 - val_accuracy: 0.9538 - val_loss: 0.2709\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7507 - loss: 0.6594 - val_accuracy: 0.9596 - val_loss: 0.2916\n", "Epoch 95/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6660\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5452\n", "Epoch 95: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7662 - loss: 0.6430 - val_accuracy: 0.9582 - val_loss: 0.2694\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7578 - loss: 0.6310 - val_accuracy: 0.9535 - val_loss: 0.2898\n", "Epoch 96/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5784\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6491\n", "Epoch 96: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7763 - loss: 0.6094 - val_accuracy: 0.9625 - val_loss: 0.2579\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7680 - loss: 0.6237 - val_accuracy: 0.9587 - val_loss: 0.2816\n", "Epoch 97/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.7181\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.6797 - loss: 0.7056\n", "Epoch 97: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7669 - loss: 0.6159 - val_accuracy: 0.9564 - val_loss: 0.2700\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7578 - loss: 0.6371 - val_accuracy: 0.9587 - val_loss: 0.2815\n", "Epoch 98/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5916\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6382\n", "Epoch 98: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7673 - loss: 0.6355 - val_accuracy: 0.9590 - val_loss: 0.2620\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7555 - loss: 0.6450 - val_accuracy: 0.9604 - val_loss: 0.2881\n", "Epoch 99/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5287\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5643\n", "Epoch 99: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7845 - loss: 0.6140 - val_accuracy: 0.9608 - val_loss: 0.2598\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7698 - loss: 0.6209 - val_accuracy: 0.9613 - val_loss: 0.2829\n", "Epoch 100/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6493\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5383\n", "Epoch 100: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7731 - loss: 0.6279 - val_accuracy: 0.9582 - val_loss: 0.2605\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7617 - loss: 0.6301 - val_accuracy: 0.9630 - val_loss: 0.2784\n", "Epoch 101/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7109 - loss: 0.8103\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.6154\n", "Epoch 101: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7497 - loss: 0.6695 - val_accuracy: 0.9582 - val_loss: 0.2614\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7700 - loss: 0.6402 - val_accuracy: 0.9561 - val_loss: 0.2816\n", "Epoch 102/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.6126\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.7120\n", "Epoch 102: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7838 - loss: 0.6041 - val_accuracy: 0.9608 - val_loss: 0.2557\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7725 - loss: 0.6373 - val_accuracy: 0.9621 - val_loss: 0.2783\n", "Epoch 103/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.7509\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.6977\n", "Epoch 103: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7654 - loss: 0.6345 - val_accuracy: 0.9625 - val_loss: 0.2576\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7693 - loss: 0.6250 - val_accuracy: 0.9647 - val_loss: 0.2794\n", "Epoch 104/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5592\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5512\n", "Epoch 104: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7920 - loss: 0.5897 - val_accuracy: 0.9634 - val_loss: 0.2491\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7755 - loss: 0.5980 - val_accuracy: 0.9621 - val_loss: 0.2752\n", "Epoch 105/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8281 - loss: 0.4830\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6955\n", "Epoch 105: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7775 - loss: 0.6139 - val_accuracy: 0.9599 - val_loss: 0.2533\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7746 - loss: 0.6184 - val_accuracy: 0.9621 - val_loss: 0.2698\n", "Epoch 106/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.7242\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.6158\n", "Epoch 106: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7698 - loss: 0.6416 - val_accuracy: 0.9625 - val_loss: 0.2566\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7622 - loss: 0.6341 - val_accuracy: 0.9613 - val_loss: 0.2673\n", "Epoch 107/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5654\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6896\n", "Epoch 107: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7763 - loss: 0.6012 - val_accuracy: 0.9634 - val_loss: 0.2449\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7612 - loss: 0.6328 - val_accuracy: 0.9647 - val_loss: 0.2683\n", "Epoch 108/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.6409\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6880\n", "Epoch 108: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7752 - loss: 0.6369 - val_accuracy: 0.9651 - val_loss: 0.2491\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7664 - loss: 0.6137 - val_accuracy: 0.9578 - val_loss: 0.2737\n", "Epoch 109/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.4575\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5546\n", "Epoch 109: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7760 - loss: 0.6142 - val_accuracy: 0.9704 - val_loss: 0.2486\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7800 - loss: 0.6060 - val_accuracy: 0.9639 - val_loss: 0.2695\n", "Epoch 110/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.5242\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6572\n", "Epoch 110: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7705 - loss: 0.6172 - val_accuracy: 0.9686 - val_loss: 0.2460\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7739 - loss: 0.6084 - val_accuracy: 0.9621 - val_loss: 0.2712\n", "Epoch 111/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8281 - loss: 0.5177\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.6870\n", "Epoch 111: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7850 - loss: 0.5857 - val_accuracy: 0.9669 - val_loss: 0.2394\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7708 - loss: 0.6112 - val_accuracy: 0.9630 - val_loss: 0.2675\n", "Epoch 112/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5381\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5765\n", "Epoch 112: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7873 - loss: 0.5639 - val_accuracy: 0.9721 - val_loss: 0.2352\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7796 - loss: 0.6045 - val_accuracy: 0.9682 - val_loss: 0.2662\n", "Epoch 113/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5871\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7266 - loss: 0.7352\n", "Epoch 113: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7702 - loss: 0.6352 - val_accuracy: 0.9634 - val_loss: 0.2433\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7669 - loss: 0.6301 - val_accuracy: 0.9647 - val_loss: 0.2699\n", "Epoch 114/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5980\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6066\n", "Epoch 114: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7894 - loss: 0.5816 - val_accuracy: 0.9669 - val_loss: 0.2301\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7742 - loss: 0.5984 - val_accuracy: 0.9742 - val_loss: 0.2706\n", "Epoch 115/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5700\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.5582\n", "Epoch 115: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7765 - loss: 0.5956 - val_accuracy: 0.9721 - val_loss: 0.2284\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7935 - loss: 0.5709 - val_accuracy: 0.9664 - val_loss: 0.2617\n", "Epoch 116/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5322\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5494\n", "Epoch 116: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7893 - loss: 0.5923 - val_accuracy: 0.9616 - val_loss: 0.2418\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7780 - loss: 0.6019 - val_accuracy: 0.9690 - val_loss: 0.2586\n", "Epoch 117/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7344 - loss: 0.6899\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7578 - loss: 0.6459\n", "Epoch 117: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7638 - loss: 0.6227 - val_accuracy: 0.9555 - val_loss: 0.2467\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7729 - loss: 0.6118 - val_accuracy: 0.9673 - val_loss: 0.2609\n", "Epoch 118/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7812 - loss: 0.5865\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.6792\n", "Epoch 118: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7773 - loss: 0.5944 - val_accuracy: 0.9677 - val_loss: 0.2354\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7579 - loss: 0.6410 - val_accuracy: 0.9630 - val_loss: 0.2687\n", "Epoch 119/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5463\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7656 - loss: 0.5031\n", "Epoch 119: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7695 - loss: 0.6114 - val_accuracy: 0.9677 - val_loss: 0.2298\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7642 - loss: 0.6140 - val_accuracy: 0.9621 - val_loss: 0.2637\n", "Epoch 120/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.6110\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7266 - loss: 0.7073\n", "Epoch 120: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7693 - loss: 0.6375 - val_accuracy: 0.9686 - val_loss: 0.2340\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7855 - loss: 0.5824 - val_accuracy: 0.9673 - val_loss: 0.2617\n", "Epoch 121/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5587\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5905\n", "Epoch 121: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7871 - loss: 0.5946 - val_accuracy: 0.9643 - val_loss: 0.2286\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7787 - loss: 0.6035 - val_accuracy: 0.9656 - val_loss: 0.2524\n", "Epoch 122/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.7024\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.6116\n", "Epoch 122: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7688 - loss: 0.6131 - val_accuracy: 0.9677 - val_loss: 0.2359\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7664 - loss: 0.6061 - val_accuracy: 0.9664 - val_loss: 0.2529\n", "Epoch 123/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5494\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5779\n", "Epoch 123: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7797 - loss: 0.5854 - val_accuracy: 0.9651 - val_loss: 0.2450\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7795 - loss: 0.6039 - val_accuracy: 0.9750 - val_loss: 0.2556\n", "Epoch 124/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5866\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6194\n", "Epoch 124: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7832 - loss: 0.5969 - val_accuracy: 0.9651 - val_loss: 0.2334\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7759 - loss: 0.5879 - val_accuracy: 0.9682 - val_loss: 0.2531\n", "Epoch 125/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8359 - loss: 0.4527\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5162\n", "Epoch 125: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7991 - loss: 0.5792 - val_accuracy: 0.9704 - val_loss: 0.2312\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7872 - loss: 0.5794 - val_accuracy: 0.9733 - val_loss: 0.2561\n", "Epoch 126/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7188 - loss: 0.6996\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7812 - loss: 0.5067\n", "Epoch 126: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7721 - loss: 0.6165 - val_accuracy: 0.9669 - val_loss: 0.2352\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7962 - loss: 0.5688 - val_accuracy: 0.9707 - val_loss: 0.2476\n", "Epoch 127/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.6257\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.4736\n", "Epoch 127: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7860 - loss: 0.5916 - val_accuracy: 0.9695 - val_loss: 0.2305\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7693 - loss: 0.5868 - val_accuracy: 0.9733 - val_loss: 0.2491\n", "Epoch 128/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.7016\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5966\n", "Epoch 128: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7817 - loss: 0.5928 - val_accuracy: 0.9643 - val_loss: 0.2326\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7805 - loss: 0.6043 - val_accuracy: 0.9733 - val_loss: 0.2537\n", "Epoch 129/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6301\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5287\n", "Epoch 129: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7720 - loss: 0.6227 - val_accuracy: 0.9634 - val_loss: 0.2300\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7964 - loss: 0.5617 - val_accuracy: 0.9759 - val_loss: 0.2474\n", "Epoch 130/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5741\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8750 - loss: 0.4464\n", "Epoch 130: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7778 - loss: 0.6205 - val_accuracy: 0.9643 - val_loss: 0.2281\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8063 - loss: 0.5574 - val_accuracy: 0.9733 - val_loss: 0.2344\n", "Epoch 131/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5895\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5644\n", "Epoch 131: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7834 - loss: 0.5788 - val_accuracy: 0.9686 - val_loss: 0.2241\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7871 - loss: 0.5726 - val_accuracy: 0.9742 - val_loss: 0.2407\n", "Epoch 132/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6158\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.6953 - loss: 0.7481\n", "Epoch 132: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7946 - loss: 0.5877 - val_accuracy: 0.9686 - val_loss: 0.2217\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7706 - loss: 0.6085 - val_accuracy: 0.9725 - val_loss: 0.2520\n", "Epoch 133/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5522\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6536\n", "Epoch 133: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7835 - loss: 0.6043 - val_accuracy: 0.9669 - val_loss: 0.2245\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7851 - loss: 0.5934 - val_accuracy: 0.9682 - val_loss: 0.2479\n", "Epoch 134/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.6516\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5989\n", "Epoch 134: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7921 - loss: 0.5971 - val_accuracy: 0.9677 - val_loss: 0.2298\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7899 - loss: 0.5783 - val_accuracy: 0.9716 - val_loss: 0.2437\n", "Epoch 135/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5581\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5642\n", "Epoch 135: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7910 - loss: 0.5781 - val_accuracy: 0.9686 - val_loss: 0.2268\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7943 - loss: 0.5603 - val_accuracy: 0.9690 - val_loss: 0.2442\n", "Epoch 136/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5913\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5905\n", "Epoch 136: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7888 - loss: 0.5802 - val_accuracy: 0.9651 - val_loss: 0.2260\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7894 - loss: 0.5748 - val_accuracy: 0.9768 - val_loss: 0.2409\n", "Epoch 137/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5728\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 19ms/step - accuracy: 0.7891 - loss: 0.5676\n", "Epoch 137: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7920 - loss: 0.5850 - val_accuracy: 0.9712 - val_loss: 0.2189\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7872 - loss: 0.5815 - val_accuracy: 0.9768 - val_loss: 0.2416\n", "Epoch 138/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6518\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7812 - loss: 0.6264\n", "Epoch 138: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7768 - loss: 0.6069 - val_accuracy: 0.9616 - val_loss: 0.2280\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7693 - loss: 0.6066 - val_accuracy: 0.9793 - val_loss: 0.2394\n", "Epoch 139/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.6347\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.5130\n", "Epoch 139: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7782 - loss: 0.6206 - val_accuracy: 0.9677 - val_loss: 0.2307\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7814 - loss: 0.5888 - val_accuracy: 0.9742 - val_loss: 0.2390\n", "Epoch 140/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5122\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5216\n", "Epoch 140: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7862 - loss: 0.5758 - val_accuracy: 0.9721 - val_loss: 0.2253\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7843 - loss: 0.5856 - val_accuracy: 0.9742 - val_loss: 0.2312\n", "Epoch 141/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.5543\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.7443\n", "Epoch 141: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7889 - loss: 0.5646 - val_accuracy: 0.9686 - val_loss: 0.2281\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7798 - loss: 0.5840 - val_accuracy: 0.9742 - val_loss: 0.2284\n", "Epoch 142/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5501\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5053\n", "Epoch 142: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7812 - loss: 0.5992 - val_accuracy: 0.9721 - val_loss: 0.2231\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7863 - loss: 0.5702 - val_accuracy: 0.9759 - val_loss: 0.2264\n", "Epoch 143/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5760\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.7747\n", "Epoch 143: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7969 - loss: 0.5820 - val_accuracy: 0.9634 - val_loss: 0.2256\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7817 - loss: 0.6156 - val_accuracy: 0.9699 - val_loss: 0.2301\n", "Epoch 144/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7812 - loss: 0.6266\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5390\n", "Epoch 144: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7913 - loss: 0.5928 - val_accuracy: 0.9669 - val_loss: 0.2318\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7910 - loss: 0.5857 - val_accuracy: 0.9759 - val_loss: 0.2341\n", "Epoch 145/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5853\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 20ms/step - accuracy: 0.7422 - loss: 0.6955\n", "Epoch 145: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7865 - loss: 0.5908 - val_accuracy: 0.9677 - val_loss: 0.2295\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7698 - loss: 0.6111 - val_accuracy: 0.9776 - val_loss: 0.2376\n", "Epoch 146/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5663\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.5849\n", "Epoch 146: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7903 - loss: 0.5989 - val_accuracy: 0.9677 - val_loss: 0.2338\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7795 - loss: 0.5752 - val_accuracy: 0.9785 - val_loss: 0.2346\n", "Epoch 147/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6402\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5535\n", "Epoch 147: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8003 - loss: 0.5763 - val_accuracy: 0.9677 - val_loss: 0.2298\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7970 - loss: 0.5795 - val_accuracy: 0.9819 - val_loss: 0.2286\n", "Epoch 148/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5296\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8594 - loss: 0.5247\n", "Epoch 148: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7952 - loss: 0.5684 - val_accuracy: 0.9686 - val_loss: 0.2288\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7994 - loss: 0.5534 - val_accuracy: 0.9768 - val_loss: 0.2307\n", "Epoch 149/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5079\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7891 - loss: 0.5924\n", "Epoch 149: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8098 - loss: 0.5733 - val_accuracy: 0.9660 - val_loss: 0.2221\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7866 - loss: 0.5956 - val_accuracy: 0.9768 - val_loss: 0.2310\n", "Epoch 150/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5778\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.6836\n", "Epoch 150: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7880 - loss: 0.5866 - val_accuracy: 0.9712 - val_loss: 0.2232\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7946 - loss: 0.5704 - val_accuracy: 0.9725 - val_loss: 0.2346\n", "Epoch 151/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5207\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.6361\n", "Epoch 151: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7791 - loss: 0.5876 - val_accuracy: 0.9712 - val_loss: 0.2222\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7926 - loss: 0.5672 - val_accuracy: 0.9725 - val_loss: 0.2309\n", "Epoch 152/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.5847\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.5591\n", "Epoch 152: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7905 - loss: 0.5643 - val_accuracy: 0.9721 - val_loss: 0.2134\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7965 - loss: 0.5665 - val_accuracy: 0.9742 - val_loss: 0.2275\n", "Epoch 153/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.5806\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7344 - loss: 0.6897\n", "Epoch 153: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7878 - loss: 0.5723 - val_accuracy: 0.9730 - val_loss: 0.2110\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7782 - loss: 0.6005 - val_accuracy: 0.9759 - val_loss: 0.2277\n", "Epoch 154/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.4988\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7422 - loss: 0.6317\n", "Epoch 154: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7963 - loss: 0.5629 - val_accuracy: 0.9704 - val_loss: 0.2186\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7835 - loss: 0.5750 - val_accuracy: 0.9768 - val_loss: 0.2345\n", "Epoch 155/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5500\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8438 - loss: 0.4546\n", "Epoch 155: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7978 - loss: 0.5776 - val_accuracy: 0.9730 - val_loss: 0.2155\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8016 - loss: 0.5641 - val_accuracy: 0.9750 - val_loss: 0.2321\n", "Epoch 156/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.4869\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7422 - loss: 0.6906\n", "Epoch 156: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7828 - loss: 0.6050 - val_accuracy: 0.9695 - val_loss: 0.2208\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7791 - loss: 0.6128 - val_accuracy: 0.9725 - val_loss: 0.2265\n", "Epoch 157/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7578 - loss: 0.6877\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.4455\n", "Epoch 157: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7981 - loss: 0.5727 - val_accuracy: 0.9695 - val_loss: 0.2170\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7949 - loss: 0.5442 - val_accuracy: 0.9742 - val_loss: 0.2297\n", "Epoch 158/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5425\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.7578 - loss: 0.6549\n", "Epoch 158: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7884 - loss: 0.5843 - val_accuracy: 0.9704 - val_loss: 0.2182\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7914 - loss: 0.5645 - val_accuracy: 0.9768 - val_loss: 0.2274\n", "Epoch 159/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5415\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.6366\n", "Epoch 159: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7896 - loss: 0.5767 - val_accuracy: 0.9721 - val_loss: 0.2196\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7872 - loss: 0.5927 - val_accuracy: 0.9802 - val_loss: 0.2305\n", "Epoch 160/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7266 - loss: 0.6685\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6118\n", "Epoch 160: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7913 - loss: 0.5859 - val_accuracy: 0.9738 - val_loss: 0.2158\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7822 - loss: 0.5880 - val_accuracy: 0.9785 - val_loss: 0.2348\n", "Epoch 161/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5529\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5556\n", "Epoch 161: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7805 - loss: 0.5922 - val_accuracy: 0.9695 - val_loss: 0.2194\n", + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7844 - loss: 0.5751 - val_accuracy: 0.9785 - val_loss: 0.2264\n", "Epoch 162/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.4853\n", + "\u001B[1m 1/28\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5790\n", "Epoch 162: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7974 - loss: 0.5612 - val_accuracy: 0.9712 - val_loss: 0.2151\n", - "Epoch 163/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.5796\n", - "Epoch 163: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8022 - loss: 0.5668 - val_accuracy: 0.9677 - val_loss: 0.2146\n", - "Epoch 164/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6269\n", - "Epoch 164: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7851 - loss: 0.5766 - val_accuracy: 0.9704 - val_loss: 0.2156\n", - "Epoch 165/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7656 - loss: 0.6097\n", - "Epoch 165: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7952 - loss: 0.5745 - val_accuracy: 0.9721 - val_loss: 0.2215\n", - "Epoch 166/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8516 - loss: 0.4536\n", - "Epoch 166: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8142 - loss: 0.5531 - val_accuracy: 0.9686 - val_loss: 0.2156\n", - "Epoch 167/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8438 - loss: 0.5172\n", - "Epoch 167: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8020 - loss: 0.5605 - val_accuracy: 0.9730 - val_loss: 0.2079\n", - "Epoch 168/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8203 - loss: 0.5927\n", - "Epoch 168: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8056 - loss: 0.5605 - val_accuracy: 0.9695 - val_loss: 0.2079\n", - "Epoch 169/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 20ms/step - accuracy: 0.8047 - loss: 0.6494\n", - "Epoch 169: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7937 - loss: 0.5838 - val_accuracy: 0.9695 - val_loss: 0.2152\n", - "Epoch 170/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5463\n", - "Epoch 170: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8001 - loss: 0.5745 - val_accuracy: 0.9669 - val_loss: 0.2130\n", - "Epoch 171/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8203 - loss: 0.5899\n", - "Epoch 171: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7972 - loss: 0.5781 - val_accuracy: 0.9677 - val_loss: 0.2113\n", - "Epoch 172/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.4425\n", - "Epoch 172: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7996 - loss: 0.5530 - val_accuracy: 0.9695 - val_loss: 0.2084\n", - "Epoch 173/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5852\n", - "Epoch 173: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7948 - loss: 0.5861 - val_accuracy: 0.9721 - val_loss: 0.2094\n", - "Epoch 174/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7656 - loss: 0.6026\n", - "Epoch 174: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7899 - loss: 0.5752 - val_accuracy: 0.9730 - val_loss: 0.2062\n", - "Epoch 175/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8203 - loss: 0.4570\n", - "Epoch 175: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8049 - loss: 0.5561 - val_accuracy: 0.9730 - val_loss: 0.2061\n", - "Epoch 176/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.4919\n", - "Epoch 176: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8105 - loss: 0.5427 - val_accuracy: 0.9747 - val_loss: 0.1993\n", - "Epoch 177/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4823\n", - "Epoch 177: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7987 - loss: 0.5707 - val_accuracy: 0.9721 - val_loss: 0.2064\n", - "Epoch 178/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.4889\n", - "Epoch 178: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7993 - loss: 0.5592 - val_accuracy: 0.9747 - val_loss: 0.2077\n", - "Epoch 179/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5535\n", - "Epoch 179: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7976 - loss: 0.5620 - val_accuracy: 0.9738 - val_loss: 0.2032\n", - "Epoch 180/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5824\n", - "Epoch 180: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7998 - loss: 0.5565 - val_accuracy: 0.9704 - val_loss: 0.2099\n", - "Epoch 181/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.4362\n", - "Epoch 181: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8115 - loss: 0.5441 - val_accuracy: 0.9730 - val_loss: 0.2129\n", - "Epoch 182/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8672 - loss: 0.4783\n", - "Epoch 182: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8001 - loss: 0.5569 - val_accuracy: 0.9721 - val_loss: 0.2149\n", - "Epoch 183/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5520\n", - "Epoch 183: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7988 - loss: 0.5608 - val_accuracy: 0.9712 - val_loss: 0.2111\n", - "Epoch 184/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8516 - loss: 0.4611\n", - "Epoch 184: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8002 - loss: 0.5642 - val_accuracy: 0.9712 - val_loss: 0.2075\n", - "Epoch 185/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5170\n", - "Epoch 185: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7906 - loss: 0.5788 - val_accuracy: 0.9686 - val_loss: 0.2076\n", - "Epoch 186/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.6221\n", - "Epoch 186: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7828 - loss: 0.5824 - val_accuracy: 0.9738 - val_loss: 0.2102\n", - "Epoch 187/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5062\n", - "Epoch 187: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7874 - loss: 0.5760 - val_accuracy: 0.9738 - val_loss: 0.2071\n", - "Epoch 188/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.7137\n", - "Epoch 188: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7996 - loss: 0.5999 - val_accuracy: 0.9765 - val_loss: 0.1995\n", - "Epoch 189/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7188 - loss: 0.6855\n", - "Epoch 189: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7843 - loss: 0.5840 - val_accuracy: 0.9738 - val_loss: 0.2051\n", - "Epoch 190/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8594 - loss: 0.4604\n", - "Epoch 190: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8124 - loss: 0.5375 - val_accuracy: 0.9730 - val_loss: 0.2084\n", - "Epoch 191/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 18ms/step - accuracy: 0.8359 - loss: 0.5506\n", - "Epoch 191: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8139 - loss: 0.5482 - val_accuracy: 0.9730 - val_loss: 0.2033\n", - "Epoch 192/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5925\n", - "Epoch 192: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8040 - loss: 0.5540 - val_accuracy: 0.9738 - val_loss: 0.2073\n", - "Epoch 193/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7500 - loss: 0.5939\n", - "Epoch 193: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7946 - loss: 0.5501 - val_accuracy: 0.9730 - val_loss: 0.2028\n", - "Epoch 194/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8047 - loss: 0.5613\n", - "Epoch 194: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8188 - loss: 0.5278 - val_accuracy: 0.9747 - val_loss: 0.1980\n", - "Epoch 195/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.4923\n", - "Epoch 195: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7967 - loss: 0.5564 - val_accuracy: 0.9704 - val_loss: 0.2058\n", - "Epoch 196/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4770\n", - "Epoch 196: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8013 - loss: 0.5379 - val_accuracy: 0.9738 - val_loss: 0.2090\n", - "Epoch 197/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7969 - loss: 0.5925\n", - "Epoch 197: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8057 - loss: 0.5529 - val_accuracy: 0.9738 - val_loss: 0.2016\n", - "Epoch 198/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5831\n", - "Epoch 198: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8131 - loss: 0.5349 - val_accuracy: 0.9738 - val_loss: 0.1982\n", - "Epoch 199/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.4914\n", - "Epoch 199: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8042 - loss: 0.5477 - val_accuracy: 0.9747 - val_loss: 0.2021\n", - "Epoch 200/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4765\n", - "Epoch 200: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8212 - loss: 0.5181 - val_accuracy: 0.9756 - val_loss: 0.1932\n", - "Epoch 201/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.4399\n", - "Epoch 201: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7886 - loss: 0.5582 - val_accuracy: 0.9686 - val_loss: 0.2054\n", - "Epoch 202/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8438 - loss: 0.5077\n", - "Epoch 202: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7797 - loss: 0.6027 - val_accuracy: 0.9712 - val_loss: 0.2037\n", - "Epoch 203/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.5925\n", - "Epoch 203: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7958 - loss: 0.5549 - val_accuracy: 0.9721 - val_loss: 0.2013\n", - "Epoch 204/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5804\n", - "Epoch 204: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8199 - loss: 0.5386 - val_accuracy: 0.9712 - val_loss: 0.2010\n", - "Epoch 205/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.5225\n", - "Epoch 205: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7965 - loss: 0.5663 - val_accuracy: 0.9721 - val_loss: 0.2024\n", - "Epoch 206/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7812 - loss: 0.5693\n", - "Epoch 206: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8049 - loss: 0.5511 - val_accuracy: 0.9704 - val_loss: 0.2048\n", - "Epoch 207/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4656\n", - "Epoch 207: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8151 - loss: 0.5216 - val_accuracy: 0.9756 - val_loss: 0.1941\n", - "Epoch 208/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8281 - loss: 0.4725\n", - "Epoch 208: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8062 - loss: 0.5431 - val_accuracy: 0.9782 - val_loss: 0.1922\n", - "Epoch 209/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5688\n", - "Epoch 209: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7842 - loss: 0.5888 - val_accuracy: 0.9686 - val_loss: 0.2042\n", - "Epoch 210/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8672 - loss: 0.3775\n", - "Epoch 210: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8099 - loss: 0.5346 - val_accuracy: 0.9712 - val_loss: 0.2106\n", - "Epoch 211/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5993\n", - "Epoch 211: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8200 - loss: 0.5330 - val_accuracy: 0.9669 - val_loss: 0.2067\n", - "Epoch 212/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8828 - loss: 0.3879\n", - "Epoch 212: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8207 - loss: 0.5247 - val_accuracy: 0.9686 - val_loss: 0.2023\n", - "Epoch 213/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.5587\n", - "Epoch 213: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8088 - loss: 0.5496 - val_accuracy: 0.9712 - val_loss: 0.2021\n", - "Epoch 214/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8359 - loss: 0.4606\n", - "Epoch 214: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8054 - loss: 0.5312 - val_accuracy: 0.9756 - val_loss: 0.1850\n", - "Epoch 215/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7578 - loss: 0.6467\n", - "Epoch 215: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7851 - loss: 0.5892 - val_accuracy: 0.9730 - val_loss: 0.1966\n", - "Epoch 216/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7109 - loss: 0.7488\n", - "Epoch 216: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7757 - loss: 0.6108 - val_accuracy: 0.9669 - val_loss: 0.2035\n", - "Epoch 217/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 15ms/step - accuracy: 0.8125 - loss: 0.5911\n", - "Epoch 217: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8046 - loss: 0.5562 - val_accuracy: 0.9704 - val_loss: 0.1994\n", - "Epoch 218/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8750 - loss: 0.4520\n", - "Epoch 218: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8013 - loss: 0.5472 - val_accuracy: 0.9712 - val_loss: 0.2020\n", - "Epoch 219/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8047 - loss: 0.5736\n", - "Epoch 219: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8099 - loss: 0.5462 - val_accuracy: 0.9686 - val_loss: 0.2029\n", - "Epoch 220/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8281 - loss: 0.4038\n", - "Epoch 220: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8003 - loss: 0.5340 - val_accuracy: 0.9773 - val_loss: 0.1938\n", - "Epoch 221/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8359 - loss: 0.5431\n", - "Epoch 221: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7956 - loss: 0.5731 - val_accuracy: 0.9695 - val_loss: 0.2046\n", - "Epoch 222/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5285\n", - "Epoch 222: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7972 - loss: 0.5681 - val_accuracy: 0.9669 - val_loss: 0.2058\n", - "Epoch 223/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7969 - loss: 0.4823\n", - "Epoch 223: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8122 - loss: 0.5155 - val_accuracy: 0.9712 - val_loss: 0.1965\n", - "Epoch 224/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8203 - loss: 0.5541\n", - "Epoch 224: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8056 - loss: 0.5680 - val_accuracy: 0.9677 - val_loss: 0.1991\n", - "Epoch 225/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8125 - loss: 0.5274\n", - "Epoch 225: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8088 - loss: 0.5392 - val_accuracy: 0.9747 - val_loss: 0.1946\n", - "Epoch 226/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7812 - loss: 0.6112\n", - "Epoch 226: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7956 - loss: 0.5639 - val_accuracy: 0.9695 - val_loss: 0.2017\n", - "Epoch 227/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8125 - loss: 0.5353\n", - "Epoch 227: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7965 - loss: 0.5624 - val_accuracy: 0.9660 - val_loss: 0.2044\n", - "Epoch 228/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7734 - loss: 0.6194\n", - "Epoch 228: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8034 - loss: 0.5514 - val_accuracy: 0.9730 - val_loss: 0.1976\n", - "Epoch 229/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8750 - loss: 0.4060\n", - "Epoch 229: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8203 - loss: 0.5072 - val_accuracy: 0.9695 - val_loss: 0.2029\n", - "Epoch 230/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.8359 - loss: 0.5064\n", - "Epoch 230: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8003 - loss: 0.5466 - val_accuracy: 0.9738 - val_loss: 0.1990\n", - "Epoch 231/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7891 - loss: 0.5423\n", - "Epoch 231: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7937 - loss: 0.5568 - val_accuracy: 0.9712 - val_loss: 0.1984\n", - "Epoch 232/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 17ms/step - accuracy: 0.7578 - loss: 0.6099\n", - "Epoch 232: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8091 - loss: 0.5300 - val_accuracy: 0.9747 - val_loss: 0.1860\n", - "Epoch 233/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.7734 - loss: 0.6119\n", - "Epoch 233: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8058 - loss: 0.5446 - val_accuracy: 0.9730 - val_loss: 0.1926\n", - "Epoch 234/1000\n", - "\u001B[1m 1/27\u001B[0m \u001B[37m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m0s\u001B[0m 16ms/step - accuracy: 0.8438 - loss: 0.5648\n", - "Epoch 234: saving model to grimm\\PycharmProjects\\hand-gesture-recognition-mediapipe\\model\\keypoint_classifier\\keypoint_classifier.keras\n", - "\u001B[1m27/27\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.8114 - loss: 0.5478 - val_accuracy: 0.9677 - val_loss: 0.2020\n", - "Epoch 234: early stopping\n" + "\u001B[1m28/28\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 3ms/step - accuracy: 0.7942 - loss: 0.5536 - val_accuracy: 0.9776 - val_loss: 0.2327\n", + "Epoch 162: early stopping\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 33, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 33 + "execution_count": 11 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:26.710697Z", - "start_time": "2025-04-06T15:10:26.649490Z" + "end_time": "2025-04-07T01:32:49.335407Z", + "start_time": "2025-04-07T01:32:49.268888Z" } }, "source": [ @@ -1289,18 +1001,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001B[1m9/9\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.9692 - loss: 0.2051 \n" + "\u001B[1m10/10\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 2ms/step - accuracy: 0.9737 - loss: 0.2289 \n" ] } ], - "execution_count": 34 + "execution_count": 12 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:26.772708Z", - "start_time": "2025-04-06T15:10:26.726968Z" + "end_time": "2025-04-07T01:32:49.414025Z", + "start_time": "2025-04-07T01:32:49.351409Z" } }, "source": [ @@ -1308,14 +1020,14 @@ "model = tf.keras.models.load_model(model_save_path)" ], "outputs": [], - "execution_count": 35 + "execution_count": 13 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:26.850307Z", - "start_time": "2025-04-06T15:10:26.789232Z" + "end_time": "2025-04-07T01:32:49.493678Z", + "start_time": "2025-04-07T01:32:49.431099Z" } }, "source": [ @@ -1330,13 +1042,13 @@ "output_type": "stream", "text": [ "\u001B[1m1/1\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 30ms/step\n", - "[4.1954637e-02 7.1722388e-02 8.7705678e-01 8.6475220e-03 5.7122717e-04\n", - " 4.7421348e-05]\n", - "2\n" + "[9.8055995e-01 1.9246580e-02 1.6972909e-04 1.5124833e-07 1.4379638e-05\n", + " 9.2182872e-06]\n", + "0\n" ] } ], - "execution_count": 36 + "execution_count": 14 }, { "cell_type": "markdown", @@ -1349,8 +1061,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.038162Z", - "start_time": "2025-04-06T15:10:26.866818Z" + "end_time": "2025-04-07T01:32:49.746395Z", + "start_time": "2025-04-07T01:32:49.510717Z" } }, "source": [ @@ -1384,7 +1096,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001B[1m36/36\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 680us/step\n" + "\u001B[1m37/37\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m0s\u001B[0m 630us/step\n" ] }, { @@ -1392,7 +1104,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAH6CAYAAAAZanYgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASJxJREFUeJzt3QmczfX+x/H3hBmDCsPYS1HWkiXL1YKSvyKlVTdFRNkKbZYiZC1JIxF1k6JL0XorqqssZSdLZSlrg8mWzIJz/o/vtzvHHDSGGr/fd87reR+/x5nf73eW7/32M/M5n+/n+/1FBYPBoAAAABxyltcNAAAAOFUEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDkEMAAAwDm55ROHkjZ63QRfiy15pddN8LWzoqK8boLvBVh0G8hWh9O25Yi/mXmKXHhar+vQoYMKFy6soUOH2v01a9aoX79++vHHH1W+fHk9/fTTqlq1auj5H374oUaNGqVdu3bpiiuu0MCBA+3rs4oMDAAA+Es++ugjzZkzJ7R/8OBBG9DUqlVL7777rqpXr66OHTva48bKlSvVp08fdenSRW+//bb279+vXr16ndJnEsAAAOCawJHs207R3r17NXz4cF1yySWhYx9//LFiYmL02GOPqVy5cjZYyZ8/vz755BN7fvLkyWratKluuukmVaxY0b7eBEBbtmzJ8ucSwAAAgNM2bNgwtWjRwg4TpVuxYoVq1qypqP8N75vHGjVqaPny5aHzJjuTrkSJEipZsqQ9nlUEMAAAuCYYyLYtLS1NBw4cCNvMsRNZsGCBFi9erE6dOoUdN3Ut8fHxYcfi4uKUmJhof965c2em57OCAAYAAISMGzfOZk8ybubYsVJTU22R7lNPPaW8efOGnUtOTlZ0dHTYMbOfHgilpKRket6pWUgAACCLAoFse2tTbNu2bduwY8cGG0ZCQoKdVXTllcfPkjX1L8cGI2Y/PdD5s/OxsbFZbicBDAAAjgma4Z5sYoKVEwUsJ5p5lJSUZGcYGekByaeffqpmzZrZcxmZ/fRho2LFip3wfNGiRbPcTgIYAABwyt544w0dPnw4tP/ss8/ax0ceeUSLFi3SK6+8omAwaAt4zePSpUv1wAMP2OdUq1ZNS5YsUcuWLe3+L7/8YjdzPKsIYAAAcE0g+zIwWVWqVKmwfTNN2jj//PNtQe5zzz2nZ555RnfeeaemTp1q62LM1GmjVatWat26tS677DI7/do8r0GDBipTpkyWP58iXgAA8LcqUKCALfxNz7KY6dHjx49Xvnz57Hkz7DRgwACNGTPGBjPnnnuuhgwZckqfERU0eR0f4FYCmeNWApnjVgInx60EgJxzK4G0LVlfL+VURZfJ+jCOl8jAAAAA51ADAwCAawKnvuR/TkMGBgAAOIcMDAAArgl6PwvJa2RgAACAc8jAAADgmgAZGAIYAAAcE2QIiSEkAADgHjIwAAC4JkAGhgwMAABwDhkYAABcEyQDQwYGAAA4hwwMAACuCXArATIwAADAOWRgAABwTZAaGAIYAABcEyCAYQgJAAA4hwwMAACuCZKBIQMDAACcQwYGAADXBMjARHQG5sFHnlKfQc+F9tf+uF6t7n9YtRrdpDvaddPq79ed8HWffvG1qtZvqkgUExOj8eOeVdLONdqyaam6P9zR6yb51syZr2vCKyO9bobvcA1ljv7JHP0DRXoA8/Hs/+rrBYtC+weTU2xAU6NaFb396mhddklldXq0nz2e0f7fDmjIqLGKVMOG9lXNmtXU+Lrb1aVbbz3Zt7tatrzB62b5zu233ajrm17jdTN8iWsoc/RP5uifPwSDR7Jtc0VEBjD79v+m58ZMVNVKF4eOffL5HOWNidEjndurXNnz9MRDHZU/X6w+++LrsNea15UpVUKRKF++WLW7r5V69HhKy5av0nvvfaJnnxurzg+28bppvlKoUEENGdJXixYt97opvsM1lDn6J3P0DxTpAcyIhFfUvMk1NlBJt3L196p+aRVFRUXZffNY/ZLKWrF6beg5i5attFuHe+5UJKp2aRXlyZNH8xcsDh2bN2+hateuHuo3/PEN8a233tHatT963RTf4RrKHP2TOfrnmFlIwWzacnoAs2fPHu3YsUP79++XS75dslxLlq/SA21bhR3f9etuxRcpHHYsrnBBJe5Msj+npaXp6WGj1adHJzsGG4mKl4hXUtJuHTp0KHRsx85dio2NVVxcIU/b5hcNGvxDV1xZV88MfsHrpvgS11Dm6J/M0T/HFPEGsmnLibOQPvvsM02ePFkrV65Uampq6HjevHlVtWpV3Xvvvbr22mvlV6mpaXp6+Ivq27OzHS7KKCUl1Ub2GUXnyRP6h/Lyv6aoUoXyql+nphYuXalITd+aPswofT9Sg7qMTB+MGTNMDz3URykp4bVT+APXUObon8zRPzitAOa1115TQkKC2rdvry5duiguLk7R0dE2M5GUlKTFixfriSee0EMPPaTWrVvLj1569U1VqXiRDUKOZf6/ZIzqjbRDh2ygs27jz5r+3n/07huRW7ybHuTFxESHHUvfP3gwWZHOFBMuXbJCs2bN8bopvsU1lDn6J3P0TwZBdzIlngcwr776qoYNG3bCDEu5cuVUp04dVahQQQMHDvRtAGMKdZN+3aPLr73Z7h9K+yNg+ey/c3VD4wb2XEZmv2iRwpr133na99tvanr7ffZ44MgfF455n36PdlWzJo0UCbZvS1SRIoWVK1cuHTnyR6V68WLx9hfH3r37FOluu/1G2x+7f/0h7BermSFROK6Cx63zB66hzNE/maN/cFoBjEmJly5dOtPnFCtWTL/99pv86rWEYTp8+OgUsZEvvWofe3S6T4uXf6eJk6cpGAzaYjDzuOy7Nepw751qdGU9NbuuYVjB7xMDRuidf41RXKGCihTLV6yyWaq6dWpo3vw/pqDXr19bixcvt/0V6Ro3vi1sGHLwM73tY+8+gz1slb9wDWWO/skc/ZNBwJ3pzp4HMI0bN7ZDRH379tVll12m3LmPvjQQCGj58uXq16+fmjRpIr8qWbxY2L6ZJm2cV7qkChc6V6PGvqahL4zT7S2a6t/v/UfJKSlq0ugq5YvNq3PPOTv0uvTCXvO6SJKcnKJJb0zXmDFD1b59D5UsVVw9undUu/t7eN00X9i8eVvY/m+/HbCPGzb87FGL/IdrKHP0T+boH5xWANO/f387hNSuXTubuitYsGCoBmbv3r02oGnRooV69eolFxXIn19jRjytASNetPUuF5e/QGOfHWCDFxz1yKP9NSZhqGbPmqZ9+/br6QHPaebM/3jdLDiEayhz9E/m6J//CVIDExU8xbxbcnKyvv/+e+3atcv+bCq/zdBRpUqV7Gyk03UoaeNpvzYSxJa80usm+NpZkbYGxGkIRFqKHTjDDqeFZ2GzU8rCadn23nlr36YceTNHM9++evXq2dMaAABwcgEyMNyNGgAA1wQJYCLyVgIAAMBtZGAAAHBNgAwMGRgAAOAcMjAAALgmQAaGDAwAAHAOGRgAABwTDHIrATIwAADAOWRgAABwTYAaGAIYAABcEySAYQgJAAA4hwwMAACuCZCBIQMDAABOy6ZNm9SuXTt7k+cGDRpowoQJoXODBg1ShQoVwrbJkyeHzn/44Ye69tprVa1aNXXu3Fm7d+8+pc8mAwMAgGuC3mdgAoGAOnTooEsuuUQzZsywwUyPHj1UrFgxNW/eXBs2bFDPnj118803h15ToEAB+7hy5Ur16dNHTz/9tCpWrKhnnnlGvXr10rhx47L8+WRgAADAKUtKSlKlSpXUv39/lS1bVldffbXq1aunJUuW2PMmgKlcubKKFi0a2mJjY+05k4lp2rSpbrrpJhvADB8+XHPmzNGWLVuy/PkEMAAAuFgDE8imLYvi4+M1atQom1UJBoM2cFm0aJFq166tAwcOaMeOHTawOZEVK1aoVq1aof0SJUqoZMmS9nhWMYQEAABC0tLS7JZRdHS03f5Mo0aNtH37djVs2FBNmjTRqlWrFBUVpZdffllfffWVChYsqLZt24aGk3bu3GkDoIzi4uKUmJiorCKAAQDANcHsq4ExdSgJCQlhx7p06aKuXbv+6WtGjx5th5TMcNKQIUNUpUoVG8BceOGFuvvuu21m5sknn7TZmsaNGyslJeW4gMjsHxs4ZYYABgAA1wSyL4Dp2PEBmy3JKLPsi2EKeY3U1FQ98sgjWrp0qc3GmMyLYepcfv75Z02ZMsUGMDExMccFK2Y/vUYmK6iBAQAAYcGKyZRk3E4UwJiMy+zZs8OOlS9fXocOHbI1MOnBSzqTjTF1MYaZqWRef+z7mULfrCKAAQDANQHvi3i3bt1qh5bSgxLD1L4ULlxYb7zxhtq0aRP2/O+//94GMYZZ+yV9tpLxyy+/2M0czyoCGAAAcMrMsJGpdendu7fWr19vp0GPGDFCDzzwgB0+MnUvEydO1ObNm/XWW29p5syZuu++++xrW7Vqpffee0/Tpk2zgc1jjz1mF8IrU6ZMlj8/KmjmPvnAoaSNXjfB12JLXul1E3ztrKgor5vgewF//FMHcqzDadvO2Gclfzgy2947tlmPLD/XZF8GDhyoBQsW2PoVU7DbsWNHW8BrhpdMca+pfSlVqpS6d++u6667LvTad999157ft2+f6tevb9+nUKFCWf5sAhhHEMBkjgDm5AhggOwViQGMl5iFBACAawLe30rAa9TAAAAA55CBAQDANUEyMAQwAAC4JkAAwxASAABwDhkYAABcEyQDQwYGAAA4hwwMAACuCZCB8U0Ak4+F2jK1rFQNr5vga433rPe6Cb6XdHC/100AgJwXwAAAgCwKkIGhBgYAADiHDAwAAK4Jcm8zAhgAAFwTYAiJISQAAOAcMjAAALgmQAaGDAwAAHAOGRgAAFwTJANDBgYAADiHDAwAAK4JkIEhAwMAAJxDBgYAANcEWciODAwAAHAOGRgAAFwToAaGAAYAANcECGAYQgIAAM4hAwMAgGuCZGDIwAAAAOeQgQEAwDHBANOoycAAAADnkIEBAMA1AWpgyMAAAADnkIEBAMA1QTIwBDAAALgmQBEvQ0gAAMA5ZGAAAHBNgCEkMjAAAMA5ZGAAAHBNgAwMGRgAAOAcMjAAALgmyCwkMjAAAMA5BDAZlCxZXFOnjteOxFX6+afFGjG8n2JiYhRJchcrrPNeekKVlr2ligv+pRJ92ikqOk/Yc6LPL6Eqa6cf99r89avpok8SVGXNdF3w5iDlKVNMOV3xEvGa8Poorf1pgZat+a/6P/O4YmKi7bmBQ3spce/asO2+++9SpDP/psaPe1ZJO9doy6al6v5wR6+b5Cv0T+bonww1MIFs2hzBEFIGb08drz179qpho5YqVKigXhk/UkeOHNETvQYpUpz/Ui8d2XdAG29/QrkKFlDpYQ8pGAgocchr9nyeEkV0/sSndFbe8MAuT8miOn9cH+0c9ZZ+m7NU8d3u1Pnj+2h9027KySa8/oL27d2vm5q2VsFC5+r5hGcUOHJEA556VhdXKK9B/Z/T22/NDD3/wG8HFOmGDe2rmjWrqfF1t+u880vrtYmjtGnzVr377kdeN80X6J/M0T//E2AIKSoY9MdAWp7oUp5+foUK5bTqu69UqnQ17dyZZI/dcUcLDRv6pMpeUEteW1qqRrZ/RsyFpXXx52O19vLWOpy01x47t/lVKtH7Pn1fr43OaVxXpQZ31qFdexRb6QJ9d0Hz0Gvju/9T+WtX0U+tetv9qLwxqrRwkjbdP1C/f7sq29veeM96nWnlL7pAcxd9rKoXXaGkXb/aYzfdcr36DXxM1Ss30NLVX6p7lz6a8+V8+UHSwf1eN0H58sVqxy/fqVnz1prz1QJ7rHevh3RNoyt0TePbFOnoH7f753DatjP2WQefbZ9t753vkQlyAUNI/5OYuEvX33BXKHhJd+655yhSmMDkp3ufCgUv6c46O599PLtRLe0Y+aZ+eXr8ca/NV72Cfl+4OrQfTElV8uoNylejonIqc63c2bJ9KHhJd845BVTg7PwqWaq4Nm742bP2+VG1S6soT548mr9gcejYvHkLVbt2dUVFRSnS0T+Zo3+OuRdSMJs2RxDA/M++ffs1a9ac0L75x9Dpwbb64su5ihSB337Xga+WHT0QFaW4e27Q7/NX2N1tvRK0e8onJ3xtnqKFdHhH+B9yEwiZIaecav++3/TfL+aFXTP33f9Pff3VN7ro4nIKBAJ6qOcDNhPz+dwZur1VC0U6UzOUlLRbhw4dCh3bsXOXYmNjFRdXSJGO/skc/YOMCGD+xNAhfVW9elU99dQwRarivdoqtmo5JT77xkmfGxUbo2Da0V8qhtk/tgA4J3tqwCO6pFplDR34gi66+AKZ0dn16zbqn7d31FuTpmvEqAFq2uxaRfoQQGpqWtix9P1IK5g/Efonc/TPMTUwgWzaTsGmTZvUrl07Va9eXQ0aNNCECUeHn7Zs2aI2bdrosssu0/XXX6+5c8MTAvPnz1ezZs1UrVo13XPPPfb5p4IA5gQGD+6tbt3a69423bR69Q+KRMUfv1dF2t6oLd1HKvXHzSd9fjD1+GDF7AeSUxUJ+vbvqfsfvEddOj6m79eu07+nvKcq5err5YR/ae3qHzVx/Jua/Pq/de99dyqSpaSkhmZppUvfP3gwWZGO/skc/eMvgUBAHTp0UKFChTRjxgw9/fTTGjt2rD744AP7Ba5z584qUqSI3nnnHbVo0UJdunTR9u3b7WvNoznfsmVLTZ8+XYULF1anTp3s67JlFtKiRYuy/NzLL79cLhr1/EB17HiP7m3TVTNmfKxIVKJ/B8X983pt6f6c9n+StQLUQzt+Ve6i4Slcs5+yZqNyumeG97GBSecOj+uj92eFju/duy/seet+2KgrrqyrSLZ9W6KKFCmsXLly2Rl+RvFi8faPz7H9FYnon8zRP0cFfTDdOSkpSZUqVVL//v1VoEABlS1bVvXq1dOSJUts4GIyKlOnTlW+fPlUrlw5LViwwAYzXbt21bRp01S1alXdd9999r2GDBmi+vXra+HChapTp87fH8AMGDBA69f/MdsjsyjJ1AKsXbtWrunbt7s6dGitf97dKfKm5P2Pmf4cd1dTbe42XPv/k/XZMweX/aD8tSqH9s0spNjKF9pp1TlZz8c76Z62d+iB+3rqw/c/Cx1/rHdX1apdXbff9Mc/TqPKJRW1bl3OD+gys3zFKlu/ULdODc2b/8cXovr1a2vx4uWn9M0rp6J/Mkf/+Et8fLxGjRplfzb9v3TpUpvo6Nevn1asWKHKlSvb4CVdzZo1tXz5cvuzOV+r1tEZvqaOqUqVKvZ8tgQwJnLq0aOHtm7dqrfffjtHjTlWrFhefXo/rGHDE2xVe7FiRUPnduzYpUgQU6604rveqV1jp+ngojXKXaRg6NyxM5OOteffs1S0w80q+sCt2v/5QhsIpW3dod+/+U451UUXX6jujz6o0c+/om+/Waqi8UcLlj/7z5fq2v1+PdilrT7+cLYaNKqv2+5soVuat1EkS05O0aQ3pmvMmKFq376HnanVo3tHtbu/h9dN8wX6J3P0z5lZByYtLc1uGUVHR9vtzzRq1MgOCzVs2FBNmjTR4MGDbYCTUVxcnBITE+3Pu3btyvT83x7AmMaPHDlSt99+u426Hn/8ceUUzZs3Ue7cuW0QYzY/rVFzpph1XqJy57JBjNkyyrjmy4kc2rZTmx4YopJPtbfBy8Ela7WpwzPKyZpc38heMz0efdBuGRUvWEnt733YZmIe69NNWzZvU6f7H9WSRX98+4hkjzzaX2MShmr2rGl29t/TA57TzJn/8bpZvkH/ZI7++Z9g9g0hjRs3TgkJCWHHTP2KGfr5M6NHj7ZDSmY4yQwHJScnHxfwmP30wOhk57NtIbsNGzbYcapWrVrp7xIpQYKfF7JzmRcL2bnGDwvZATnZmVzI7vdBd2fbe+d57NVTzsCk++STT/TII4/olltu0f79+/X888+Hzr311luaMmWKLfK94YYbdPfdd4fFEQ8//LCtnenbt2/23UrAFOOYDQAA5KwhpOgsBism42JqVq699ujyEOXLl7d1SkWLFtXGjRuPe376sFGxYsXs/omKgrOKadQAAOCUmXpYM7S0Y8eO0LFVq1bZKdGmYHf16tVKSUkJnTOzk8yaL4Z5NPvpzJDSmjVrQuezggAGAADXBLy/G/Ull1xiZw717t3bzlCeM2eORowYoQceeEC1a9dWiRIl1KtXL61bt07jx4/XypUrdeutt9rXmiEmM2vJHDfnzfNKly6d5RlIBgEMAAA4ZWY9npdeeslOgb7jjjvUp08ftW7d2q6qm37OzDYyi9W9//77GjNmjEqWLGlfa4KVF1980c5uNkHN3r177flTuacVd6N2BEW8maOI9+Qo4gVyUBHvU9m3qnf+AVPlAjIwAADAOac1CwkAAOTMdWBcQQADAIBrAr6o/vAUQ0gAAMA5ZGAAAHBM0Ad3o/YaGRgAAOAcMjAAALgmQA0MGRgAAOAcMjAAALgmQAaGDAwAAHAOGRgAAFwTZBYSAQwAAK4JMITEEBIAAHAOGRgAABwTJANDBgYAALiHDAwAAK4JkIEhAwMAAJxDBgYAANcEmEZNBgYAADiHDAwAAK4JUANDAAMAgGsCBDAMIQEAAOeQgQEAwDHBIBkYMjAAAMA5ZGAAAHBNgAwMGRgAAOAcMjAAALgmQAaGDAwAAHAOGRhHVN+21Osm+NpvE+7xugm+d3b7SV43AcDfJEgGhgAGAADnBAhgGEICAADOIQMDAIBrAl43wHtkYAAAgHPIwAAA4JggNTBkYAAAgHvIwAAA4JoAGRgyMAAAwDlkYAAAcE3A6wZ4jwwMAABwDhkYAAAcE6QGhgAGAADnBLxugPcYQgIAAM4hAwMAgGOCDCGRgQEAAO4hAwMAgGsCXjfAe2RgAACAcwhgAABwTDCQfdup2LFjh7p166batWvryiuv1JAhQ5SammrPDRo0SBUqVAjbJk+eHHrthx9+qGuvvVbVqlVT586dtXv37lP6bIaQAADAKQsGgzZ4Oeecc/Tmm29q37596t27t8466yw9/vjj2rBhg3r27Kmbb7459JoCBQrYx5UrV6pPnz56+umnVbFiRT3zzDPq1auXxo0bl+XPJwMDAIBrAtm4ZdHGjRu1fPlym3W56KKLVKtWLRvQmMyKYQKYypUrq2jRoqEtNjbWnjOZmKZNm+qmm26yAczw4cM1Z84cbdmyJcufTwADAIBjgtk4hJSWlqYDBw6EbebYsUxAMmHCBBUpUiTsePprzPBS2bJlT9j+FStW2IAnXYkSJVSyZEl7PKsIYAAAQIgZxqlZs2bYdqKhHTN0ZOpe0gUCAZtZqVu3rs2+REVF6eWXX9ZVV12lG2+8UTNmzAg9d+fOnYqPjw97v7i4OCUmJiqrqIEBAMA1gex7644dO6pt27Zhx6Kjo0/6uhEjRmjNmjWaPn26Vq9ebQOYCy+8UHfffbcWLVqkJ5980tbANG7cWCkpKce9p9k/UabnzxDAAACAsEAiKwHLscHL66+/rueff14XX3yxrYlp2LChChYsaM+bOpeff/5ZU6ZMsQFMTEzMccGK2U+vkckKhpAAAHBM0CfTqI2BAwfqtddes0FMkyZN7DGTfUkPXtKZbIypizGKFSumpKSksPNm39TVZBUBDAAAOC0JCQmaOnWqRo4cqRtuuCF0/IUXXlCbNm3Cnvv999/bIMYwa78sWbIkdO6XX36xmzmeVQwhAQDgmKAPbiVgCnVfeukldejQwRb67tq1K3TODB+NHz9eEydOtENGc+fO1cyZMzVp0iR7vlWrVmrdurUuu+wyXXLJJXYdmAYNGqhMmTJZ/nwCGAAAcMo+//xzHTlyRGPHjrVbRj/88IPNwowePdo+lipVSs8995yqV69uz5vHAQMG2PNmAbz69evboahTERU0S+n5QJ7oUl43wdd88R/Jx36bcI/XTfC9s9v/8c0HQPY4nLbtjH3WjoZXZ9t7F/tyjlxABgYAANcEoxTpKOIFAADOIYDJoGTJ4po6dbx2JK7Szz8t1ojh/excdRxl+mP8uGeVtHONtmxaqu4Pd1Sk2bz7gB6cMlf1hr+n/3vxP/rXgh9D51Zu2617/vVfe67F2M/07rKfQueaJnyiy55597ht3NdrFUm4hjJH/2SO/vHfNGqvMISUwdtTx2vPnr1q2KilChUqqFfGj7QFSk/0GuR103xj2NC+qlmzmhpfd7vOO7+0Xps4Sps2b9W7736kSBAIBtX17fmqUrKQpra/xgYzvWYuVPzZsapdtqg6T52n22pcoIE31tLaX/ao34dLVKRAXl11UQm92bahfX262Wu3KWHOGjW/9HxFkki/hk6G/skc/YN0FPH+T4UK5bTqu69UqnQ17dz5x+I6d9zRQsOGPqmyFxy94ZRX/PAfKV++WO345Ts1a95ac75aYI/17vWQrml0ha5pfFtEFPHu+i1ZI2atVL8baih/TB57rMf0bxSXP0YXx5+rtxZt0IwHGoeeP/DjpTqYdkRDbro8vL0ph3Tj2M/UrWEV3XzZiW92lhOLeP18DfkB/eN2/5zJIt5frmiYbe9dYu6XcgFDSP+TmLhL199wVyh4SXfuued41ia/qXZpFeXJk0fzFywOHZs3b6Fq165uV12MBEXPjtXwlnVs8GJi/2VbftXSzUmqdX5R/aNcMT3dvOZxrzmQeui4Y5O++VFFC+RVi2qRlX3hGsoc/ZM5+gcZEcD8z759+zVr1tGpY+YfQ6cH2+qLL+d62i4/KV4iXklJu3Xo0NE/yDt27rL3roiLK6RIc33CJ2o7aY4uLVVY11YspVIF89uf0+3+PUWfrtlqh5YySj50WFMWb1S7+hV0VoT90uUayhz9kzn656ggNTBZC2DMDZbMPQ6uvvpq1ahRQ126dLEr8B17D4NKlSoppxg6pK+qV6+qp54a5nVTfJW+TU0Nv/lW+n4kFjs/e0tdjb69nn7YsU/PzloZdi7l0BH1fOdbxeXPq1trXBB2zgQ1+aJz6ZqKJRVpuIYyR/9kjv7BKQcw5h4Hs2fP1mOPPWZXzjPByi233GKPZeSTcpq/bPDg3urWrb3ubdNNq1f/4HVzfCMlJVUxMeF3KE3fP3gwWZHGFPKa4txHGl+q6ct+0qEjf3x1OZh2WN3+PV+bdh/Q6Dv+odg84bXypni3SeXSyn1W5CVAuYYyR/9kjv45KhiMyrbNFVn6Dfqf//xHgwcPtjdqatasmb0dtrmPwcMPP2zPpcsJY5Cjnh9op+Xd26arZsz42Ovm+Mr2bYkqUqSwcuXKFTpWvFi8/cWxd+8+RYJfD6Toix+2hx27sMjZNngxtS5mM1Os1+/ar/H/vFLnFy4Q9ty0w0e0eHOSGl4cedkXg2soc/RP5uifo4IMIWUtgElJSQm7LbYJVB5//HHde++9evTRRzVr1izlBH37dleHDq31z7s76d//ft/r5vjO8hWr7Nhz3To1Qsfq16+txYuX55js28ls23dQPad/ox37j37bW5u4V4Xyxejc2Gh7btue3zXx7qtUvujxBeDrdu7X4SMBVS0ZWeP16biGMkf/ZI7+wSkHMHXq1NHw4cO1e/fusOMmeLnjjjvUvXt3vfXWW3JZxYrl1af3wxo+Yoytai9WrGhowx+Sk1M06Y3pGjNmqGrVrKYbb2yiHt07anTCREWKKiUKqVKJgur/0RJt2LVfX69P1POff6f29StoxvKftWjTLj11Qw2dnTePkg6k2G1f8tExe5OZKV0ov6JzH/0GGUm4hjJH/2SO/jkqGIjKti1HrQOzY8cOdevWTStXrtSECRPsXSMzSkhIsHeiDAQCWrt2rZPrwDz6aGcNfqa3L9tm+OW7RWxsXo1JGKqWN19vZ249N/JljX5xQkTdzHHnb8ka+ukKLfx5p61vuaPWhWr3jwp2Ebv5G3ce9/ya5xXRxNZX2Z9fm/+DvvzxF01q00Bnmh/WgfHzNeQX9I+7/XMm14HZcvk12fbeZRZ9rhy3kN3GjRtVtGhRnX322cedM7OSzK21O3TocFoN8UOQ4Gd+CWD8irtRuxPAADnVmQxgNtfKvgDmvMWf57xbCVx44YV/eq5cuXJ2AwAAyG7cCwkAAMcEHapVyS6RtxAFAABwHhkYAAAcEyQDQwADAIBrgszsYAgJAAC4hwwMAACOCTKERAYGAAC4hwwMAACOCTp01+jsQgYGAAA4hwwMAACOCQa8boH3yMAAAADnkIEBAMAxAWpgCGAAAHBNkACGISQAAOAeMjAAADgmyEJ2ZGAAAIB7yMAAAOCYIDdzJAMDAADcQwYGAADHBKmBIQMDAADcQwYGAADHBFgHhgAGAADXBAlgGEICAADuIQMDAIBjgkyjJgMDAADcQwYGAADHBKiBIQMDAADcQwYGAADHBMnAkIEBAADuIQMDAIBjgsxCIgMDAICLRbyBbNpOxY4dO9StWzfVrl1bV155pYYMGaLU1FR7bsuWLWrTpo0uu+wyXX/99Zo7d27Ya+fPn69mzZqpWrVquueee+zzTwUBDAAAOGXBYNAGL8nJyXrzzTf1/PPP68svv9SoUaPsuc6dO6tIkSJ655131KJFC3Xp0kXbt2+3rzWP5nzLli01ffp0FS5cWJ06dbKvc24IiWwY/oqz20/yugm+d3V8Fa+b4Gtzdq72ugmAU0W8Gzdu1PLlyzVv3jwbqBgmoBk2bJiuuuoqm1GZOnWq8uXLp3LlymnBggU2mOnataumTZumqlWr6r777rOvM5mb+vXra+HChapTp06WPp8MDAAAOGVFixbVhAkTQsFLugMHDmjFihWqXLmyDV7S1axZ0wY8hjlfq1at0LnY2FhVqVIldN6pDAwAAPB+Ibu0tDS7ZRQdHW23jM455xxb9xJqUyCgyZMnq27dutq1a5fi4+PDnh8XF6fExET788nOZwUZGAAAEDJu3DibLcm4mWMnM2LECK1Zs0bdu3e3dTHHBjxmPz0wOtn5rCADAwCAY4LZ+N4dO3ZU27Ztw44dG2ycKHh5/fXXbSHvxRdfrJiYGO3duzfsOSY4yZs3r/3ZnD82WDH7JquTVQQwAAAg0+GizAwcOFBTpkyxQUyTJk3ssWLFimn9+vVhz0tKSgoNG5nzZv/Y85UqVcry5zKEBACAYwI+WQcmISHBzjQaOXKkbrjhhtBxs7bL6tWrlZKSEjq2ZMkSezz9vNlPZ4aUzPBT+vmsIIABAMDBadTBbNqyasOGDXrppZd0//332zoZU5ibvpmF7UqUKKFevXpp3bp1Gj9+vFauXKlbb73VvvaWW27R0qVL7XFz3jyvdOnSWZ5CbRDAAACAU/b555/ryJEjGjt2rK644oqwLVeuXDa4McGMWazu/fff15gxY1SyZEn7WhOsvPjii3ZdGBPUmHoZcz4qKusBVFTwVJa9y0a5o0t53QQgR2Mhu8yxkB3+qsNp287YZ31d/I9MRna4MnG6XEAGBgAAOIdZSAAAOCYo728l4DUyMAAAwDlkYAAAcEzAF9Wr3iIDAwAAnEMGBgAAxwSogSEDAwAA3EMGBgAAxwTJwBDAAADgmoDXDfABhpAAAIBzyMAAAOCYIENIZGAAAIB7yMAAAOCYgNcN8AEyMAAAwDlkYAAAcEzA6wb4ABkYAADgHDIwAAA4JsgsJAIYAABcEyB+YQgJAAC4hwwMAACOCTCERAYGAAC4hwwMAACOCXrdAB8gA3OMmJgYjR/3rJJ2rtGWTUvV/eGOXjfJV+ifzNE/4Zrc1lifb/3suG3W5k/s+fJVyinhg9H6aN37GvPhi7rokosU6biGMkf/IB0ZmGMMG9pXNWtWU+Prbtd555fWaxNHadPmrXr33Y+8bpov0D+Zo3/CffnBHC387+LQfu7cufXsv4frm9nfKm9sXg2eNEifz/hCw7uPUPPWzTT49YFqXb+NUpJTFKm4hjJH//wh4HUDfCAqGAz6IhOVO7qU101Qvnyx2vHLd2rWvLXmfLXAHuvd6yFd0+gKXdP4NkU6+sft/rk6vorXTVCrzneqaasmateog665uZH+2e0uta5/b+j861+/prdGv6VPp806422bs3O1vOb3a8hrfu+fw2nbzthnvVv8rmx775aJb8kFDCFlUO3SKsqTJ4/mLzj6jXHevIWqXbu6oqKo+KZ/Mkf/ZO7sgmfrzk63a8KQV3Uo7ZAq1aikVYtWhT1n9aLVqlyzsiIV11Dm6J+jAlFR2ba54i8HMIcPH9bevXuVExQvEa+kpN06dOhQ6NiOnbsUGxuruLhCinT0T+bon8yZIaJfd/yqrz762u7HxRe2+xntSdqjIiWKKFJxDWWO/jkqmI1bjgxgPvroIw0YMECffvqpzMjToEGDVKNGDdWrV0/169fX5MmT5Xp6MjU1LexY+r4pHIt09E/m6J/MXd+qqWa89l5oPyY2xmZiMjL7eaLzKFJxDWWO/sFpFfFOnDhRY8eOtcFKv379NHPmTK1du1YjRoxQ+fLl9d133+nZZ5/VwYMH1aFDB7koJSVVMTHRYcfS9w8eTFako38yR//8uQrVLlbREkX05fv/DR1LS007Llgx+6nJqYpUXEOZo3+OCnjdAJcCmDfffFMjR47UVVddpSVLlujuu+/Wyy+/rKuvvtqeL1eunAoVKqQnn3zS2QBm+7ZEFSlSWLly5dKRI0fsseLF4u0/jL179ynS0T+Zo3/+3OUNLtfKb7/TgX0HQseSEn9V4aKFw55n9nfv3K1IxTWUOfoHpzWEtGfPHpUtW9b+XLNmTZUoUUJFioSPVZcuXVrJye5GwctXrLJjq3Xr1Agdq1+/thYvXm6HzCId/ZM5+ufPVapeQasXh8/yWbt0rarUCi/YrXJ5Za1ZulaRimsoc/RP+M0cA9m05bgAxtS6jBkzxg4RGV988YWqVDk6LXPnzp0aMmSIHWJyVXJyiia9MV1jxgxVrZrVdOONTdSje0eNTpjoddN8gf7JHP3z58pWKKtNP24OO2aKefOfU0Cdn35Q5190nn00a8PM+eArRSquoczRPzitdWA2b95sh4YqV65sh5Iymj17trp27aqqVavqpZdeUtGiReXiOjBGbGxejUkYqpY3X699+/bruZEva/SLE7xulm/QP+72j5frwHy8/gM91a6/Fs9ZEna8wmUV1H1IN5130XnauPYnjXriBa1fvcGTNvphHRi/X0N+4Of+OZPrwLxZ8u5se+9/bp+c8xayM09NSko6LkD59ddftXXrVl1yySU666zTm5ntlwAGyKn8sJCdn/klgIG7CGB8fCsBs1DQibIrcXFxdgMAANkv6HUDfIB7IQEA4JiAQ8W22YVbCQAAAOeQgQEAwDEBrxvgA2RgAACAc8jAAADgmKDXDfABMjAAAMA5ZGAAAHBMgFlIZGAAAIB7yMAAAOCYgNcN8AECGAAAHBPwugE+wBASAAD4S9LS0tSsWTN9++23oWODBg1ShQoVwrbJk4/eZ+nDDz/Utddeq2rVqqlz587avXv3KX0mAQwAAI4JRmXfdqpSU1PVo0cPrVu3Luz4hg0b1LNnT82dOze03XLLLfbcypUr1adPH3Xp0kVvv/229u/fr169ep3S5zKEBAAATsv69ettkBIMHr8yjQlg2rVrd8KbQJtMTNOmTXXTTTfZ/eHDh6thw4basmWLypQpk6XPJgMDAICDNTCBbNpOxcKFC1WnTh2bRcnowIED2rFjh8qWLXvC161YsUK1atUK7ZcoUUIlS5a0x7OKDAwAAAirZzFbRtHR0XY71l133aUTMdmXqKgovfzyy/rqq69UsGBBtW3bVjfffLM9v3PnTsXHx4e9Ji4uTomJicoqAhgAABwTyMb3HjdunBISEsKOmVqVrl27Zvk9Nm7caAOYCy+8UHfffbcWLVqkJ598UgUKFFDjxo2VkpJyXEBk9o8NnDJDAAMAAEI6duxosyUZnSj7khlT22JqWkzmxahYsaJ+/vlnTZkyxQYwMTExxwUrZj82NjbLn0EAAwCAY4LZ+N5/Nlx0Kkz2JT14SWeyMd988439uVixYkpKSgo7b/ZPVPD7ZyjiBQDAwXshBbJp+zu88MILatOmTdix77//3gYxhln7ZcmSJaFzv/zyi93M8awigAEAAH8rM3xk6l4mTpyozZs366233tLMmTN133332fOtWrXSe++9p2nTptnA5rHHHlODBg2yPIXaYAgJAADHBORvl156qc3CjB492j6WKlVKzz33nKpXr27Pm8cBAwbY8/v27VP9+vU1cODAU/qMqOCJVp/xQO7oUl43AcjRro6v4nUTfG3OztVeNwGOO5y27Yx91vPn3Z1t791989Hl/v2MDAwAAI4JeN0AH6AGBgAAOIcMDAAAjgl63QAfIAMDAACcQwYGAADHBP6m9VpcRgADAIBjAl43wAcYQgIAAM4hAwMAgGOCXjfAB8jAAAAA55CBAQDAMQFyMAQwyBkoyD85lsrP3OVFL/a6Cb62aNePXjcBCEMAAwCAYwJeN8AHqIEBAADOIQMDAIBjgl43wAcIYAAAcEzA6wb4AENIAADAOWRgAABwTICpl2RgAACAe8jAAADgmABlvGRgAACAe8jAAADgmKDXDfABMjAAAMA5ZGAAAHBMwOsG+AAZGAAA4BwyMAAAOCZAFQwBDAAArgl63QAfYAgJAAA4hwwMAACOCXjdAB8gAwMAAJxDBgYAAMcEqIIhAwMAANxDBgYAAMcEvW6AD5CBAQAAziEDAwCAYwJeN8AHCGAAAHBMkEEkhpAAAIB7yMAAAOCYgNcN8AEyMAAAwDlkYAAAcEyAGhgyMAAAwD1kYAAAcEzQ6wb4ABkYAADgHAKYPxEdHa3lyz7X1VfV87opvhITE6Px455V0s412rJpqbo/3NHrJvlKyZLFNXXqeO1IXKWff1qsEcP72T7DUVxD4fJE59EjzzykT1e/r4+Wv6MHnmh/3HMuvbyqps9/05P2+Q3Xz9EamEA2ba5gCOlP/oFMfiNBVatU9LopvjNsaF/VrFlNja+7XeedX1qvTRylTZu36t13P/K6ab7w9tTx2rNnrxo2aqlChQrqlfEjdeTIET3Ra5DXTfMNrqFw3Qd0Uc361dX9n48pX4F8GvDSk0rcukMzJ39gz5ereIEGj39aaalpXjfVF7h+/hDwugE+QAbmGJUqXaR5cz/QhReW9bopvpMvX6za3ddKPXo8pWXLV+m99z7Rs8+NVecH23jdNF+oUKGc6tatqfb399CaNT9q3ryFenrACN15501eN803uIbCnVPwbDW/83oNffQ5rVn+vRbPXaop4/6tKtUr2fM33d1c495L0O6kPV431Re4fpARAcwxrrqynub8d76uuLK5103xnWqXVlGePHk0f8Hi0DHzR7p27eqKiopSpEtM3KXrb7hLO3cmhR0/99xzPGuT33ANhbv08kt04LffteybFaFjb4yZomd6Drc/121YWwMfHqqpr0zzsJX+wfUTfiuBYDb973SkpaWpWbNm+vbbb0PHtmzZojZt2uiyyy7T9ddfr7lz54a9Zv78+fY11apV0z333GOffyoIYI4xbvwk9Xy0v5KTU7xuiu8ULxGvpKTdOnToUOjYjp27FBsbq7i4Qop0+/bt16xZc0L75hdqpwfb6osvw//RRjKuoXClzi+hX7Ykqumt12nqnNdtnUvbh1uH/hg/0e5JzfnP11430ze4fvwpNTVVPXr00Lp160LHgsGgOnfurCJFiuidd95RixYt1KVLF23fvt2eN4/mfMuWLTV9+nQVLlxYnTp1sq87YzUwNWrU0HvvvacyZcr81beCA+nb1GPG4dP3KVQ93tAhfVW9elXV+8cNXjfFN7iGwsXmj1WZC0rZoaJBPYYpLj5Ojw/roZTkFE0ZR9blWFw//quBWb9+vXr27Hlc4PHNN9/YjMrUqVOVL18+lStXTgsWLLDBTNeuXTVt2jRVrVpV9913n33+kCFDVL9+fS1cuFB16tT5+wKYXr16ZZo2GjFihPLnzx9qBHKmlJRUxcREhx1L3z94MNmjVvnT4MG91a1be931zwe1evUPXjfHN7iGwh05fEQFzimgfp0HKXHbDnuseKl4tby3BQHMCXD9+M/C/wUc3bt3t0NF6VasWKHKlSvb4CVdzZo1tXz58tD5WrVqhc6ZLFqVKlXs+b81gPn111/11Vdf6dJLL7VRFCLT9m2JKlKksHLlymVn1hjFi8XbXxx79+7zunm+Mer5gerY8R7d26arZsz42Ovm+ArXULhfd+5WanJqKHgxNm3YomIl4j1tl19x/RwVzMbpziYxYbZjlxYx27HuuuuuE77Hrl27FB8ffh3HxcUpMTExS+f/tgBm/Pjx+uijj2ympV69enbcKv3/yCeffKJHH32UIaQIsHzFKjv2XLdODc2bv8geq1+/thYvXn5K45Y5Wd++3dWhQ2v98+5OETetMyu4hsKtWrpGMbExKnNhaW3ZuNUeK3vR+fpla9Z/iUcSrp8zY9y4cUpISAg7ZupXzNBPViUnJx8X8Jj99MDoZOf/1iLeG264wda6mKipefPmtnoYkcUUNk96Y7rGjBmqWjWr6cYbm6hH944anTDR66b5QsWK5dWn98MaPmKMnRlRrFjR0IY/cA2F27xhi+bNXqAnn39c5SuXU52rL1frzq307qT3vW6aL3H9hNfABLJp69ixo5YsWRK2mWOnwtQkHRuMmP28efNmet4MJWVLEe+5556rwYMH20Kc/v372wIcot7I8sij/TUmYahmz5pmZ908PeA5zZz5H6+b5QvNmzdR7ty5bRBjtozyRJfyrF1+wzUUrl+XZ9RzUDe9PGO0UpNT9M5rMzXt1Xe9bpZvcf38IZCNf3v/bLjoVBQrVswW+GaUlJQUGjYy583+secrVfpjDaSsiAqeZgRiIqUXX3xRH3/8sSZPnqwSJUror8jNL3j8BZG1AsTp4atG5i4verHXTfC1Rbt+9LoJvnc4bdsZ+6zW57fMtvd+Y9PpBdAVKlTQpEmTbBGuSXSYchMzWpOedbn33nttIW+3bt30wgsvaNmyZfrXv/4VGlIys5Beeukl1a1bN3vXgTHRmZk69fnnn//l4AUAAJzaF5JgNm1/h9q1a9vYwMxiNuvDmFralStX6tZbb7Xnb7nlFi1dutQeN+fN80qXLp3lGUgGC9kBAIC/lZkpZrIppm7WLFb3/vvva8yYMSpZsqQ9b4IVM4pj1oUxQc3evXvt+VNZUfm0h5D+bgwh4a9gCOnkfPEP3ccYQsocQ0j+GkK66/ybs+2939o0Qy4gAwMAAJzzl28lAAAAcs5Cdq4gAwMAAJxDBgYAAMcEvG6ADxDAAADgmABDSAwhAQAA95CBAQDAMUEyMGRgAACAe8jAAADgmIDXDfABMjAAAMA5ZGAAAHBM0B93AfIUGRgAAOAcMjAAADgmwCwkAhgAAFwT8LoBPsAQEgAAcA4ZGAAAHBNkCIkMDAAAcA8ZGAAAHBMgA0MGBgAAuIcMDAAAjgmykB0ZGAAA4B4yMAAAOCbgdQN8gAAGAADHBCniZQgJAAC4hwwMAACOCZCBIQMDAADcQwYGAADHBJlGTQYGAAC4hwwMAACOCVADQwYGAAC4hwwMcgS+i+CvWrTrR6+b4GsXnFvc6yYggyC/9QhgAABwTYAiXoaQAACAe8jAAADgmKDXDfABMjAAAMA5ZGAAAHBMgBwMGRgAAOAeMjAAADgmQAaGDAwAAHAPGRgAABwTZB0YMjAAAMA9ZGAAAHBMgBoYAhgAAFwTJIBhCAkAALiHDAwAAI4JUsRLBgYAAJyeWbNmqUKFCmFbt27d7Lk1a9botttuU7Vq1XTLLbdo1apV+juRgQEAwDEBn9TArF+/Xg0bNtTAgQNDx2JiYnTw4EF16NBBzZs319ChQzVlyhR17NjRBjz58uX7Wz6bDAwAADgtGzZs0MUXX6yiRYuGtnPOOUcff/yxDWQee+wxlStXTn369FH+/Pn1ySef6O9CAAMAgIM1MMFs2k41gClbtuxxx1esWKGaNWsqKirK7pvHGjVqaPny5X9bHxDAAACAkLS0NB04cCBsM8eOZYKdn376SXPnzlWTJk107bXX6tlnn7XP3bVrl+Lj48OeHxcXp8TERP1dqIEBAMAxgWysgRk3bpwSEhLCjnXp0kVdu3YNO7Z9+3YlJycrOjpao0aN0tatWzVo0CClpKSEjmdk9k8UCJ0uAhgAABwTzMYAxhTbtm3bNuzYscGIUapUKX377bc699xz7RBRpUqVFAgE9Oijj6p27drHBStmP2/evH9bOwlgAABAWLByooDlRAoWLBi2bwp2U1NTbTFvUlJS2Dmzf+yw0l9BDQwAAI4JBIPZtmXV119/rTp16tjhonRr1661QY0p4F22bFmoKNg8Ll261K4J83chgAEAAKesevXqdqp03759tXHjRs2ZM0fDhw9X+/bt9X//93/av3+/nnnmGbtWjHk0gU7Tpk31dyGAAQDAwRqYYDb9L6sKFCigiRMnavfu3XalXbPWyx133GEDGHPOFAMvWbJELVu2tNOqx48f/7ctYmdEBX1yQ4Xc0aW8bgIA4E9ccG5xr5vge+t2LTljn1WlWJ1se+/VO76VCyjiBQDAMQF/5B48xRASAABwDhkYAAAcE/TJzRy9RAADAIBjAgwhMYQEAADcQwDzJ8wqhMuXfa6rr6rndVN8xcz5Hz/uWSXtXKMtm5aq+8MdvW6Sr9A/J0cfZY7+CXfeBaX16r8TtPznrzVn2Udq37l16FytupdpxuzJWvHzXL3/5Vv6x1W1FSmCPphG7TWGkP7kF8jkNxJUtUpFr5viO8OG9lXNmtXU+Lrbdd75pfXaxFHatHmr3n33I6+b5gv0z8nRR5mjf44y99d55a0X9N2yNWrR6C6VvfA8PT9usHb8skvzvvpW4yaP0tjnJ+rTD7/QDTdfp7GTRqpJvZZK/GWn103HGcA6MMeoVOkivTFpjP2HU+3Syrrm2ls156sFXjfLF/Lli9WOX75Ts+atQ33Su9dDuqbRFbqm8W2KdPTPydFH7vaPF+vAFC1WRH0G9VSfhwfq998P2mNjXhuhXTt/1bw532rQyL6qU/Ga0PMX/vC5nnpksD754HPl9HVgyhWpkW3vvSFpqVzAENIxrrqynub8d76uuLK5103xnWqXVlGePHk0f8Hi0LF58xaqdu3qNuCLdPTPydFHmaN/wu3akaSH7+8VCl5q1K6mWvVq6Nv5S7R3z14Vjiuo625oaM9d27SB8hfIrx/WrPe41XBmCMkkcPbu3atChQopJxg3fpLXTfCt4iXilZS0W4cOHQod27Fzl2JjYxUXV8iei2T0z8nRR5mjf/7cf5d+qFJlSuiLT7/Spx98rkAgoDcmvq0XXx1uf86dO7ce79pfP23YpEgQdKhWxfMMzEMPPaQDBw6E9s0/sMGDB9ubOf3jH/9QvXr19Oqrr2ZXO+GT9HZqalrYsfR9UzcU6eifk6OPMkf//LkubR9Vh7seVqWqF9thpfz586nM+aX04vDxuqXJvXpp5AQ9OfgRXVi+rNdNhd8yMJ999pmeeuope4MmY/To0faYufNkuXLltGbNGo0YMUIpKSnq1KlTdrYZHklJSVVMTHTYsfT9gweP3k49UtE/J0cfZY7++XOrVqy1jzFPRuu5sYNsf5hhtYTnXrHH16z8XtVqVNW9HVqp32NDlNMFgwFFuixnYI6t9f3kk0/sLbSvu+46G8A0b95cAwcO1NSpU7OjnfCB7dsSVaRIYeXKlSt0rHixePuLZO/efYp09M/J0UeZo3/CxRUtbGtbMlr/w0ZFx0SrYpWL9P3qdWHn1nz3g0qWiYybTgYUzLYtxwUwJtLNWER21llnqXTp0mHPOe+88/T777//vS2EbyxfscoOHdatc7T6vX792lq8ePlxAW4kon9Ojj7KHP0Trsx5JTXmXyNUrHjR0LEq1Srp1127tTMxSeUvviDs+RdeVFZbN2/3oKXwfQbGZFyef/55zZw5U1WrVtWkSUcLXlNTUzVmzBhddtll2dVWeCw5OUWT3piuMWOGqlbNarrxxibq0b2jRidM9LppvkD/nBx9lDn6J9zKZWvs0NGQ0f1ssHL1tfX1eP+HNHbUq5o2eYbdb9PxLlsL06ZjK13Z6B9689VpigTBYDDbthy3Dszs2bO1fv16bdiwwW4//fSTrXf59ttvdc4556hOnTq2Un7ixIl2SMnVdWAyOpy2jXVgjhEbm1djEoaq5c3Xa9++/Xpu5Msa/eIEr5vlG/TPydFHbvaPF+vAGPHFiqjf0MdV76radiht8sS39fKo1+y5Rk2u0sNPPKDzLiijn9Zv0ogBozX/q4XyyplcB+a8wpdk23tv3v2dcvxCdtu3b1fJkiXtz3PnzrUzkvLnz39a7+XHAAYA4G0A45IzGcCULlw129576+5VyvHrwKQHL8YVV1zxd7QHAADgpLgXEgAAjgk6VKuSXbiVAAAAcA4ZGAAAHBMgA0MAAwCAa4IOLTiXXRhCAgAAziEDAwCAY4IMIZGBAQAA7iEDAwCAYwLUwJCBAQAA7iEDAwCAY4LUwJCBAQAA7iEDAwCAYwJkYAhgAABwTZAAhiEkAADgHjIwAAA4JsA0ajIwAADAPWRgAABwTJAaGDIwAADAPWRgAABwTIAMDBkYAADgHjIwAAA4JsgsJAIYAABcE2AIiSEkAADgHjIwAAA4JkgGhgwMAABwDxkYAAAcE6SIlwwMAABwDwEMAAAO1sAEs2k7Fampqerdu7dq1aqlK664Qq+++qrOFIaQAADAaRk+fLhWrVql119/Xdu3b9fjjz+ukiVL6v/+7/+U3QhgAABwTNAHs5AOHjyoadOm6ZVXXlGVKlXstm7dOr355ptnJIBhCAkAAMcEs3HLqu+//16HDx9W9erVQ8dq1qypFStWKBAIKLuRgQEAACFpaWl2yyg6OtpuGe3atUuFChUKO16kSBFbF7N3714VLlxYERHAHE7b5nUTAABwwuFs/Jv54osvKiEhIexYly5d1LVr17BjycnJxwU16fvHBkA5OoABAADe69ixo9q2bRt27NhAxYiJiTkuUEnfz5s3bza3kgAGAACcZLjoRIoVK6Y9e/bYOpjcuXOHhpVM8HLOOecou1HECwAATlmlSpVs4LJ8+fLQsSVLluiSSy7RWWdlf3hBAAMAAE5ZbGysbrrpJvXv318rV67U7Nmz7UJ299xzj86EqKAfJpMDAADnJCcn2wDms88+U4ECBdSuXTu1adPmjHw2AQwAAHAOQ0gAAMA5BDAAAMA5BDAAAMA5BDAAAMA5BDDHMPdw6N27t2rVqqUrrrjCTgnD8cxqi82aNdO3337rdVN8ZceOHerWrZtq166tK6+8UkOGDLHXFI7atGmTnalgbgDXoEEDTZgwwesm+VaHDh30xBNPeN0MX5k1a5YqVKgQtpl/c4g8rMR7jOHDh2vVqlV6/fXXtX37dj3++OMqWbLkGbk1uCvMH+SePXva26bjKDOhz/wiNStQmtvJ79u3zwbDZkEncx1B9g615o+yWehqxowZNpjp0aOHXdGzefPmXjfPVz766CPNmTNHN998s9dN8ZX169erYcOGGjhwYNiS9og8BDAZHDx4UNOmTdMrr7yiKlWq2M38kTZ/jAhgjv7yMMELs++Pt3HjRrsi5bx58+wdWQ0T0AwbNowA5n+SkpLs6p1m3QizZkTZsmVVr149u3onAcxR5k6+5suUCfQQbsOGDbr44otVtGhRr5sCjzGElMH3339v7+lgUtvpatasqRUrVthvjpAWLlyoOnXq6O233/a6Kb5jfqGa4ZD04CXdgQMHPGuT38THx2vUqFE2eDFBsAlcFi1aZIfccJQJelu0aKHy5ct73RRfBjAm8AXIwGRgbkJVqFChsJtYmT9GZsjEfCMqXLiwIt1dd93ldRN8ywwdmbqXdCbonTx5surWretpu/yqUaNGdpjWDAc0adLE6+b4xoIFC7R48WJ98MEHNlOFo0zQ+9NPP2nu3LkaN26cjhw5YrPjJtOZlZsPImchA3PMksjH/iNI3z/2luHAyYwYMUJr1qxR9+7dvW6KL40ePVovv/yy1q5da4ud8Ud9Wb9+/fTUU0/ZO/oinAl4039Pm0yeGZo1gZ4ZbkPkIQOTgSkEOzZQSd/nlwlONXgxheDPP/+8Ha/H8dLrO8wf7UceeUSPPfZYxH+LTkhIUNWqVcMyeTiqVKlSdubjueeeq6ioKFtPZTKdjz76qHr16qVcuXJ53UScQQQwGZiZEHv27LF1MOYW4enDSiZ4McMDQFaY2RFTpkyxQQxDI8cX8ZpC52uvvTZ0zNR5HDp0yNYKRfowrZl5ZPoovQ4v/QvUp59+qmXLlnncOn8oWLBg2H65cuVsEGxm/UX69RNpGELKwETzJnAxv2DTmSJD803RTIUFsvINeurUqRo5cqRuuOEGr5vjO1u3blWXLl3sejnpzLIF5g8Pf3ykN954ww6JzJw5026mTshs5mdIX3/9tZ1EYIaR0pkhSBPUcP1EHv4qZxAbG6ubbrrJFs6tXLlSs2fPtgvZ3XPPPV43DY7MjnjppZd0//3329lrJnuXvuEP5suAWZ7ArI9jpuSbdU5MpuqBBx7wumm+GSI5//zzQ1v+/PntZn6GbGbKDPX37dvXLltgrh9T/9K+fXuvmwYPMIR0DDOOagKYe++910717Nq1q6677jqvmwUHfP7553ZWxNixY+2W0Q8//OBZu/zE1CiYIM8Ms91xxx32S0Pr1q35koAsMb+TJ06cqMGDB+uWW26xwd2dd95JABOhooKsSAYAABzDEBIAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAHAOAQwAAJBr/h96q9dYBNGLUQAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAH5CAYAAACf/gSOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASDJJREFUeJzt3QmczWX///H3WGYMknWsIdyWqLE1SLJEKqS0l4oWKkuhlKVSKrtkJ9pQikSpu03dKtzWhmz9QlmbGWMrmQXn/B/X5T+HY5lGd+N8L+f17PF9zHyv6yxXl+/MfM7nWr4Rfr/fLwAAAIfkCHUDAAAAzhYBDAAAcA4BDAAAcA4BDAAAcA4BDAAAcA4BDAAAcA4BDAAAcA4BDAAAcE4uecTh5C2hboKnRZdqFOomAAAycSR953nxNzN30QpyARkYAADgHM9kYAAAQBb5jirckYEBAADOIQMDAIBr/D6FOzIwAADAOWRgAABwjY8MDAEMAACO8TOExBASAABwDxkYAABc4yMDQwYGAAA4hwwMAACu8ZOBIQMDAACcQwYGAADX+LiVABkYAADgHDIwAAC4xs8cGDIwAADAOWRgAABwjY8MDAEMAACO8TOExBASAABwDxkYAABc4yMDQwYGAAA4hwwMAACu8ZOBIQMDAACcQwYGAADX+LiVABkYAADgHDIwAAC4xs8cGAIYAABc4yOAYQgJAAA4hwwMAACu8ZOBIQMDAACcQwYGAADX+MjAhF0GZtuOXerUo58ub36Tmre7V6/PmB2oW7fxZ93dqYetu+uhx7V67Yag5741c459Tt1mN9rX2Lp9p8JNVFSUJk8aruSk9dq+dZV6PN451E3ypMjISMX/sECNr2oQ6qZ4DtdQ5uifzNE/CMsMjM/n06NPPKvq1Spr9htjbQDSe8AQFS9WRPUvr6UHH+ujls0aaWC/nvp+yQo99Hg/zZs+USVLxGj+519r4hvvaMhzvVXuotIaP3W6uvYeoI/emayIiAiFiyGD+6tOnVi1uOY2lS1XRm9MHaWt23ZozpxPQt00T/2CnT5trGpUrxrqpngS11Dm6J/M0T/H+P1sZBfh9/v98oDDyVuy/T12J+/V4Fcn6YWnH1O+fHlt2WN9BqpokUIqU6qE3vvwE30yc4py5sxp6x7u9YyqVKqgHo901Mw585UzZw7d2vZ6W/fTpl90832PauH8d1WkUMFsb3t0qUYKtbx5o5X4249q3eYeLfx2iS3r2+cxXd3sSl3d4tZQN88TqlX7l6a9Pc4GtbGXXaKrm98S6CtwDf0V+sft/jmSfu6y8qmrP822184Te+zvnNeF1RBSsaKFNWJgHxu8mLht1Zp1Wrl6rS6vdZl27EpQ9ar/CgQvRuWK5bV63bFhpDvatQ4EL38c/FMz53ysSheXU+GCFypcxF5WXblz59biJSsCZYsWLVNcXK2wykJl5qpGDbTwP4t1ZaM2oW6KJ3ENZY7+yRz9c9IqJH82Hef7ENK+ffuUnp6u6OhoFShQQK655uYO+i0xSY0bxqlFk4basnW7zaqcKCEpWfv3/x5UNmf+53p20ChFRubWpJEvhtUPTYmSMUpO3qvDhw8HyhKTdttroEiRQrYu3E2a/Haom+BpXEOZo38yR/+cwOdOoOGJDMwXX3yhe++9VzVr1tQVV1yhJk2aqF69eqpVq5buueceffXVV3LFKy/109ihA7Tx5y0aMnqyDWJ+XL9Rsz/6t44cOapFS1fqm++W6PCRI0HPa1C3lma9MUa3tLlW3Z9+wWZuwil9m5aWHlSWcW7mfQB/hWsoc/RP5ugf/K0MzBtvvKGxY8fqwQcfVNeuXVWkSBG70sJkYZKTk7VixQo9/fTTeuyxx2ww43U1qlW2X037n3p+qJ7s+qAGPPWYBr0yUS8MG6uq/6qg229qrWWr1gQ9z0zoNUfVHhW1/IcfNe/fX6nLA+0VDlJT0xQVFRlUlnF+6FBKiFoFl3ANZY7+yRz9cwI/GZgsBzCvv/66hgwZoubNm59SV7FiRZuJqVKligYOHOjZACZ57z67NPrqq64IlFUsX1aHDx/RwT8P6aZW1+iGa6/W3n0Hjs2XGTdVpUvG2MctW7laxYoW0cXlythzM3RUofxFpwwxnc927UxQ0aKF7Tyho0ePzYAvUTzG/uLYv/9AqJsHB3ANZY7+yRz9g781hJSamqoyZY798T6T4sWL648//pBX7dyVoMf7vqjE3cmBsnU/bbITcX/e/KueeHaQ/cEwwYuZ5Pv9f1cornasfdzUGbP09ntzAs8zPzxm+MkEMeEifvVaO/Zcv17tQFnDhnFasSLe9hfwV7iGMkf/ZI7+OYHvaPYd51sA06JFCztEZIaKjpw0L8Tsr7Jq1Sr17dtXLVu2lJeHjS6pUknPvPyKNv+yVd8uXmazLA/dd4fKlS2thYuWauaH87V95296ccQ4/f7HH2p73bGM0x03tdbcT7/UJ198o1+27tDA4WOVmpYWqA8HKSmpenvabI0bN1h168TqhhtaqmePzho9dmqomwZHcA1ljv7JHP2Dv7UPjJkrYoaQZs+ebbMPBQsWDMyB2b9/v3LlyqW2bduqT58+ypMnj7y4D4yRtHuPXho5XktXxis6Tx7deXMbPXTv7XZIaOHiZRo+dooSEpN0WfWq6teriyqUuyhoBdLU6bOUkLhbsTWqqV+vR+0Q1LnghX1gjOjoPBo3drDa3XS9Dhz4XSNGTtToMVNC3SxPMntCsA/MqbiGMkf/uNs/53QfmGWzsu2188SFfk+dbNnILiUlRRs3btTu3bvt92bmtxk6qlat2t8KXM51AOMqrwQwAIDTI4Dx+D4wZr29WTYNAABCxMcqpLC6FxIAAOcFPwFMWN1KAAAA/HO2bt2qBx54wI7MmM1tp0w5Ph/pxRdftNurnHhMnz49UD9//ny7NUtsbKy6dOmivXvPbidlMjAAALjGF/oMjFmB3KlTJ1166aX68MMPbTDTs2dPOy+2TZs22rx5s3r16qWbbrop8Jz8+fPbr2vWrFG/fv30/PPPq2rVqnrppZfsIqBJkyZl+f3JwAAAgLNmduE3C3gGDBig8uXLq3HjxmrQoIFWrlxp600Ac8kll6hYsWKBw8yjNUwm5rrrrtONN95oA5ihQ4dq4cKF2r59e5bfnwAGAAAXMzC+bDqyKCYmRqNGjbJZFbOg2QQuy5cvV1xcnA4ePKjExEQb2JzO6tWrVbdu3cB5yZIlVapUKVueVQwhAQCAALO/mzlOZPZ9M8eZNGvWTLt27VLTpk3thrZr1661+6tNnDhR3377rd07rmPHjoHhpKSkJBsAncjcYzEhIes3SCaAAQDAMX5/9m35b+ahmJs3n8jcxLlbt25nfM7o0aPtkJIZTho0aJCqV69+7J6BFSqoffv2NjPzzDPP2GyN2dnf3J7o5IAoY3PcrCKAAQAAAZ07d7bZkhNlln0xzEReIy0tTU888YS9vZDJxpjMi2Hmufz666969913bQBjNsE9OVgx5xlzZLKCOTAAALjGl31zYEywYjIlJx6nC2BMxuWrr74KKqtUqZK94aaZA5MRvGQw2RgzL8YwK5XM809+PTPRN6sIYAAAcHEjO382HVm0Y8cOO7SUEZQYZu5L4cKFNW3aNHXo0CHo8eY2RCaIMczeLxmrlYzffvvNHqY8qwhgAADAWTPDRmauS9++fbVp0ya7DHrYsGF6+OGH7fCRmfcydepUbdu2Te+8847mzp2r+++/3z73zjvv1Lx58zRr1iwb2PTu3dtuhHfRRcdvoPyP38wxu3Azx8xxM0cA8LZzeTPHlAWTs+21o6/ulOXHmuzLwIEDtWTJEjt/xUzYNXNozAReM7xkJveauS+lS5dWjx49dM011wSeO2fOHFt/4MABNWzY0L5OoUKFsvzeBDCOIIABAG8LxwAmlFiFBACAa/yhv5VAqDEHBgAAOIcMDAAArvGRgSEDAwAAnEMGBgAA1/jJwBDAAADgGh8BDENIAADAOWRgAABwjY8MDBkYAADgHDIwAAC4xk8GhgwMAABwDhkYAABc4yMDQwYGAAA4hwwMAACu8ZOBIYABAMA1PgIYhpAAAIBzyMAAAOAaPxkYMjAAAMA5ZGAAAHCNjwyMZwKYvKUahboJnrblsqqhboKnVVu/OdRN8Ly0I4dD3QQAOP8CGAAAkEU+MjDMgQEAAM4hAwMAgGv8foU7AhgAAFzjYwiJISQAAOAcMjAAALjGRwaGDAwAAHAOGRgAAFzjJwNDBgYAADiHDAwAAK7xkYEhAwMAAJxDBgYAANf42ciODAwAAHAOGRgAAFzjYw4MAQwAAK7xEcAwhAQAAJxDBgYAANf4ycCQgQEAAM4hAwMAgGP8PpZRk4EBAADOIQMDAIBrfMyBIQMDAACcQwYGAADX+MnAEMAAAOAaH5N4GUICAADOIQMDAIBrfAwhkYEBAADOIYABAMDFDIwvm46zsHXrVj3wwAOqVauWmjRpoilTpgTqtm/frg4dOqhmzZq6/vrr9f333wc9d/HixWrdurViY2N177332sefDQIYAABw1nw+nzp16qRChQrpww8/1PPPP68JEybo448/lt/vV5cuXVS0aFF98MEHatu2rbp27apdu3bZ55qvpr5du3aaPXu2ChcurEcffdQ+L6uYAwMAgGvO4g99dklOTla1atU0YMAA5c+fX+XLl1eDBg20cuVKG7iYjMrMmTOVN29eVaxYUUuWLLHBTLdu3TRr1izVqFFD999/v32tQYMGqWHDhlq2bJnq1auXpfcnAwMAAM5aTEyMRo0aZYMXkzkxgcvy5csVFxen1atX65JLLrHBS4Y6deooPj7efm/q69atG6iLjo5W9erVA/VZQQYGAADX+LJvFVJ6ero9ThQZGWmPM2nWrJkdFmratKlatmypl19+2QY4JypSpIgSEhLs97t37860PivIwJykYsXy+mT+DO3b+3/avGmZevZ8WOEkZ7GiKjrkOZVe8KFKffqeCvZ4RIrMbesia1RT8amjVebb+Sr5wZvK1/b6oOeWeGeyyq5YEHTkrlhe4cD8YC9f/rkaNaofKCtXrozmz5+upN3rtWLll7r66kYhbaNXREVFafKk4UpOWq/tW1epx+OdQ90kT6F/Mkf/nLCRnS97jkmTJtlsyYmHKcvM6NGjNXHiRG3YsMEOB6WkpJwS8JjzjMDor+qzggzMCSIiIjRv3ttauSJel8e1VKVKF2v6tHHatStBM2fOVTgwwYvvjz+U9NDjylGggAo/+4R09Kh+nzFLMaMH6Y/ZH2vPgCGKrFZZhZ99UkeT9yh10VIpRw7lKltGiQ89rsPbdgRez7f/gMLhF+obb76qS6pXCSp/773XtG7dRjW6so3atGmpd2dOUu1azbVjx7FJbOFqyOD+qlMnVi2uuU1ly5XRG1NHaeu2HZoz55NQN80T6J/M0T/Zr3PnzurYsWNQWWbZF+PSSy+1X9PS0vTEE0/o5ptvtkHKiUxwkidPnsDvzZODFXNeoECBLLeTAOYExYsX0+rV69Slax8dPPinNm36RV9/870aXhEXFgFMrnIXKeqyS7Tjmlvk27vPlh2Y9KYKPvawjuzcpaN79urA+Km2/Mj2nYqqW1P5rm1mA5hcpUooIncupa3bKKUfVrioWrWS3nhztCIUEVTeuHEDXVyhrJo1a6dDh1L000/j1aTJFbr3vtv08kujFK7y5o3WA/ffqdZt7tEP8WvtMfySCerySAf+ANE/f4n+OTf3Qor8i+GiEyfxmjkrzZs3D5RVqlRJhw8fVrFixbRly5ZTHp8xbFS8eHF7frpJwVnFENIJEhKSdPfdj9jgxbiiQV01urK+Fn67ROHABChJXZ8KBC8ZcuTPp5TFy7Xn+WGnPCdH/vz2a+4K5XQ0cXdYBS/GlY3q69uFS9S06U1B5ZfH1VJ8/FobvGRYvGSF6sXVVjiLvay6cufObfsiw6JFyxQXV8tmQMMd/ZM5+sdbduzYYZdGJyYmBsrWrl1rl0SbYad169YpNTU1UGcm+Zo9Xwzz1ZxnMNma9evXB+qzggDmDDb9vFQLF87Tf5euDJvI3n/wT6X+9/gvBkVE6ILbblTq8lU6+lui0tduCFTlKFRQ+a5pYuuMXBeXk//wERV75SWV/myWYiaNVORJQyrnoymvTddTTw1USsrxH1KjRIkY/fZbUlBZUlKySpUuoXBWomSMkpP32k9oGRKTdtsVCEWKFFK4o38yR/+cmzkwWWWGjczKob59+2rTpk1auHChhg0bpocfftiuRCpZsqT69Omjn3/+WZMnT9aaNWt0yy232OeaIaZVq1bZclNvHlemTJksL6E2CGDO4PbbH1LbG++zEf+I4QMUjgp276TcVf6lA+NfDyqPiIpU0aEDdHTPPh38YL4ty13uIuUokF8H536qpMf66vAvWxUzfrhyFi+mcE11p6edNL6blqaoqL9Oy57v/ZJ2Ur9knJsx8XBH/2SO/vGWnDlzavz48TaAvP3229WvXz/dc889dlfdjDqz2shsVvfRRx9p3LhxKlWqlH2uCVbGjBlj94UxQc3+/ftt/dlk0s5qDoxZ351Vl19+uVy2ctUa+/WJPFF6+60x6v3UwKCo/3xXsNtDuuDOm5Xcd6AOb/41UB4RnUfFRgxUbjNh98HH5E9Ls+V7XxqhiDx55P/zkD3fN/hVRcXWUL7rW+j3N95RuElNTVPhwsf3PzAio6KUcsKQUjgy/XJyEJdxfuJwW7iifzJH/xzn98jNHM1clrFjx562rly5cpo+ffoZn9u4cWN7/F1nFcC88MILNk1kZLbdr4mgzFIq18TEFFX9+nX00UefB8o2bPg/G9kXKJBfe/YEzw05XxV6sqvy33yD9jw7SClffxcoj8iX165EylWmtJIe6WUn8gYc9QWClwyHf91ml2WHI7NyrVq1yqdMEk9I2K1wtmtngooWLWw/nR09etSWlSgeY//47A+DFWt/hf7JHP2Dvz2EZFI9V199tapUqWJ30du4ceNpDxeDF+Pi8mU16/0pKlXq+DyF2rUvs3MXwiV4KfDQPcp/cxsl93tRh7745nhFRISKDR2gXKVLKrFTDx3esjXoeTETR9jnnvj4yH9V0OGt2xSOli/7QTVrVleePMfT2mZS+LLlPyicxa9eazOZ9esdn8zcsGGcVqyIP6t7oJyv6J/M0T/emgPjVABjllWNHDnSfm+2Dz7fLF8Rr1Wr1ui1ySNUrdq/dO21zTR4UH8NHjxa4SBX+bK68IF79Pub7yot/kflKFIocORre51dNr1n4Aj5Dh48XlfgAvvclO+WqMBdtyj6qgbKVa6MCvXuZlco/fnx8WxWOPnuu6XaseM3TZw03F5LvXo9ojp1Y/XWm+8pnJnJzm9Pm61x4warbp1Y3XBDS/Xs0Vmjxx5bnh/u6J/M0T8nLaP2Z9PhiAj/3whbN2/ebG+4dOedd/5jDckdWVpeULJkcb366otq1vRK/fnnIY2f8KaGDBkT6mZp82VVs/09Ctx3h537cjopi5cp+oq4U8pTV8YrqXOvY8/veJfyt2utnIULKW3tBu0bOjpo/kx2qrZ+s0Ltz0O/6tqWd+i77/5rzytUKKfxE4bq8strasvmX9W79wv65ptFIWtf2hFvzOGKjs6jcWMHq91N1+vAgd81YuREjR4zJdTN8gz6x93+OZJ+wrB6NvvzxfbZ9tr5+p953orzAUx28EoA41XnIoBxmRcCGK/zSgADnK/OaQDzwt3Z9tr5np0hF7CMGgAAOIdbCQAA4BqfO3NVsgsZGAAA4BwyMAAAuMbniemrIUUGBgAAOIcMDAAArvEzB4YABgAA1/gYQmIICQAAOIcMDAAAjvGzjJoMDAAAcA8ZGAAAXONjDgwZGAAA4BwyMAAAuMZHBoYMDAAAcA4ZGAAAXONnFRIBDAAArvExhMQQEgAAcA4ZGAAAHOMnA0MGBgAAuIcMDAAArvGRgSEDAwAAnEMGBgAA1/hYRk0GBgAAOIcMDAAArvExB4YABgAA1/gIYBhCAgAAziEDAwCAY/x+MjBkYAAAgHPIwAAA4BofGRgyMAAAwDlkYAAAcI2PDAwZGAAA4BzPZGAiIiJC3QRPq7BmY6ib4Gl/zOwS6iZ43gV3jAt1EwD8Q/xkYLwTwAAAgCzyEcAwhAQAAJxDBgYAANf4Qt2A0CMDAwAAnEMGBgAAx/iZA0MGBgAAuIcMDAAArvGRgSEDAwAAnEMGBgAA1/hC3YDQIwMDAAD+lsTERHXv3l1xcXFq1KiRBg0apLS0NFv34osvqkqVKkHH9OnTA8+dP3++mjdvrtjYWHXp0kV79+49q/cmAwMAgGP8HpgD4/f7bfBSoEABzZgxQwcOHFDfvn2VI0cOPfXUU9q8ebN69eqlm266KfCc/Pnz269r1qxRv3799Pzzz6tq1ap66aWX1KdPH02aNCnL708GBgAAF4eQfNl0ZNGWLVsUHx9vsy7/+te/VLduXRvQmMyKYQKYSy65RMWKFQsc0dHRts5kYq677jrdeOONNoAZOnSoFi5cqO3bt2f5/QlgAABAQHp6ug4ePBh0mLKTmYBkypQpKlq0aFB5xnPM8FL58uV1OqtXr7YBT4aSJUuqVKlStjyrCGAAAHBwCMmfTYcZxqlTp07QcbqhHTN0ZOa9ZPD5fDazUr9+fZt9iYiI0MSJE3XVVVfphhtu0Icffhh4bFJSkmJiYoJer0iRIkpISMhyHzAHBgAABHTu3FkdO3Y8XiApMjJSf2XYsGFav369Zs+erXXr1tkApkKFCmrfvr2WL1+uZ555xs6BadGihVJTU095TXN+ukzPmRDAAADgGl/2vbQJJLISsJwcvLz11lt65ZVXVLlyZTsnpmnTpipYsKCtN/Ncfv31V7377rs2gImKijolWDHnGXNksoIhJAAA8LcNHDhQb7zxhg1iWrZsactM9iUjeMlgsjFmXoxRvHhxJScnB9WbczOvJqsIYAAAcIzfl33H2Rg7dqxmzpypkSNHqlWrVoHyV199VR06dAh67MaNG20QY5i9X1auXBmo++233+xhyrOKAAYAAJw1M1F3/Pjxeuihh+xE3927dwcOM3xk5r1MnTpV27Zt0zvvvKO5c+fq/vvvt8+98847NW/ePM2aNcsGNr1791aTJk100UUXZfn9mQMDAIBrfKFugLRgwQIdPXpUEyZMsMeJfvrpJ5uFGT16tP1aunRpjRgxQrVq1bL15usLL7xg680GeA0bNrRDUWcjwm+20vOAyKgyoW6Cp/m88c/kWX/M7BLqJnjeBXeMC3UTgPPakfSd5+y9kq9rnG2vXfTfC+UChpAAAIBzGEICAMA1vlA3IPTIwAAAAOeQgQEAwDF+MjBkYAAAgHvIwAAA4Bg/GRgyMAAAwD1kYAAAcIyfDAwBDAAAzvFHKNwxhAQAAJxDAHMGc+e+pSmvjQx1MzwnKipKkycNV3LSem3fuko9Hu+scLMt+Xc98vqXavDcDF07eLbe/HZtoG7Ntt26d8Kntq7tiA81Z/n/BT13/qrNtrzhgHfUY9rXSv4jReGGayhz9E/m6B9v3Y06lBhCOo3bbr1B1193td5++/1QN8Vzhgzurzp1YtXimttUtlwZvTF1lLZu26E5cz5ROPD5/Or21gJVL1NUM7u1scFMn5nfKqZAXsVVLKkub3ylW+tX0cBbr9SGnXv03OxFKnpBXl1VtYwW/99OPffBIj3Z6nLVq1RKU75ZYx//btfWypEjfNLB4X4N/RX6J3P0DzIQwJykUKGCGjSov5Yvjw91Uzwnb95oPXD/nWrd5h79EL/WHsMvmaAuj3QIm18eew6mqErJwup3Y33li8qtckULKK5SSf3wa5L+TDusohdEq3vL2vaxpm75lgT9O36LDWDeXbxR18VW0B1XVLP1z7RroJaDZuu/m3bpisqlFQ64hjJH/2SO/jnO7wufDz1nwhDSaaL7d975QBs2BKf+IcVeVl25c+fW4iUrAmWLFi1TXFwtRUSExw9TsQJ5NfSuxjZ4MTdyN4HLql8SVbdCCRuEPH9Lw1OeczD1sP26c98fuvSiooHyPLlz6aIiF2j1tt0KF1xDmaN/Mkf/4EQEMCdo0uQKXdmovl56+dVQN8WTSpSMUXLyXh0+fOwPspGYtFvR0dEqUqSQws31Qz9Qx0n/1mVli6l5jbIqXSi//T7D3oMp+nz1L4qrVMKeF84fraTfDwUNR5nz/X+mKlxwDWWO/skc/XOcnzkwWQtg0tPTNWzYMDVu3Fi1a9dW165dtXnz5qDHJCcnq1q1Y6lxVyeGjRs3RI891k+pqeHzB+Vs07dpaelBZRnnpv/CzfC7m2j0vc300297NXz+8qC61MNH1GvGf1TkgmjdElfFlrW8rLxmLf1Jq7cm6fBRn6b+Z40Ncsz34YJrKHP0T+boH5z1HJiRI0fqm2++Ue/evW3afPr06br55ps1fPhwNW/ePPA4U+eqZ/r30KqVq/XllwtD3RTPSk1NU1RUZFBZxvmhQ+G3msZM5DXSjhxV3/e+U8/r6yp3rpw6lHZYj0/7WluTf9cbna9TdOSxH7N2l/9LPyfs0/2TP7PnzWuU05VVyih/ntwKF1xDmaN/Mkf/HOdnH5isBTD//ve/bRBTp04de96qVSsNHTpUjz/+uM3MXHfddbbc5THIW2+7QSWKx2jvnp+CfijatWulwkWOfYIOd7t2Jqho0cLKmTOnjh49astMn5lfHPv3H1A42PNHip2z0qx62UBZhZiCNotyMO2wch85qi5vfqXte/7Q5AevsRN5M+TMkUN929ZXj+vqKv3IUV2YN0p3j5uv+pVKKlxwDWWO/skc/XOcP3wSt//bEJIZUilYsGDg3AQqTz31lO677z49+eST+vLLL+W6Fi1uVe06zXV5XEt7zJ//pT3M9zgmfvVaO/Zcv96xVTZGw4ZxWrEi3uns29nYue+ges34RokH/gyUmeXShfLl0YXRUeo1/T/aufegpj50rSoVDx6Tn/b9Or3+nx9tRsYEL7t/P6Sfdu21E4DDBddQ5uifzNE/OOsMTL169WzGZdCgQSpcuHCg3AQvJrjp0aOHOnXqJJdt27Yz6PyPPw7ar5s3/xqiFnlPSkqq3p42W+PGDdaDD/ZUqdIl1LNHZz3wUE+Fi+pliqhaqSIa8MFiPdHqcu3ad1Cv/HuFHmx6qT5c8bNdNj3q3ma6IDoysEld7pw5bMBSutAFdl8YsxKpUP48GvjhEl1ZtYwqlQifyYdcQ5mjfzJH/xznZxm1IvxZCFsTExPVvXt3rVmzRlOmTFHDhsFLRceOHasJEybI5/Npw4YNf6shkVFl5CUZu/A+6JEfDJ9HPl1ER+fRuLGD1e6m63XgwO8aMXKiRo+ZEupm6Y+ZXc7Ze5mVQ4M/Wqplm36z2ZTbG1TVA00utZvSLf551ymPr3NxcU3tdK39fup/ftTMxRuUeviomla/SE+1qWeXZJ8LF9wxTl7g1WvIK+gfd/vnSHrwB+HstP3yq7PttS9avkDnTQCTYcuWLSpWrJguuOCCU+rMqqQFCxb87UyM1wIYr/FKAONV5zKAcZVXAhjgfHUuA5htdbMvgCm7YsH5txNvhQoVzlhXsWJFewAAAGQ3biUAAIBj/MyBYSdeAADgHjIwAAA4xk8GhgAGAADX+FnXwRASAABwDxkYAAAc42cIiQwMAABwDxkYAAAc4+du1GRgAACAe8jAAADgGL8v1C0IPTIwAADAOWRgAABwjI85MAQwAAC4xk8AwxASAABwDxkYAAAc42cjOzIwAADAPWRgAABwjJ+bOZKBAQAA7iEDAwCAY/zMgSEDAwAA3EMGBgAAx/jYB4YABgAA1/gJYBhCAgAA7iGAAQDAwWXU/mw6zkZiYqK6d++uuLg4NWrUSIMGDVJaWpqt2759uzp06KCaNWvq+uuv1/fffx/03MWLF6t169aKjY3Vvffeax9/NghgAADAWfP7/TZ4SUlJ0YwZM/TKK6/om2++0ahRo2xdly5dVLRoUX3wwQdq27atunbtql27dtnnmq+mvl27dpo9e7YKFy6sRx991D4vq5gDAwCAY7wwiXfLli2Kj4/XokWLbKBimIBmyJAhuuqqq2xGZebMmcqbN68qVqyoJUuW2GCmW7dumjVrlmrUqKH777/fPs9kbho2bKhly5apXr16WXp/MjAAAOCsFStWTFOmTAkELxkOHjyo1atX65JLLrHBS4Y6derYgMcw9XXr1g3URUdHq3r16oH6rCADAwCAY/zZmIFJT0+3x4kiIyPtcaICBQrYeS8ZfD6fpk+frvr162v37t2KiYkJenyRIkWUkJBgv/+r+qwgAwMAAAImTZpksyUnHqbsrwwbNkzr169Xjx497LyYkwMec54RGP1VfVaQgQEAwDH+bLyZY+fOndWxY8egspODjdMFL2+99ZadyFu5cmVFRUVp//79QY8xwUmePHns96b+5GDFnJusTlYRwAAA4BhfNg4hnW64KDMDBw7Uu+++a4OYli1b2rLixYtr06ZNQY9LTk4ODBuZenN+cn21atWy/L4MIQEAgL9l7NixdqXRyJEj1apVq0C52dtl3bp1Sk1NDZStXLnSlmfUm/MMZkjJDD9l1GdFhP9sFl1no9yRpUPdBE/zxD8SnNas+KWhboKnfZ34Y6ib4GmhX7TrfYfTd56z91pe+qZse+3Ld36Ypcdt3rxZbdq0UadOnXT33XcH1Zl9XW644QY7nGT2dzH7w0yYMEGffPKJSpUqpR07dtjN7czeME2bNtW4cePssux58+YpIiJrVxsZGAAAcNYWLFigo0eP2sDkyiuvDDpy5syp8ePH29VGZrO6jz76yAYpJngxypQpozFjxth9YW655RY7X8bUZzV4McjAOMIT/0hwGhmYzJGByRwZGG9lYJaWapdtr11v1xy5gAwMAABwDquQAABwjD/UDfAAMjAAAMA5ZGAAAHCMzwM3cww1AhgAABzjJ4BhCAkAALiHDAwAAI7xhboBHkAGBgAAOIcMDAAAjvGztSAZGAAA4B4yMAAAOMbHTnZkYAAAgHvIwAAA4Bgfc2DIwAAAAPeQgQEAwDF+MjAEMAAAuMYX6gZ4AENIAADAOWRgAABwjJ8hJDIwAADAPWRgAABwjC/UDfAAMjAAAMA5ZGAAAHCML9QN8AAyMAAAwDlkYAAAcIyfVUgEMAAAuMZH/MIQEgAAcA8ZGAAAHONjCIkMDAAAcA8ZGAAAHOMPdQM8gAwMAABwDgHMCUqVKqGZMycrMWGtfv1lhYYNfU5RUVGhbpanmP6YPGm4kpPWa/vWVerxeOdQN8lT6J9gLW5toS+2f3bK8dnWT219XLM4TfhsnOZt/FATv5ig+i3qK9xxDWWuYsXy+mT+DO3b+3/avGmZevZ8WOG6kZ0vmw5XMIR0gvdmTta+ffvVtFk7FSpUUK9NHqmjR4/q6T4vhrppnjFkcH/VqROrFtfcprLlyuiNqaO0ddsOzZnzSaib5gn0T7CFHy/Uiv+sCJznypVTQ98boqULluriqhfr2cn9NeWlqVr2zTLVaVxXz0zsp26tu2vLhl8UrriGziwiIkLz5r2tlSvidXlcS1WqdLGmTxunXbsSNHPm3FA3D+dYhN/v98RQWu7I0iF9/ypVKmrtj9+qdJlYJSUl27Lbb2+rIYOfUfmL6yrUvPCPlDdvtBJ/+1Gt29yjhd8usWV9+zymq5tdqatb3Kpw5/X+aVb80lA3QXd0uV0t72ipTld31j0926viJRXU795nAvUvT39J/7fm//Tm0LfOedu+TvxRoebla8gLa15KlIjRiBHPq3PnJ3Tw4J+27P33X1Niwm5169431M3T4fSd5+y9Zpe8O9te+5bfZigshpCOHDmi/fv3y3UJCbt1fau7AsFLhgsvLBCyNnlN7GXVlTt3bi1ecvwT9aJFyxQXV8t+Mgp39E/mLiiYX7c9cqteH/S6Dqcf1pezv9LUQa+f8rh8F+RTuOIaylxCQpLuvvuRQPByRYO6anRl/UCwF0782Xi44qwCmE8++UQvvPCCPv/8c5nEzYsvvqjatWurQYMGatiwoaZPny5XHTjwu778cmHg3PyyePSRjvr6m+9D2i4vKVEyRsnJe3X48OFAWWLSbkVHR6tIkUIKd/RP5lrf01p7Evfou0+P/Uxt37Q9aKioXOVyqtWwpuIXxStccQ1l3aafl2rhwnn679KVDK+FqSzPgZk6daomTJhgg5XnnntOc+fO1YYNGzRs2DBVqlRJP/74o4YPH65Dhw6pU6dOct3gQf1Vq1YNNbiiVaib4hkmvZ2Wlh5UlnHOZGf6569cd8e1en/irNPWFShUQM9O6q91K9Zp8efh92k6A9dQ1t1++0MqXiJGY8cM0ojhA9Sj57MKJ75QN8ClAGbGjBkaOXKkrrrqKq1cuVLt27fXxIkT1bhxY1tfsWJFFSpUSM8884zzAczLL/dV9+4P6q67H9G6dT+FujmekZqapqioyKCyjPNDh1IU7uifM6scW1lFSxbVfz46nuXMULBoQQ1+Z5AickRoYOeXbHY3XHENZd3KVWvs1yfyROntt8ao91MDgzJXOP9leQhp3759Kl++vP2+Tp06KlmypIoWLRr0mDJlyiglxe0fslGvDLTLFu/r0E0ffnhsqSeO2bUzQUWLFlbOnDkDZSWKx9hfrPv3H1C4o3/O7PImdfXj0h918MDBoPIiJYpoxOzhyh2ZW0/c1lsH9oZ3P3ENZS4mpqhuuKFlUNmGDf9ns1MFCuRXuN3M0ZdNx3kXwJi5LuPGjbNDRMbXX3+t6tWrB+qTkpI0aNAgO8Tkqv79e6hTp3t0d/tH9f77H4W6OZ4Tv3qt/YRTv17tQFnDhnFasSI+rD81Z6B/zqxKzSpat2J9UFme6Ci9PO1F+X0+PXHrk9qbuFfhjmsocxeXL6tZ70+xe3ZlqF37Mrv4Ys+efSFtGzwcwJh5L6tXr1b//v1Pqfvqq6/sUNKBAwfsEJKLqlatpH59H9fQYePsrP/ixYsFDhyTkpKqt6fN1rhxg1W3Tqz9JNSzR2eNHjs11E3zBPrnzMpXKa9tP28LKruj2x0qWa6khvUcbs8LFStkj7wX5FW44hrK3PIV8Vq1ao1emzxC1ar9S9de28zOVxw8eLTC8WaOvmw6zst9YMxDk5OTVaxY8B/1PXv2aMeOHbr00kuVI0cOJ/eBefLJLnr5pb6ebJvhlc9e0dF5NG7sYLW76Xq7cmvEyIkaPWZKqJvlGV7un1DuA/Pxz/M04MEXtHLhykDZ1G9e00WVLjrlsV/M+lLDe44Iy31gvHwNeeXPWsmSxfXqqy+qWdMr9eefhzR+wpsaMmSMvOBc7gMzo1T7bHvtu3e5saKYjewc4Yl/JDjNCxvZeZlXAhiv8koA42XnMoCZno0BTHtHAhhuJQAAgGN8RJTczBEAALiHDAwAAI7xhboBHkAGBgAAOIcMDAAAjvGHugEeQAYGAAD8T9LT09W6dWstXbo0UGZu+FylSpWg48SbPs+fP1/NmzdXbGysunTpor17z24zSzIwAAA4xuehVUhpaWnq1auXfv7556DyzZs32/KbbropUJY//7FbPqxZs0b9+vXT888/r6pVq+qll15Snz59NGnSpCy/LwEMAAD4WzZt2mSDlNNtKWcCmAceeOCUzW8Nk4m57rrrdOONN9rzoUOHqmnTptq+fbsuuujUDS5PhyEkAAAcXIXky6bjbCxbtkz16tXTe++9F1R+8OBBJSYmBm4CfTJza6K6desGzs0NokuVKmXLs4oMDAAAjvFl83wWc5woMjLSHie76667TvsaJvsSERGhiRMn6ttvv1XBggXVsWPHwHCSuQF0TExM0HOKFCmihISELLeTAAYAAASYeShjx449XiCpa9eu6tatm7Jqy5YtNoCpUKGC2rdvr+XLl9ubPZs5MC1atFBqauopAZE5PzlwygwBDAAAjvFn4yTezp0722zJiU6XfcmMmdti5rSYzIthJur++uuvevfdd20AExUVdUqwYs6jo6Oz/B4EMAAA4C+Hi86Gyb5kBC8ZTDbmv//9r/2+ePHiSk5ODqo356eb8HsmTOIFAMAxPo9M4j2TV199VR06dAgq27hxow1iDLP3y8qVKwN1v/32mz1MeVYRwAAAgH+UGT4y816mTp2qbdu26Z133tHcuXN1//332/o777xT8+bN06xZs2xg07t3bzVp0iTLS6gNhpAAAHCMT9522WWX2SzM6NGj7dfSpUtrxIgRqlWrlq03X1944QVbf+DAATVs2FADBw48q/eI8J9u95kQyB1ZOtRN8DRP/CPBac2KXxrqJnja14k/hroJnuahjV8963D6znP2XmMvap9tr911+/Ht/r2MDAwAAI7xh7oBHkAAAwCAY3ykxJjECwAA3EMGBgAAx/hC3QAPIAMDAACcQwYGAADH+ELdAA8gAwMAAJxDBgYAAMf4Q90ADyADAwAAnEMGBgAAx/jYB4YABgAA1/hC3QAPYAgJAAA4hwwMAACO8Ye6AR5ABgYAADiHDAwAAI7xkYPxTgDDPwX+F0zI/2tfJ/4Y6iZ4WuOY6qFugqctTFoX6iYA3gxgAABA1vhC3QAPYA4MAABwDhkYAAAc4w91AzyAAAYAAMf4Qt0AD2AICQAAOIcMDAAAjvGx9JIMDAAAcA8ZGAAAHONjGi8ZGAAA4B4yMAAAOMYf6gZ4ABkYAADgHDIwAAA4xhfqBngAGRgAAOAcMjAAADjGxywYAhgAAFzjD3UDPIAhJAAA4BwyMAAAOMYX6gZ4ABkYAADgHDIwAAA4xscsGDIwAADAPWRgAABwjD/UDfAAMjAAAMA5ZGAAAHCML9QN8AACGAAAHONnEIkhJAAA4B4yMAAAOMYX6gZ4ABkYAADgHDIwAAA4xsccGDIwAADAPWRgAABwjD/UDfAAMjAAAMA5BDAniYqK0uRJw5WctF7bt65Sj8c7h7pJnkL/ZK5UqRKaOXOyEhPW6tdfVmjY0Odsn+E4rqFguSNzq/uLXTV37Qea/cN7euCpjoG6OlfV0eQvJmj+T/M09N3BKlOhjMId18/xOTC+bDr+jvT0dLVu3VpLly4NlG3fvl0dOnRQzZo1df311+v7778Pes7ixYvtc2JjY3Xvvffax58NhpBOMmRwf9WpE6sW19ymsuXK6I2po7R12w7NmfNJqJvmCfRP5t6bOVn79u1X02btVKhQQb02eaSOHj2qp/u8GOqmeQbXULAuzz+iWg1r6qn2fZU3X7T6j++rxB1J+nH5Wr381kC9O26mvprzta6/81qNeH+o7rvqfqUeSlW44vrx3jLqtLQ09erVSz///HOgzO/3q0uXLqpcubI++OADffXVV+ratas+/fRTlSpVSrt27bL13bp1U6NGjTRu3Dg9+uij+uijjxQREZGl943wm3fxgFyRpUPdBOXNG63E335U6zb3aOG3S2xZ3z6P6epmV+rqFrcq3Hm5f7J2uWevKlUqau2P36p0mVglJSXbsttvb6shg59R+Yvrhrp5nhgz9/I11Dim+jl/zwsKXmCzLk/e+ZTW/PdHW3ZHl9tV5uLSSktN08VVL1bPW54IPP71r1/TnKlzNX/Guf9jvTBpnULNy9ePcSR95zl7r4fKZ9//72u/zsryYzdt2mSDFxNK/PTTT3r77bdVr149LVmyxAYkixYtUt68ee1jTTamTp06Nmh59dVXtWLFCk2bNs3WpaSkqGHDhpowYYJ9flYwhHSC2MuqK3fu3Fq8ZEWgbNGiZYqLq5XliPB8Rv9kLiFht65vdVcgeMlw4YUFQtYmr+EaClbj8ur6848/A8GLMXPcexr+xEiVLFtSG3/YGPT4LRt/0SV1qilccf0E30rAn03/nY1ly5bZgOO9994LKl+9erUuueSSQPBimOAlPj4+UF+37vEPdtHR0apevXqgPisYQjpBiZIxSk7eq8OHDwfKEpN2244tUqSQrQtn9E/mDhz4XV9+uTBwbn6hPvpIR339TfC4bzjjGgpmgpSE7YlqcXNz3dXtTuXKnUufv/+FZox+R/t271OREkWDHh9Tqpj+2P+HwhXXz7mRnp5ujxNFRkba42R33XXXaV9j9+7diomJCSorUqSIEhISslR/TjIwtWvXPuuJN15l0pNpacH/aBnnTMSkf87W4EH9VatWDT377JBQN8UzuIaCReeLVumLS6t1+1Ya1nO4Jr04WTfd31a3PNRO//l4oRq3aqT6V9dTjpw5dM0tLVQltopy5c6tcMX1EzwHxpdNx6RJk2y25MTDlJ0NMyR0csBjzjMCo7+q/8cyMH369DljnXmzYcOGKV++fPZ80KBBclVqapqiooI7NOP80KEUhTv6J+tefrmvund/UHfd/YjWrfsp1M3xDK6hYGaCd/4C+fRS10FK2plky2JKxajtfW3sZN23X5mu5yY/o5y5cip+8Wp9+cFXynfBsd+14Yjr59zo3LmzOnY8vhrOOF32JTMmoNy/f/8p8UKePHkC9ScHK+a8QIEC/2wAs2fPHn377be67LLLVLFiRZ2vdu1MUNGihZUzZ077i8UoUTzG/mDs339A4Y7+yZpRrwxU58736r4O3fThh5+GujmewjUUbG/iXjtZNyN4MXZs2aFipYrZ798Z865mTZptg5b9e/brmQn9lLA96yn28w3Xz3H+bJyWf6bhorNRvHhxO8H3RMnJyYFhI1Nvzk+ur1at2j87hDR58mSNGDFCSUlJ9s2ff/55m2kxh5lQ9eSTTwbOXRa/eq0dW61fr3agrGHDOK1YEW9nWIc7+uev9e/fQ5063aO72z+q99//KNTN8RyuoWDrV21QVJ4ou+ooQ9lKZe28mKZtm+jRAQ/rcPphG7xE5olUzStibSYmXHH9uCM2Nlbr1q1TaurxJf8rV6605Rn15jyDGVJav359oP4fnQPTqlUrzZs3z068adOmjd2A5nyTkpKqt6fN1rhxg1W3TqxuuKGlevborNFjp4a6aZ5A/2SuatVK6tf3cQ0dNs6ujChevFjgwDFcQ8FMtuW/X/1XvV95QhWqVVDdxnXsMuqPp83Xji071aZ9a115XUOVvriU+o3to927dmvZN8sVrrh+zs0cmH9CXFycSpYsaaegmP1hTCJkzZo1uuWWW2z9zTffrFWrVtlyU28eV6ZMmSwvof7b+8CY9d0DBgxQjRo1tGDBAn388ce66KKL5Po+MEZ0dB6NGztY7W663q4qGTFyokaPmRLqZnmGV/vHCwson3yyi15+qe9p63J74Pr2yudTr15DodgHxsh3QV51HdhFV17bUGkpaZr31keaNmqGrWt52zW65/H2KlDoAv2wKF6v9h2jvUmhWWnjhX1gvHz9nOt9YO4p1y7bXnva1jl/63lVqlQJ7ANjbN26Vf369bNLpsuVK6e+ffvqiiuuCDx+4cKFevnll+3Ko1q1amngwIFnFUv87Y3szGSbMWPG2F31pk+fbiOt8yGAgZu8EMB4nVcCGK8KVQDjCq8EMF4W7gHMufa3l1GbCT5m9z2TgflfgxcAAHB2H0j82XS4gp14AQCAc9iJFwAAx/icypVkDzIwAADAOWRgAABwjJ8MDBkYAADgHjIwAAA4xhfqBngAAQwAAI7xMYTEEBIAAHAPGRgAABzjJwNDBgYAALiHDAwAAI7xhboBHkAGBgAAOIcMDAAAjvH7mQNDBgYAADiHDAwAAI7xsQqJAAYAANf4Qt0AD2AICQAAOIcMDAAAjvEzhEQGBgAAuIcMDAAAjvGRgSEDAwAA3EMGBgAAx/jZyI4MDAAAcA8ZGAAAHOMLdQM8gAAGAADH+JnEyxASAABwDxkYAAAc4yMDQwYGAAC4hwwMAACO8bOMmgwMAABwDxkYAAAc42MODBkYAADgHjIwOC/wWQT/q4VJ60LdBE+rXrhcqJuAE/j5rUcAAwCAa3xM4mUICQAAuIcMDAAAjvGHugEeQAYGAAA4hwwMAACO8ZGDIQMDAADcQwYGAADH+MjAkIEBAADuIQMDAIBj/OwDQwYGAAC4hwwMAACO8TEHhgAGAADX+AlgGEICAADuIYABAMDBSbz+bDrOxpdffqkqVaoEHd27d7d169ev16233qrY2FjdfPPNWrt27T/aBwQwAADgb9m0aZOaNm2q77//PnC8+OKLOnTokDp16qS6detqzpw5qlWrljp37mzL/ykEMAAAODiJ15dNx9nYvHmzKleurGLFigWOAgUK6NNPP1VUVJR69+6tihUrql+/fsqXL58+++yzf6wPCGAAAEBAenq6Dh48GHSYsjMFMOXLlz+lfPXq1apTp44iIiLsuflau3ZtxcfH659CAAMAgGP82TgHZtKkSTb4OPEwZadrwy+//GKHjVq2bKnmzZtr+PDhNtjZvXu3YmJigh5fpEgRJSQk/GN9wDJqAAAQYOaqdOzY8XiBpMjISJ1s165dSklJsXWjRo3Sjh077PyX1NTUQPnJr3GmTM7fQQADAIBjfNm4D4wJNE4XsJysdOnSWrp0qS688EI7RFStWjX5fD49+eSTiouLOyVYMed58uT5x9pJAAMAgGP8HtnIrmDBgkHnZsJuWlqancybnJwcVGfOTx5W+l8wBwYAAJy17777TvXq1bPDRRk2bNhggxozb+aHH34I7Ctjvq5atcruCfNPIYABAMAxPr8/246sMnu7mKXS/fv315YtW7Rw4UINHTpUDz74oK699lr9/vvveumll+xeMearCXSuu+66f6wPCGAAAMBZy58/v6ZOnaq9e/fanXbNXi+33367DWBMnVm5tHLlSrVr184uq548ebLy5s2rf0qE/2z3Dc4muSJLh7oJAIAzqF64XKib4HmrExafs/eqXrxetr32usSlcgEZGAAA4BxWIQEA4BifNwZPQooMDAAAcA4ZGAAAHOP3yD4woUQAAwCAY3wMITGEBAAA3EMGBgAAx/gZQiIDczKzq+DkScOVnLRe27euUo/HO4e6SZ5C/2SO/sk6c7O4+B8WqPFVDULdFE/hGjqzMdOH64VX+wXOm113lT789h0t2fyV3pw3QVUvrRzS9uHcIgNzkiGD+6tOnVi1uOY2lS1XRm9MHaWt23ZozpxPQt00T6B/Mkf/ZP2P9PRpY1WjetVQN8VzuIZO79q2zXVV8ys0771j/VCxysUaNP55Dew9RPHLftQ9nW/X2OnD1br+rUpNSdP5zsccGDIwJ8qbN1oP3H+nevZ8Vj/Er9W8eZ9p+IgJ6vJIh1A3zRPon8zRP1lTrdq/tOj7j1WhQvlQN8VzuIZOr0DBC9Tj2S5a+8P6QFmDxnHa/H9bNH/WZ9qxdadefWmiihUvqgqVLw5pW+FQAGPuRLBv3z6dD2Ivq67cuXNr8ZIVgbJFi5YpLq6WIiIiFO7on8zRP1lzVaMGWvifxbqyUZtQN8VzuIZOr9dz3TR/9mfa/H+/BMr27zugipUrqObll9q+ufGOVvrj94Pa/utOhcscGH82/XfeBTCPPfaYDh48GDg/fPiwXn75ZXs3yiuuuEINGjTQ66+/LpeVKBmj5OS99v8tQ2LSbkVHR6tIkUIKd/RP5uifrJk0+W31enKAUlJSQ90Uz+EaOlVcwzqqXb+mJr/yRlD55/MW6LsFi/XWx5O0YvtC9Xyuq554sJ/+OPBHyNoKjwYwX3zxhdLSjo8rjh492paZW2fPnz9fffv21Ztvvqnx48fL5fRtWlp6UFnGuRmzD3f0T+boH/yvuIaCRUZFqv+w3hrUZ4TSUoP7pWChC1W0WGG93Ge42l//kD6e9W+9MKqfChcNj0DP7/dl23HeBTAn37T6s88+U//+/XXNNdeoYsWKatOmjQYOHKiZM2fKVampaYqKigwqyzg/dChF4Y7+yRz9g/8V11Cwh3vdr/WrN2rxf069O/Lj/R/Vzxs367035mjDmp/0whNDlHIoRW3vaKVw4JM/247zbhWSGWM8cQw2R44cKlOmTNBjypYtqz///FOu2rUzQUWLFlbOnDl19OhRW1aieIz9xbF//wGFO/onc/QP/ldcQ8GuvbG5ihQrYpdJG7kjjwVzLVo31W87E/XulFlBH7J/Wr9JJcuUCFl74eEMjMm4vPLKK5o7d65q1Kiht99+O1BvhpfGjRunmjVrylXxq9fasef69WoHyho2jNOKFfGnZKDCEf2TOfoH/yuuoWAPtOuqW5q2121X32ePhZ9/Zw/z/e6E5FNWHJWvWFY7t+1SOPD7/dl2nHcZmLFjx2rTpk3avHmzvvvuO/3yyy9KTU3V008/rQIFCuiqq66yE82mTp0qV5lJhW9Pm61x4wbrwQd7qlTpEurZo7MeeKhnqJvmCfRP5ugf/K+4hoL9tiMh6PzPPw/Zr2al0ZwZH+mFUf21Ln6DVq/4Ue3uvsFmXz5+/98hai08G8A0b97cHifatWuXDV6MESNG2BVJ+fLlk8ueeHKAxo0drK++nKUDB37X8y+M0Ny5/EBkoH8yR//gf8U1lDVmFZLdN6f7vSpeqph+WvuzHrqlm/Ymnx/bevwVn0NzVbJLhN8j+aJckaVD3QQAwBlUL1wu1E3wvNUJi8/Ze5UpXCPbXnvH3rVyAbcSAADAMX5v5B5CilsJAAAA55CBAQDAMT4yMAQwAAC4xs8kXoaQAACAe8jAAADgGD9DSGRgAACAe8jAAADgGB9zYMjAAAAA95CBAQDAMX7mwJCBAQAA7iEDAwCAY3xkYAhgAABwjZ8AhiEkAADgHjIwAAA4xscyajIwAADAPWRgAABwjJ85MGRgAACAe8jAAADgGB8ZGDIwAADAPWRgAABwjJ9VSAQwAAC4xscQEkNIAADAPWRgAABwjJ8MDBkYAADgHjIwAAA4xs8kXjIwAADAPWRgAABwjJ85MGRgAADA35OWlqa+ffuqbt26uvLKK/X666/rXCEDAwCAY/weycAMHTpUa9eu1VtvvaVdu3bpqaeeUqlSpXTttddm+3sTwAAA4Bh/qBsg6dChQ5o1a5Zee+01Va9e3R4///yzZsyYcU4CGIaQAABAQHp6ug4ePBh0mLKTbdy4UUeOHFGtWrUCZXXq1NHq1avl8/kUNhmYI+k7Q90EAACccCQb/2aOGTNGY8eODSrr2rWrunXrFlS2e/duFSpUSJGRkYGyokWL2nkx+/fvV+HChRUWAQwAAAi9zp07q2PHjkFlJwYpGVJSUk4pzzg/Xcbmn0YAAwAAgoKQ0wUsJ4uKijolUMk4z5Mnj7Ibc2AAAMBZK168uPbt22fnwZw4rGSClwIFCii7EcAAAICzVq1aNeXKlUvx8fGBspUrV+rSSy9VjhzZH14QwAAAgLMWHR2tG2+8UQMGDNCaNWv01Vdf2Y3s7r33Xp0LEX6v7IYDAACckpKSYgOYL774Qvnz59cDDzygDh06nJP3JoABAADOYQgJAAA4hwAGAAA4hwAGAAA4hwDGQ7cGd4nZrKh169ZaunRpqJviKYmJierevbvi4uLUqFEjDRo0yF5TOG7r1q12op+5f0qTJk00ZcqUUDfJszp16qSnn3461M3wlC+//FJVqlQJOszPHMIPO/F66NbgrjB/kHv16mXvOorjzHx484vUbOBk7sZ64MABGwyb/RDMdQTZG7yZP8pmn4gPP/zQBjM9e/a0G2K1adMm1M3zlE8++UQLFy7UTTfdFOqmeMqmTZvUtGlTDRw4MGhHWIQfAhgP3RrclV8eJnhh8dqptmzZYjd0WrRokb2hmWECmiFDhhDA/H/Jycl28yuz7NIsuSxfvrwaNGhgN78igDnO3AjPfJgygR6Cbd68WZUrV1axYsVC3RSEGENIHro1uAuWLVumevXq6b333gt1UzzH/EI1wyEZwUsGcyt6HBMTE6NRo0bZ4MUEwSZwWb58uR1yw3Em6G3btq0qVaoU6qZ4MoAxgS9ABsZDtwZ3wV133RXqJniWGToy814ymKB3+vTpql+/fkjb5VXNmjWzw7RmOKBly5ahbo5nLFmyRCtWrNDHH39sM1U4zgS9v/zyi77//ntNmjRJR48etdlxk+nMys0HcX4hA+OhW4Pj/DJs2DCtX79ePXr0CHVTPGn06NGaOHGiNmzYYCc749j8sueee07PPvvsObmbr2tMwJvxe9pk8szQrAn0zHAbwg8ZGA/dGhznV/BiJoK/8sordrwep8qY32H+aD/xxBPq3bt32H+KHjt2rGrUqBGUycNxpUuXtisfL7zwQkVERNj5VCbT+eSTT6pPnz7KmTNnqJuIc4gA5gy3Bjd32DzXtwbH+cGsjnj33XdtEMPQyKmTeM1E5+bNmwfKzDyPw4cP27lC4T5Ma1YemT7KmIeX8QHq888/1w8//BDi1nlDwYIFg84rVqxog2Cz6i/cr59wwxCSh24NjvPjE/TMmTM1cuRItWrVKtTN8ZwdO3aoa9eudr+cDGbbAvOHhz8+0rRp0+yQyNy5c+1h5gmZw3wP6bvvvrOLCMwwUgYzBGmCGq6f8MNfZQ/dGhzur44YP368HnroIbt6zWTvMg4cYz4MmO0JzP44Zkm+2efEZKoefvjhUDfNM0Mk5cqVCxz58uWzh/kespkpM9Tfv39/u22BuX7M/JcHH3ww1E1DCDCEdBIzjmoCmPvuu88u9ezWrZuuueaaUDcLDliwYIFdFTFhwgR7nOinn34KWbu8xMxRMEGeGWa7/fbb7YeGe+65hw8JyBLzO3nq1Kl6+eWXdfPNN9vg7o477iCACVMRfnYkAwAAjmEICQAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAOIcABgAAyDX/D8SoysgKYgUuAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" @@ -1404,21 +1116,21 @@ "Classification Report\n", " precision recall f1-score support\n", "\n", - " 0 0.99 0.99 0.99 408\n", - " 1 1.00 0.89 0.94 237\n", - " 2 0.91 0.99 0.95 329\n", - " 3 1.00 1.00 1.00 70\n", - " 4 1.00 0.95 0.98 64\n", - " 5 1.00 0.97 0.99 39\n", + " 0 0.98 1.00 0.99 394\n", + " 1 1.00 0.95 0.97 238\n", + " 2 0.96 0.99 0.97 333\n", + " 3 0.99 0.94 0.96 77\n", + " 4 1.00 0.97 0.99 71\n", + " 5 0.94 0.98 0.96 49\n", "\n", - " accuracy 0.97 1147\n", - " macro avg 0.98 0.97 0.97 1147\n", - "weighted avg 0.97 0.97 0.97 1147\n", + " accuracy 0.98 1162\n", + " macro avg 0.98 0.97 0.97 1162\n", + "weighted avg 0.98 0.98 0.98 1162\n", "\n" ] } ], - "execution_count": 37 + "execution_count": 15 }, { "cell_type": "markdown", @@ -1431,8 +1143,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.242924Z", - "start_time": "2025-04-06T15:10:27.054441Z" + "end_time": "2025-04-07T01:32:49.982375Z", + "start_time": "2025-04-07T01:32:49.763399Z" } }, "source": [ @@ -1450,33 +1162,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpx0n8ggq1\\assets\n" + "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmp0n5lulxf\\assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpx0n8ggq1\\assets\n" + "INFO:tensorflow:Assets written to: C:\\Users\\grimm\\AppData\\Local\\Temp\\tmp0n5lulxf\\assets\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Saved artifact at 'C:\\Users\\grimm\\AppData\\Local\\Temp\\tmpx0n8ggq1'. The following endpoints are available:\n", + "Saved artifact at 'C:\\Users\\grimm\\AppData\\Local\\Temp\\tmp0n5lulxf'. The following endpoints are available:\n", "\n", "* Endpoint 'serve'\n", - " args_0 (POSITIONAL_ONLY): TensorSpec(shape=(None, 42), dtype=tf.float32, name='input_layer_1')\n", + " args_0 (POSITIONAL_ONLY): TensorSpec(shape=(None, 42), dtype=tf.float32, name='input_layer')\n", "Output Type:\n", " TensorSpec(shape=(None, 6), dtype=tf.float32, name=None)\n", "Captures:\n", - " 2614704504176: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", - " 2614869353648: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", - " 2614704496960: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", - " 2614869345904: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", - " 2614869344496: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", - " 2614871934928: TensorSpec(shape=(), dtype=tf.resource, name=None)\n" + " 2256939976832: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2256939988096: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2256939987568: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2256940372336: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2256940377968: TensorSpec(shape=(), dtype=tf.resource, name=None)\n", + " 2256940368992: TensorSpec(shape=(), dtype=tf.resource, name=None)\n" ] }, { @@ -1485,12 +1197,12 @@ "6644" ] }, - "execution_count": 38, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], - "execution_count": 38 + "execution_count": 16 }, { "cell_type": "markdown", @@ -1503,8 +1215,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.274132Z", - "start_time": "2025-04-06T15:10:27.259133Z" + "end_time": "2025-04-07T01:32:50.013297Z", + "start_time": "2025-04-07T01:32:49.998788Z" } }, "source": [ @@ -1525,14 +1237,14 @@ ] } ], - "execution_count": 39 + "execution_count": 17 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.306131Z", - "start_time": "2025-04-06T15:10:27.291134Z" + "end_time": "2025-04-07T01:32:50.044788Z", + "start_time": "2025-04-07T01:32:50.030297Z" } }, "source": [ @@ -1541,29 +1253,29 @@ "output_details = interpreter.get_output_details()" ], "outputs": [], - "execution_count": 40 + "execution_count": 18 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.337021Z", - "start_time": "2025-04-06T15:10:27.322449Z" + "end_time": "2025-04-07T01:32:50.075650Z", + "start_time": "2025-04-07T01:32:50.061303Z" } }, "source": [ "interpreter.set_tensor(input_details[0]['index'], np.array([X_test[0]]))" ], "outputs": [], - "execution_count": 41 + "execution_count": 19 }, { "cell_type": "code", "metadata": { "scrolled": true, "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.368247Z", - "start_time": "2025-04-06T15:10:27.354023Z" + "end_time": "2025-04-07T01:32:50.107549Z", + "start_time": "2025-04-07T01:32:50.092544Z" } }, "source": [ @@ -1582,13 +1294,13 @@ ] } ], - "execution_count": 42 + "execution_count": 20 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.415239Z", - "start_time": "2025-04-06T15:10:27.384549Z" + "end_time": "2025-04-07T01:32:50.154657Z", + "start_time": "2025-04-07T01:32:50.124490Z" } }, "cell_type": "code", @@ -1597,13 +1309,13 @@ "model.save(model_save_path, include_optimizer=False)" ], "outputs": [], - "execution_count": 43 + "execution_count": 21 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-04-06T15:10:27.445830Z", - "start_time": "2025-04-06T15:10:27.431554Z" + "end_time": "2025-04-07T01:32:50.186660Z", + "start_time": "2025-04-07T01:32:50.171660Z" } }, "cell_type": "code", @@ -1616,13 +1328,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "[4.1954637e-02 7.1722366e-02 8.7705678e-01 8.6475220e-03 5.7122711e-04\n", - " 4.7421348e-05]\n", - "2\n" + "[9.8055995e-01 1.9246584e-02 1.6972909e-04 1.5124817e-07 1.4379638e-05\n", + " 9.2182863e-06]\n", + "0\n" ] } ], - "execution_count": 44 + "execution_count": 22 } ], "metadata": { diff --git a/model/keypoint_classifier/keypoint.csv b/model/keypoint_classifier/keypoint.csv index e8a70f80..224d7226 100644 --- a/model/keypoint_classifier/keypoint.csv +++ b/model/keypoint_classifier/keypoint.csv @@ -2422,595 +2422,7 @@ 1,0.0,0.0,-0.21176470588235294,-0.29411764705882354,-0.27058823529411763,-0.6352941176470588,-0.1411764705882353,-0.9058823529411765,0.09411764705882353,-0.9411764705882353,0.08235294117647059,-0.8470588235294118,0.15294117647058825,-1.0,0.03529411764705882,-0.8235294117647058,0.0,-0.7529411764705882,0.2823529411764706,-0.7764705882352941,0.2823529411764706,-0.8470588235294118,0.08235294117647059,-0.611764705882353,0.07058823529411765,-0.6,0.4235294117647059,-0.6470588235294118,0.4,-0.6470588235294118,0.18823529411764706,-0.4588235294117647,0.16470588235294117,-0.4470588235294118,0.5411764705882353,-0.5058823529411764,0.5058823529411764,-0.49411764705882355,0.3176470588235294,-0.36470588235294116,0.2823529411764706,-0.36470588235294116 1,0.0,0.0,-0.1927710843373494,-0.3132530120481928,-0.27710843373493976,-0.6506024096385542,-0.1686746987951807,-0.9156626506024096,0.07228915662650602,-0.963855421686747,0.10843373493975904,-0.9036144578313253,0.13253012048192772,-1.0,0.04819277108433735,-0.8433734939759037,0.03614457831325301,-0.8072289156626506,0.3373493975903614,-0.8313253012048193,0.2891566265060241,-0.8313253012048193,0.08433734939759036,-0.5783132530120482,0.07228915662650602,-0.6024096385542169,0.5060240963855421,-0.6867469879518072,0.43373493975903615,-0.6265060240963856,0.1927710843373494,-0.42168674698795183,0.18072289156626506,-0.4457831325301205,0.6144578313253012,-0.5301204819277109,0.5301204819277109,-0.4457831325301205,0.3253012048192771,-0.30120481927710846,0.2891566265060241,-0.3253012048192771 1,0.0,0.0,-0.21686746987951808,-0.25301204819277107,-0.3132530120481928,-0.6024096385542169,-0.27710843373493976,-0.8795180722891566,-0.07228915662650602,-0.9397590361445783,0.12048192771084337,-0.927710843373494,0.060240963855421686,-1.0,-0.060240963855421686,-0.8433734939759037,-0.08433734939759036,-0.7710843373493976,0.3493975903614458,-0.8313253012048193,0.20481927710843373,-0.7951807228915663,0.012048192771084338,-0.5662650602409639,0.024096385542168676,-0.5421686746987951,0.4819277108433735,-0.6626506024096386,0.3493975903614458,-0.5903614457831325,0.14457831325301204,-0.40963855421686746,0.14457831325301204,-0.40963855421686746,0.5783132530120482,-0.4578313253012048,0.46987951807228917,-0.37349397590361444,0.27710843373493976,-0.26506024096385544,0.24096385542168675,-0.2891566265060241 -1,0.0,0.0,-0.20987654320987653,-0.25925925925925924,-0.3333333333333333,-0.6296296296296297,-0.2962962962962963,-0.9135802469135802,-0.07407407407407407,-0.9629629629629629,0.09876543209876543,-0.9259259259259259,0.09876543209876543,-1.0,0.04938271604938271,-0.9506172839506173,0.012345679012345678,-0.9135802469135802,0.3333333333333333,-0.8395061728395061,0.18518518518518517,-0.7777777777777778,0.0,-0.5432098765432098,-0.012345679012345678,-0.49382716049382713,0.5061728395061729,-0.6666666666666666,0.32098765432098764,-0.5555555555555556,0.12345679012345678,-0.38271604938271603,0.1111111111111111,-0.37037037037037035,0.6172839506172839,-0.4567901234567901,0.41975308641975306,-0.3333333333333333,0.2222222222222222,-0.2222222222222222,0.18518518518518517,-0.2345679012345679 -1,0.0,0.0,-0.21686746987951808,-0.27710843373493976,-0.3373493975903614,-0.6265060240963856,-0.3373493975903614,-0.891566265060241,-0.13253012048192772,-0.9518072289156626,0.13253012048192772,-0.9156626506024096,0.08433734939759036,-1.0,0.012048192771084338,-0.9759036144578314,-0.03614457831325301,-0.9518072289156626,0.3614457831325301,-0.8433734939759037,0.12048192771084337,-0.7590361445783133,-0.060240963855421686,-0.5662650602409639,-0.060240963855421686,-0.5060240963855421,0.5060240963855421,-0.6626506024096386,0.2289156626506024,-0.5301204819277109,0.060240963855421686,-0.3855421686746988,0.07228915662650602,-0.37349397590361444,0.5903614457831325,-0.4457831325301205,0.3253012048192771,-0.3132530120481928,0.14457831325301204,-0.21686746987951808,0.14457831325301204,-0.24096385542168675 -1,0.0,0.0,-0.23255813953488372,-0.29069767441860467,-0.3372093023255814,-0.627906976744186,-0.36046511627906974,-0.8837209302325582,-0.20930232558139536,-0.9651162790697675,0.11627906976744186,-0.9302325581395349,0.0,-1.0,-0.11627906976744186,-0.9418604651162791,-0.1744186046511628,-0.8837209302325582,0.32558139534883723,-0.8372093023255814,0.09302325581395349,-0.7790697674418605,-0.08139534883720931,-0.6162790697674418,-0.10465116279069768,-0.5581395348837209,0.45348837209302323,-0.6395348837209303,0.16279069767441862,-0.5116279069767442,0.0,-0.3953488372093023,0.0,-0.38372093023255816,0.5116279069767442,-0.4418604651162791,0.22093023255813954,-0.29069767441860467,0.05813953488372093,-0.20930232558139536,0.05813953488372093,-0.22093023255813954 -1,0.0,0.0,-0.23863636363636365,-0.29545454545454547,-0.3409090909090909,-0.6136363636363636,-0.375,-0.8636363636363636,-0.25,-0.9545454545454546,0.13636363636363635,-0.9090909090909091,0.022727272727272728,-1.0,-0.10227272727272728,-0.9431818181818182,-0.1590909090909091,-0.875,0.3409090909090909,-0.8068181818181818,0.0,-0.7386363636363636,-0.1590909090909091,-0.5795454545454546,-0.13636363636363635,-0.5227272727272727,0.4318181818181818,-0.6136363636363636,0.056818181818181816,-0.48863636363636365,-0.06818181818181818,-0.38636363636363635,0.0,-0.38636363636363635,0.4659090909090909,-0.4090909090909091,0.125,-0.2840909090909091,0.0,-0.2159090909090909,0.056818181818181816,-0.23863636363636365 -1,0.0,0.0,-0.24705882352941178,-0.3176470588235294,-0.35294117647058826,-0.6470588235294118,-0.38823529411764707,-0.8823529411764706,-0.29411764705882354,-0.9882352941176471,0.12941176470588237,-0.9294117647058824,0.0,-1.0,-0.11764705882352941,-0.9411764705882353,-0.16470588235294117,-0.8705882352941177,0.3176470588235294,-0.8235294117647058,0.0,-0.7294117647058823,-0.16470588235294117,-0.6,-0.16470588235294117,-0.5411764705882353,0.4117647058823529,-0.611764705882353,0.07058823529411765,-0.4823529411764706,-0.058823529411764705,-0.4,-0.03529411764705882,-0.38823529411764707,0.4470588235294118,-0.38823529411764707,0.12941176470588237,-0.25882352941176473,0.0,-0.21176470588235294,0.011764705882352941,-0.2235294117647059 -1,0.0,0.0,-0.24096385542168675,-0.3373493975903614,-0.3373493975903614,-0.6506024096385542,-0.3855421686746988,-0.8795180722891566,-0.3132530120481928,-1.0,0.1566265060240964,-0.927710843373494,0.04819277108433735,-1.0,-0.07228915662650602,-0.9397590361445783,-0.1566265060240964,-0.8674698795180723,0.3493975903614458,-0.7951807228915663,0.07228915662650602,-0.7108433734939759,-0.12048192771084337,-0.6024096385542169,-0.18072289156626506,-0.5301204819277109,0.43373493975903615,-0.5662650602409639,0.13253012048192772,-0.4578313253012048,-0.03614457831325301,-0.3855421686746988,-0.060240963855421686,-0.37349397590361444,0.4457831325301205,-0.3253012048192771,0.1686746987951807,-0.21686746987951808,0.012048192771084338,-0.18072289156626506,-0.024096385542168676,-0.20481927710843373 -1,0.0,0.0,-0.25,-0.3333333333333333,-0.34523809523809523,-0.6428571428571429,-0.40476190476190477,-0.8690476190476191,-0.35714285714285715,-1.0,0.14285714285714285,-0.9166666666666666,0.03571428571428571,-0.9880952380952381,-0.09523809523809523,-0.9404761904761905,-0.17857142857142858,-0.8809523809523809,0.32142857142857145,-0.7857142857142857,0.047619047619047616,-0.7142857142857143,-0.14285714285714285,-0.6071428571428571,-0.17857142857142858,-0.5476190476190477,0.40476190476190477,-0.5714285714285714,0.08333333333333333,-0.4523809523809524,-0.07142857142857142,-0.39285714285714285,-0.08333333333333333,-0.38095238095238093,0.40476190476190477,-0.32142857142857145,0.11904761904761904,-0.2261904761904762,-0.03571428571428571,-0.20238095238095238,-0.047619047619047616,-0.21428571428571427 -1,0.0,0.0,-0.2716049382716049,-0.345679012345679,-0.37037037037037035,-0.654320987654321,-0.43209876543209874,-0.8888888888888888,-0.38271604938271603,-1.0,0.13580246913580246,-0.9259259259259259,-0.012345679012345678,-1.0,-0.16049382716049382,-0.9135802469135802,-0.2345679012345679,-0.8395061728395061,0.30864197530864196,-0.7654320987654321,0.024691358024691357,-0.7407407407407407,-0.16049382716049382,-0.6296296296296297,-0.2222222222222222,-0.5679012345679012,0.38271604938271603,-0.5308641975308642,0.07407407407407407,-0.4567901234567901,-0.09876543209876543,-0.4074074074074074,-0.12345679012345678,-0.38271604938271603,0.37037037037037035,-0.2716049382716049,0.09876543209876543,-0.2222222222222222,-0.04938271604938271,-0.19753086419753085,-0.09876543209876543,-0.19753086419753085 -1,0.0,0.0,-0.2345679012345679,-0.345679012345679,-0.3333333333333333,-0.654320987654321,-0.4074074074074074,-0.8888888888888888,-0.37037037037037035,-1.0,0.16049382716049382,-0.9135802469135802,0.024691358024691357,-0.9753086419753086,-0.12345679012345678,-0.9012345679012346,-0.19753086419753085,-0.8395061728395061,0.345679012345679,-0.7654320987654321,0.04938271604938271,-0.691358024691358,-0.13580246913580246,-0.5925925925925926,-0.1728395061728395,-0.5308641975308642,0.41975308641975306,-0.5308641975308642,0.08641975308641975,-0.43209876543209874,-0.07407407407407407,-0.35802469135802467,-0.08641975308641975,-0.345679012345679,0.41975308641975306,-0.2716049382716049,0.12345679012345678,-0.19753086419753085,-0.024691358024691357,-0.1728395061728395,-0.037037037037037035,-0.18518518518518517 -1,0.0,0.0,-0.25,-0.36904761904761907,-0.36904761904761907,-0.6547619047619048,-0.44047619047619047,-0.8809523809523809,-0.4166666666666667,-1.0,0.11904761904761904,-0.9642857142857143,-0.16666666666666666,-0.9404761904761905,-0.2857142857142857,-0.7857142857142857,-0.27380952380952384,-0.7261904761904762,0.2976190476190476,-0.7976190476190477,-0.13095238095238096,-0.6666666666666666,-0.25,-0.5595238095238095,-0.2261904761904762,-0.5238095238095238,0.35714285714285715,-0.5476190476190477,-0.07142857142857142,-0.4166666666666667,-0.16666666666666666,-0.3333333333333333,-0.13095238095238096,-0.3333333333333333,0.3333333333333333,-0.2857142857142857,0.0,-0.20238095238095238,-0.11904761904761904,-0.16666666666666666,-0.11904761904761904,-0.17857142857142858 -1,0.0,0.0,-0.25925925925925924,-0.345679012345679,-0.3950617283950617,-0.654320987654321,-0.5061728395061729,-0.8888888888888888,-0.5061728395061729,-1.0,0.09876543209876543,-0.9629629629629629,-0.2716049382716049,-0.9135802469135802,-0.37037037037037035,-0.7283950617283951,-0.3333333333333333,-0.691358024691358,0.2716049382716049,-0.7777777777777778,-0.2222222222222222,-0.6419753086419753,-0.30864197530864196,-0.5185185185185185,-0.25925925925925924,-0.5061728395061729,0.32098765432098764,-0.5185185185185185,-0.16049382716049382,-0.37037037037037035,-0.2345679012345679,-0.2839506172839506,-0.1728395061728395,-0.2839506172839506,0.2839506172839506,-0.25925925925925924,-0.08641975308641975,-0.16049382716049382,-0.18518518518518517,-0.12345679012345678,-0.1728395061728395,-0.12345679012345678 -1,0.0,0.0,-0.25925925925925924,-0.345679012345679,-0.4074074074074074,-0.6419753086419753,-0.5308641975308642,-0.8765432098765432,-0.5555555555555556,-1.0,0.08641975308641975,-0.9506172839506173,-0.3333333333333333,-0.9135802469135802,-0.43209876543209874,-0.7407407407407407,-0.37037037037037035,-0.691358024691358,0.2345679012345679,-0.7530864197530864,-0.2962962962962963,-0.6419753086419753,-0.35802469135802467,-0.5061728395061729,-0.2839506172839506,-0.48148148148148145,0.2716049382716049,-0.5061728395061729,-0.25925925925925924,-0.35802469135802467,-0.2839506172839506,-0.25925925925925924,-0.1728395061728395,-0.25925925925925924,0.2345679012345679,-0.24691358024691357,-0.1728395061728395,-0.16049382716049382,-0.2222222222222222,-0.1111111111111111,-0.16049382716049382,-0.12345679012345678 -1,0.0,0.0,-0.27848101265822783,-0.34177215189873417,-0.4430379746835443,-0.6329113924050633,-0.5949367088607594,-0.8734177215189873,-0.620253164556962,-1.0,0.012658227848101266,-0.9746835443037974,-0.4177215189873418,-0.9113924050632911,-0.4810126582278481,-0.7215189873417721,-0.4050632911392405,-0.6962025316455697,0.17721518987341772,-0.7721518987341772,-0.3670886075949367,-0.6329113924050633,-0.4050632911392405,-0.4936708860759494,-0.31645569620253167,-0.4936708860759494,0.21518987341772153,-0.5189873417721519,-0.3291139240506329,-0.34177215189873417,-0.3291139240506329,-0.25316455696202533,-0.21518987341772153,-0.27848101265822783,0.189873417721519,-0.26582278481012656,-0.24050632911392406,-0.1518987341772152,-0.26582278481012656,-0.11392405063291139,-0.17721518987341772,-0.13924050632911392 -1,0.0,0.0,-0.29333333333333333,-0.36,-0.48,-0.68,-0.6666666666666666,-0.8933333333333333,-0.76,-0.9866666666666667,-0.02666666666666667,-1.0,-0.5466666666666666,-0.9466666666666667,-0.5866666666666667,-0.7466666666666667,-0.48,-0.72,0.12,-0.7866666666666666,-0.49333333333333335,-0.6533333333333333,-0.5066666666666667,-0.49333333333333335,-0.38666666666666666,-0.5066666666666667,0.16,-0.52,-0.44,-0.3466666666666667,-0.41333333333333333,-0.24,-0.28,-0.28,0.13333333333333333,-0.24,-0.3466666666666667,-0.14666666666666667,-0.3466666666666667,-0.09333333333333334,-0.25333333333333335,-0.13333333333333333 -1,0.0,0.0,-0.2857142857142857,-0.3246753246753247,-0.4805194805194805,-0.6363636363636364,-0.6753246753246753,-0.8701298701298701,-0.7792207792207793,-1.0,-0.06493506493506493,-0.961038961038961,-0.5714285714285714,-0.948051948051948,-0.6233766233766234,-0.7532467532467533,-0.5324675324675324,-0.7012987012987013,0.07792207792207792,-0.7662337662337663,-0.5194805194805194,-0.6623376623376623,-0.5324675324675324,-0.4935064935064935,-0.44155844155844154,-0.4805194805194805,0.11688311688311688,-0.5064935064935064,-0.4675324675324675,-0.36363636363636365,-0.44155844155844154,-0.23376623376623376,-0.3116883116883117,-0.2597402597402597,0.09090909090909091,-0.24675324675324675,-0.37662337662337664,-0.14285714285714285,-0.36363636363636365,-0.07792207792207792,-0.2597402597402597,-0.11688311688311688 -1,0.0,0.0,-0.2702702702702703,-0.36486486486486486,-0.4864864864864865,-0.7027027027027027,-0.7432432432432432,-0.8918918918918919,-0.9054054054054054,-0.9864864864864865,-0.10810810810810811,-1.0,-0.6621621621621622,-0.972972972972973,-0.7297297297297297,-0.7702702702702703,-0.6216216216216216,-0.7297297297297297,0.02702702702702703,-0.7702702702702703,-0.6351351351351351,-0.6756756756756757,-0.6486486486486487,-0.5,-0.5405405405405406,-0.4864864864864865,0.05405405405405406,-0.4864864864864865,-0.5675675675675675,-0.36486486486486486,-0.5405405405405406,-0.24324324324324326,-0.40540540540540543,-0.25675675675675674,0.013513513513513514,-0.1891891891891892,-0.47297297297297297,-0.12162162162162163,-0.4594594594594595,-0.06756756756756757,-0.35135135135135137,-0.0945945945945946 -1,0.0,0.0,-0.26666666666666666,-0.36,-0.5066666666666667,-0.68,-0.7866666666666666,-0.8666666666666667,-0.9866666666666667,-0.96,-0.2,-1.0,-0.7733333333333333,-0.9466666666666667,-0.8,-0.7466666666666667,-0.6933333333333334,-0.6933333333333334,-0.08,-0.7866666666666666,-0.7333333333333333,-0.64,-0.6933333333333334,-0.4666666666666667,-0.56,-0.48,-0.04,-0.5066666666666667,-0.6666666666666666,-0.3333333333333333,-0.5866666666666667,-0.22666666666666666,-0.4266666666666667,-0.26666666666666666,-0.06666666666666667,-0.22666666666666666,-0.5733333333333334,-0.10666666666666667,-0.49333333333333335,-0.04,-0.3466666666666667,-0.09333333333333334 -1,0.0,0.0,-0.27631578947368424,-0.32894736842105265,-0.5394736842105263,-0.6578947368421053,-0.8026315789473685,-0.8421052631578947,-0.9605263157894737,-0.9605263157894737,-0.2236842105263158,-1.0,-0.8157894736842105,-0.8947368421052632,-0.75,-0.6973684210526315,-0.6052631578947368,-0.6842105263157895,-0.07894736842105263,-0.8026315789473685,-0.7631578947368421,-0.6447368421052632,-0.6710526315789473,-0.4605263157894737,-0.5131578947368421,-0.4868421052631579,-0.039473684210526314,-0.5394736842105263,-0.6710526315789473,-0.35526315789473684,-0.5526315789473685,-0.2236842105263158,-0.40789473684210525,-0.27631578947368424,-0.05263157894736842,-0.27631578947368424,-0.5657894736842105,-0.14473684210526316,-0.47368421052631576,-0.06578947368421052,-0.32894736842105265,-0.11842105263157894 -1,0.0,0.0,-0.28,-0.30666666666666664,-0.5333333333333333,-0.64,-0.8,-0.8533333333333334,-0.96,-0.9866666666666667,-0.21333333333333335,-1.0,-0.8,-0.8933333333333333,-0.76,-0.6933333333333334,-0.6266666666666667,-0.6666666666666666,-0.06666666666666667,-0.8,-0.7466666666666667,-0.6533333333333333,-0.68,-0.4666666666666667,-0.52,-0.4666666666666667,-0.02666666666666667,-0.5466666666666666,-0.6533333333333333,-0.36,-0.56,-0.22666666666666666,-0.41333333333333333,-0.25333333333333335,-0.04,-0.26666666666666666,-0.5466666666666666,-0.16,-0.48,-0.06666666666666667,-0.3466666666666667,-0.09333333333333334 -1,0.0,0.0,-0.30666666666666664,-0.32,-0.56,-0.6533333333333333,-0.84,-0.8533333333333334,-1.0,-0.9733333333333334,-0.24,-1.0,-0.8133333333333334,-0.9066666666666666,-0.8133333333333334,-0.6933333333333334,-0.7066666666666667,-0.6533333333333333,-0.09333333333333334,-0.8,-0.76,-0.6533333333333333,-0.72,-0.4666666666666667,-0.6,-0.4533333333333333,-0.04,-0.5466666666666666,-0.6666666666666666,-0.36,-0.5866666666666667,-0.22666666666666666,-0.4533333333333333,-0.24,-0.05333333333333334,-0.26666666666666666,-0.56,-0.14666666666666667,-0.49333333333333335,-0.05333333333333334,-0.36,-0.09333333333333334 -1,0.0,0.0,-0.32432432432432434,-0.32432432432432434,-0.581081081081081,-0.6486486486486487,-0.8378378378378378,-0.8513513513513513,-1.0,-0.972972972972973,-0.24324324324324326,-1.0,-0.8243243243243243,-0.8918918918918919,-0.7972972972972973,-0.6756756756756757,-0.6756756756756757,-0.6486486486486487,-0.08108108108108109,-0.8108108108108109,-0.7432432432432432,-0.6351351351351351,-0.6891891891891891,-0.4594594594594595,-0.5540540540540541,-0.44594594594594594,-0.013513513513513514,-0.5405405405405406,-0.6351351351351351,-0.33783783783783783,-0.5540540540540541,-0.21621621621621623,-0.40540540540540543,-0.25675675675675674,-0.013513513513513514,-0.25675675675675674,-0.5135135135135135,-0.13513513513513514,-0.4594594594594595,-0.05405405405405406,-0.32432432432432434,-0.0945945945945946 -1,0.0,0.0,-0.275,-0.3375,-0.525,-0.625,-0.8125,-0.7625,-1.0,-0.825,-0.225,-0.925,-0.7125,-0.8375,-0.8125,-0.6625,-0.7875,-0.6,-0.0875,-0.725,-0.675,-0.5625,-0.675,-0.4,-0.5875,-0.4,-0.0375,-0.4625,-0.6125,-0.275,-0.5625,-0.175,-0.4375,-0.2125,-0.05,-0.1875,-0.5,-0.0625,-0.475,-0.0125,-0.375,-0.05 -1,0.0,0.0,-0.2716049382716049,-0.3333333333333333,-0.5185185185185185,-0.6172839506172839,-0.7901234567901234,-0.7530864197530864,-1.0,-0.8271604938271605,-0.24691358024691357,-0.9012345679012346,-0.7283950617283951,-0.7777777777777778,-0.8024691358024691,-0.6172839506172839,-0.7901234567901234,-0.5679012345679012,-0.1111111111111111,-0.7037037037037037,-0.6790123456790124,-0.5185185185185185,-0.6666666666666666,-0.37037037037037035,-0.5679012345679012,-0.37037037037037035,-0.037037037037037035,-0.4444444444444444,-0.5925925925925926,-0.2345679012345679,-0.5308641975308642,-0.14814814814814814,-0.4074074074074074,-0.19753086419753085,-0.037037037037037035,-0.1728395061728395,-0.48148148148148145,-0.037037037037037035,-0.4444444444444444,0.0,-0.3333333333333333,-0.037037037037037035 -1,0.0,0.0,-0.275,-0.325,-0.525,-0.6125,-0.8,-0.7375,-1.0,-0.8,-0.225,-0.8875,-0.6625,-0.7875,-0.7875,-0.6375,-0.8125,-0.575,-0.0625,-0.7,-0.6125,-0.5125,-0.6375,-0.3625,-0.575,-0.35,0.0,-0.4375,-0.5375,-0.225,-0.5125,-0.15,-0.4125,-0.175,0.0125,-0.15,-0.425,-0.025,-0.425,0.0125,-0.3375,-0.025 -1,0.0,0.0,-0.32432432432432434,-0.33783783783783783,-0.581081081081081,-0.6216216216216216,-0.8243243243243243,-0.7702702702702703,-1.0,-0.8378378378378378,-0.21621621621621623,-0.9459459459459459,-0.7162162162162162,-0.8513513513513513,-0.8243243243243243,-0.6486486486486487,-0.7837837837837838,-0.581081081081081,-0.02702702702702703,-0.7297297297297297,-0.6351351351351351,-0.527027027027027,-0.6891891891891891,-0.36486486486486486,-0.6081081081081081,-0.33783783783783783,0.06756756756756757,-0.4189189189189189,-0.527027027027027,-0.22972972972972974,-0.527027027027027,-0.14864864864864866,-0.40540540540540543,-0.16216216216216217,0.0945945945945946,-0.12162162162162163,-0.36486486486486486,-0.04054054054054054,-0.3783783783783784,0.0,-0.2972972972972973,-0.02702702702702703 -1,0.0,0.0,-0.36231884057971014,-0.3333333333333333,-0.6086956521739131,-0.6086956521739131,-0.8405797101449275,-0.7391304347826086,-1.0,-0.8405797101449275,-0.2028985507246377,-0.9710144927536232,-0.6666666666666666,-0.855072463768116,-0.8115942028985508,-0.6521739130434783,-0.855072463768116,-0.5507246376811594,0.014492753623188406,-0.7536231884057971,-0.5507246376811594,-0.5507246376811594,-0.6956521739130435,-0.391304347826087,-0.7246376811594203,-0.3188405797101449,0.13043478260869565,-0.43478260869565216,-0.391304347826087,-0.2463768115942029,-0.5072463768115942,-0.13043478260869565,-0.5362318840579711,-0.07246376811594203,0.15942028985507245,-0.08695652173913043,-0.2028985507246377,-0.028985507246376812,-0.30434782608695654,0.014492753623188406,-0.3333333333333333,0.043478260869565216 -1,0.0,0.0,-0.3787878787878788,-0.3181818181818182,-0.6060606060606061,-0.5909090909090909,-0.803030303030303,-0.7272727272727273,-0.9696969696969697,-0.8181818181818182,-0.16666666666666666,-1.0,-0.5606060606060606,-0.9090909090909091,-0.7575757575757576,-0.696969696969697,-0.8787878787878788,-0.5606060606060606,0.07575757575757576,-0.7878787878787878,-0.3939393939393939,-0.6515151515151515,-0.6212121212121212,-0.4393939393939394,-0.7424242424242424,-0.3484848484848485,0.19696969696969696,-0.4696969696969697,-0.21212121212121213,-0.3333333333333333,-0.42424242424242425,-0.18181818181818182,-0.5454545454545454,-0.09090909090909091,0.24242424242424243,-0.13636363636363635,-0.045454545454545456,-0.06060606060606061,-0.22727272727272727,0.0,-0.3181818181818182,0.06060606060606061 -1,0.0,0.0,-0.375,-0.2916666666666667,-0.6111111111111112,-0.5416666666666666,-0.8055555555555556,-0.6527777777777778,-1.0,-0.7222222222222222,-0.2361111111111111,-0.8888888888888888,-0.5694444444444444,-0.8055555555555556,-0.7638888888888888,-0.6805555555555556,-0.875,-0.5972222222222222,-0.013888888888888888,-0.6944444444444444,-0.4444444444444444,-0.5416666666666666,-0.6527777777777778,-0.4166666666666667,-0.75,-0.3611111111111111,0.1111111111111111,-0.4166666666666667,-0.3055555555555556,-0.2222222222222222,-0.4861111111111111,-0.125,-0.5555555555555556,-0.09722222222222222,0.16666666666666666,-0.1111111111111111,-0.1527777777777778,0.027777777777777776,-0.2916666666666667,0.06944444444444445,-0.3472222222222222,0.06944444444444445 -1,0.0,0.0,-0.38461538461538464,-0.3384615384615385,-0.6,-0.6153846153846154,-0.8,-0.7230769230769231,-1.0,-0.7538461538461538,-0.2,-0.9692307692307692,-0.5076923076923077,-0.8923076923076924,-0.7230769230769231,-0.7384615384615385,-0.8461538461538461,-0.6307692307692307,0.046153846153846156,-0.7538461538461538,-0.35384615384615387,-0.6307692307692307,-0.5846153846153846,-0.46153846153846156,-0.7076923076923077,-0.38461538461538464,0.2,-0.4461538461538462,-0.18461538461538463,-0.2923076923076923,-0.4,-0.16923076923076924,-0.5076923076923077,-0.09230769230769231,0.27692307692307694,-0.1076923076923077,0.0,-0.03076923076923077,-0.16923076923076924,0.03076923076923077,-0.24615384615384617,0.07692307692307693 -1,0.0,0.0,-0.3582089552238806,-0.3283582089552239,-0.5970149253731343,-0.5970149253731343,-0.8059701492537313,-0.7014925373134329,-1.0,-0.746268656716418,-0.14925373134328357,-0.9701492537313433,-0.582089552238806,-0.8507462686567164,-0.7761194029850746,-0.6417910447761194,-0.8507462686567164,-0.5522388059701493,0.07462686567164178,-0.7313432835820896,-0.4626865671641791,-0.5223880597014925,-0.6567164179104478,-0.373134328358209,-0.7164179104477612,-0.34328358208955223,0.1791044776119403,-0.40298507462686567,-0.29850746268656714,-0.208955223880597,-0.4626865671641791,-0.1044776119402985,-0.5074626865671642,-0.07462686567164178,0.22388059701492538,-0.05970149253731343,-0.1044776119402985,0.04477611940298507,-0.208955223880597,0.07462686567164178,-0.2537313432835821,0.08955223880597014 -1,0.0,0.0,-0.36363636363636365,-0.2727272727272727,-0.6060606060606061,-0.5454545454545454,-0.7727272727272727,-0.6666666666666666,-0.9696969696969697,-0.7272727272727273,-0.19696969696969696,-1.0,-0.5757575757575758,-0.803030303030303,-0.7424242424242424,-0.6212121212121212,-0.8181818181818182,-0.5757575757575758,0.030303030303030304,-0.803030303030303,-0.4696969696969697,-0.5151515151515151,-0.6363636363636364,-0.3787878787878788,-0.696969696969697,-0.3787878787878788,0.16666666666666666,-0.5,-0.2878787878787879,-0.19696969696969696,-0.42424242424242425,-0.09090909090909091,-0.4393939393939394,-0.09090909090909091,0.22727272727272727,-0.16666666666666666,-0.10606060606060606,0.045454545454545456,-0.21212121212121213,0.09090909090909091,-0.21212121212121213,0.06060606060606061 -1,0.0,0.0,-0.39705882352941174,-0.2647058823529412,-0.6176470588235294,-0.5,-0.7941176470588235,-0.6176470588235294,-1.0,-0.6617647058823529,-0.23529411764705882,-0.9117647058823529,-0.5588235294117647,-0.7352941176470589,-0.7058823529411765,-0.5441176470588235,-0.8088235294117647,-0.47058823529411764,0.014705882352941176,-0.7058823529411765,-0.36764705882352944,-0.47058823529411764,-0.5588235294117647,-0.3235294117647059,-0.6470588235294118,-0.27941176470588236,0.16176470588235295,-0.4117647058823529,-0.17647058823529413,-0.16176470588235295,-0.35294117647058826,-0.04411764705882353,-0.45588235294117646,0.0,0.23529411764705882,-0.08823529411764706,0.07352941176470588,0.029411764705882353,0.0,0.058823529411764705,-0.04411764705882353,0.058823529411764705 -1,0.0,0.0,-0.36231884057971014,-0.2898550724637681,-0.5942028985507246,-0.5072463768115942,-0.782608695652174,-0.5507246376811594,-1.0,-0.5362318840579711,-0.21739130434782608,-0.8695652173913043,-0.5362318840579711,-0.6666666666666666,-0.7101449275362319,-0.4782608695652174,-0.8115942028985508,-0.37681159420289856,0.043478260869565216,-0.6521739130434783,-0.391304347826087,-0.36231884057971014,-0.6086956521739131,-0.21739130434782608,-0.7246376811594203,-0.17391304347826086,0.17391304347826086,-0.3188405797101449,-0.2318840579710145,-0.043478260869565216,-0.391304347826087,0.057971014492753624,-0.463768115942029,0.07246376811594203,0.21739130434782608,0.014492753623188406,-0.07246376811594203,0.18840579710144928,-0.18840579710144928,0.21739130434782608,-0.2318840579710145,0.2028985507246377 -1,0.0,0.0,-0.34285714285714286,-0.2714285714285714,-0.5857142857142857,-0.5285714285714286,-0.8,-0.6,-1.0,-0.6,-0.21428571428571427,-0.9142857142857143,-0.5714285714285714,-0.7285714285714285,-0.7428571428571429,-0.5428571428571428,-0.8285714285714286,-0.44285714285714284,0.02857142857142857,-0.6857142857142857,-0.4857142857142857,-0.38571428571428573,-0.6428571428571429,-0.24285714285714285,-0.6714285714285714,-0.24285714285714285,0.15714285714285714,-0.35714285714285715,-0.3142857142857143,-0.07142857142857142,-0.4,0.014285714285714285,-0.38571428571428573,0.0,0.21428571428571427,-0.014285714285714285,-0.14285714285714285,0.17142857142857143,-0.2,0.18571428571428572,-0.14285714285714285,0.12857142857142856 -1,0.0,0.0,-0.3150684931506849,-0.3150684931506849,-0.5753424657534246,-0.547945205479452,-0.7945205479452054,-0.6164383561643836,-1.0,-0.5753424657534246,-0.2191780821917808,-0.8904109589041096,-0.6438356164383562,-0.6575342465753424,-0.7945205479452054,-0.4794520547945205,-0.863013698630137,-0.4246575342465753,0.0273972602739726,-0.6575342465753424,-0.5616438356164384,-0.2602739726027397,-0.6301369863013698,-0.1506849315068493,-0.5753424657534246,-0.1917808219178082,0.136986301369863,-0.3150684931506849,-0.4246575342465753,0.0273972602739726,-0.3972602739726027,0.0410958904109589,-0.273972602739726,-0.0410958904109589,0.1780821917808219,0.0410958904109589,-0.2602739726027397,0.2465753424657534,-0.2328767123287671,0.2054794520547945,-0.1095890410958904,0.0958904109589041 -1,0.0,0.0,-0.33766233766233766,-0.33766233766233766,-0.6103896103896104,-0.5714285714285714,-0.8441558441558441,-0.6233766233766234,-1.0,-0.5714285714285714,-0.2987012987012987,-0.8831168831168831,-0.7012987012987013,-0.6623376623376623,-0.8051948051948052,-0.5324675324675324,-0.8311688311688312,-0.4935064935064935,-0.06493506493506493,-0.6753246753246753,-0.6233766233766234,-0.2987012987012987,-0.6233766233766234,-0.22077922077922077,-0.5194805194805194,-0.2857142857142857,0.06493506493506493,-0.36363636363636365,-0.4935064935064935,-0.03896103896103896,-0.4155844155844156,-0.025974025974025976,-0.2597402597402597,-0.14285714285714285,0.11688311688311688,-0.05194805194805195,-0.3246753246753247,0.16883116883116883,-0.2597402597402597,0.12987012987012986,-0.11688311688311688,0.025974025974025976 -1,0.0,0.0,-0.34210526315789475,-0.35526315789473684,-0.618421052631579,-0.5657894736842105,-0.8421052631578947,-0.5789473684210527,-1.0,-0.4473684210526316,-0.27631578947368424,-0.8157894736842105,-0.6578947368421053,-0.5921052631578947,-0.7894736842105263,-0.42105263157894735,-0.8421052631578947,-0.35526315789473684,-0.013157894736842105,-0.5789473684210527,-0.5789473684210527,-0.21052631578947367,-0.6052631578947368,-0.13157894736842105,-0.5131578947368421,-0.18421052631578946,0.13157894736842105,-0.25,-0.42105263157894735,0.06578947368421052,-0.3815789473684211,0.05263157894736842,-0.2631578947368421,-0.05263157894736842,0.19736842105263158,0.09210526315789473,-0.25,0.27631578947368424,-0.23684210526315788,0.21052631578947367,-0.11842105263157894,0.10526315789473684 -1,0.0,0.0,-0.32558139534883723,-0.26744186046511625,-0.5930232558139535,-0.45348837209302323,-0.8255813953488372,-0.5,-1.0,-0.46511627906976744,-0.3488372093023256,-0.7790697674418605,-0.7093023255813954,-0.5348837209302325,-0.813953488372093,-0.3953488372093023,-0.872093023255814,-0.3488372093023256,-0.11627906976744186,-0.5930232558139535,-0.5930232558139535,-0.23255813953488372,-0.6162790697674418,-0.1511627906976744,-0.5465116279069767,-0.20930232558139536,0.023255813953488372,-0.313953488372093,-0.45348837209302323,0.023255813953488372,-0.3953488372093023,0.011627906976744186,-0.27906976744186046,-0.09302325581395349,0.09302325581395349,-0.023255813953488372,-0.27906976744186046,0.19767441860465115,-0.2441860465116279,0.16279069767441862,-0.13953488372093023,0.046511627906976744 -1,0.0,0.0,-0.32967032967032966,-0.27472527472527475,-0.6153846153846154,-0.46153846153846156,-0.8351648351648352,-0.4725274725274725,-1.0,-0.37362637362637363,-0.4725274725274725,-0.7142857142857143,-0.6483516483516484,-0.6043956043956044,-0.7802197802197802,-0.45054945054945056,-0.8681318681318682,-0.3516483516483517,-0.24175824175824176,-0.5604395604395604,-0.5054945054945055,-0.37362637362637363,-0.6043956043956044,-0.25274725274725274,-0.6263736263736264,-0.24175824175824176,-0.07692307692307693,-0.3076923076923077,-0.3626373626373626,-0.15384615384615385,-0.4065934065934066,-0.08791208791208792,-0.38461538461538464,-0.12087912087912088,0.04395604395604396,-0.054945054945054944,-0.1978021978021978,0.03296703296703297,-0.24175824175824176,0.03296703296703297,-0.21978021978021978,0.0 -1,0.0,0.0,-0.33695652173913043,-0.2826086956521739,-0.6086956521739131,-0.43478260869565216,-0.8260869565217391,-0.391304347826087,-1.0,-0.29347826086956524,-0.44565217391304346,-0.6521739130434783,-0.6956521739130435,-0.45652173913043476,-0.8043478260869565,-0.2826086956521739,-0.8478260869565217,-0.18478260869565216,-0.20652173913043478,-0.5108695652173914,-0.5434782608695652,-0.2391304347826087,-0.5652173913043478,-0.14130434782608695,-0.5434782608695652,-0.15217391304347827,-0.010869565217391304,-0.2717391304347826,-0.358695652173913,-0.043478260869565216,-0.3804347826086957,-0.021739130434782608,-0.33695652173913043,-0.06521739130434782,0.11956521739130435,-0.010869565217391304,-0.17391304347826086,0.08695652173913043,-0.21739130434782608,0.06521739130434782,-0.1956521739130435,0.021739130434782608 -1,0.0,0.0,-0.32142857142857145,-0.2976190476190476,-0.6071428571428571,-0.42857142857142855,-0.8333333333333334,-0.34523809523809523,-1.0,-0.16666666666666666,-0.36904761904761907,-0.5714285714285714,-0.6547619047619048,-0.39285714285714285,-0.7976190476190477,-0.2261904761904762,-0.8690476190476191,-0.10714285714285714,-0.10714285714285714,-0.39285714285714285,-0.5,-0.14285714285714285,-0.5476190476190477,-0.05952380952380952,-0.5119047619047619,-0.07142857142857142,0.08333333333333333,-0.13095238095238096,-0.30952380952380953,0.05952380952380952,-0.32142857142857145,0.10714285714285714,-0.2619047619047619,0.08333333333333333,0.2261904761904762,0.16666666666666666,-0.08333333333333333,0.23809523809523808,-0.13095238095238096,0.2261904761904762,-0.10714285714285714,0.20238095238095238 -1,0.0,0.0,-0.3409090909090909,-0.26136363636363635,-0.6022727272727273,-0.3977272727272727,-0.8295454545454546,-0.3181818181818182,-1.0,-0.17045454545454544,-0.42045454545454547,-0.5568181818181818,-0.6590909090909091,-0.375,-0.7840909090909091,-0.23863636363636365,-0.8409090909090909,-0.14772727272727273,-0.1590909090909091,-0.4090909090909091,-0.5454545454545454,-0.11363636363636363,-0.5795454545454546,-0.056818181818181816,-0.5340909090909091,-0.09090909090909091,0.03409090909090909,-0.1590909090909091,-0.3522727272727273,0.09090909090909091,-0.3409090909090909,0.09090909090909091,-0.2840909090909091,0.022727272727272728,0.1590909090909091,0.11363636363636363,-0.125,0.25,-0.1590909090909091,0.20454545454545456,-0.11363636363636363,0.125 -1,0.0,0.0,-0.32967032967032966,-0.26373626373626374,-0.6153846153846154,-0.38461538461538464,-0.8241758241758241,-0.32967032967032966,-1.0,-0.17582417582417584,-0.46153846153846156,-0.5164835164835165,-0.6263736263736264,-0.42857142857142855,-0.7472527472527473,-0.3076923076923077,-0.8241758241758241,-0.18681318681318682,-0.2087912087912088,-0.3956043956043956,-0.46153846153846156,-0.25274725274725274,-0.5274725274725275,-0.14285714285714285,-0.5274725274725275,-0.0989010989010989,0.0,-0.18681318681318682,-0.27472527472527475,-0.07692307692307693,-0.31868131868131866,-0.03296703296703297,-0.2967032967032967,-0.02197802197802198,0.17582417582417584,0.04395604395604396,-0.04395604395604396,0.06593406593406594,-0.12087912087912088,0.054945054945054944,-0.12087912087912088,0.04395604395604396 -1,0.0,0.0,-0.35789473684210527,-0.24210526315789474,-0.631578947368421,-0.3684210526315789,-0.8315789473684211,-0.30526315789473685,-1.0,-0.15789473684210525,-0.5157894736842106,-0.6,-0.7368421052631579,-0.4,-0.8631578947368421,-0.24210526315789474,-0.9263157894736842,-0.10526315789473684,-0.25263157894736843,-0.49473684210526314,-0.5789473684210527,-0.22105263157894736,-0.6105263157894737,-0.08421052631578947,-0.5789473684210527,-0.05263157894736842,-0.031578947368421054,-0.29473684210526313,-0.3684210526315789,-0.06315789473684211,-0.37894736842105264,0.0,-0.3368421052631579,-0.031578947368421054,0.1368421052631579,-0.06315789473684211,-0.15789473684210525,0.05263157894736842,-0.21052631578947367,0.06315789473684211,-0.18947368421052632,0.031578947368421054 -1,0.0,0.0,-0.32954545454545453,-0.26136363636363635,-0.625,-0.42045454545454547,-0.8295454545454546,-0.3522727272727273,-0.9886363636363636,-0.14772727272727273,-0.5909090909090909,-0.48863636363636365,-0.7272727272727273,-0.4659090909090909,-0.8863636363636364,-0.3068181818181818,-1.0,-0.125,-0.36363636363636365,-0.32954545454545453,-0.5,-0.3409090909090909,-0.5454545454545454,-0.23863636363636365,-0.5340909090909091,-0.18181818181818182,-0.11363636363636363,-0.13636363636363635,-0.2840909090909091,-0.17045454545454544,-0.3068181818181818,-0.13636363636363635,-0.2840909090909091,-0.13636363636363635,0.09090909090909091,0.056818181818181816,-0.06818181818181818,0.011363636363636364,-0.125,0.0,-0.13636363636363635,-0.011363636363636364 -1,0.0,0.0,-0.3894736842105263,-0.29473684210526313,-0.6947368421052632,-0.42105263157894735,-0.8947368421052632,-0.3368421052631579,-1.0,-0.14736842105263157,-0.6526315789473685,-0.3473684210526316,-0.7157894736842105,-0.43157894736842106,-0.7894736842105263,-0.3473684210526316,-0.8315789473684211,-0.22105263157894736,-0.4,-0.22105263157894736,-0.4842105263157895,-0.4,-0.4842105263157895,-0.3684210526315789,-0.47368421052631576,-0.3157894736842105,-0.1368421052631579,-0.10526315789473684,-0.24210526315789474,-0.3473684210526316,-0.2631578947368421,-0.35789473684210527,-0.2631578947368421,-0.3368421052631579,0.09473684210526316,-0.021052631578947368,-0.031578947368421054,-0.25263157894736843,-0.08421052631578947,-0.29473684210526313,-0.09473684210526316,-0.29473684210526313 -1,0.0,0.0,-0.4174757281553398,-0.18446601941747573,-0.7184466019417476,-0.27184466019417475,-0.9223300970873787,-0.21359223300970873,-1.0,-0.10679611650485436,-0.5436893203883495,-0.5339805825242718,-0.7475728155339806,-0.33980582524271846,-0.7669902912621359,-0.17475728155339806,-0.7572815533980582,-0.10679611650485436,-0.30097087378640774,-0.5048543689320388,-0.5825242718446602,-0.1553398058252427,-0.5728155339805825,-0.05825242718446602,-0.5436893203883495,-0.10679611650485436,-0.07766990291262135,-0.3883495145631068,-0.3786407766990291,-0.06796116504854369,-0.4174757281553398,-0.038834951456310676,-0.3592233009708738,-0.0970873786407767,0.11650485436893204,-0.24271844660194175,-0.18446601941747573,-0.019417475728155338,-0.23300970873786409,-0.02912621359223301,-0.17475728155339806,-0.0970873786407767 -1,0.0,0.0,-0.39215686274509803,-0.23529411764705882,-0.6862745098039216,-0.3137254901960784,-0.8725490196078431,-0.21568627450980393,-1.0,-0.049019607843137254,-0.5588235294117647,-0.49019607843137253,-0.7450980392156863,-0.3137254901960784,-0.8529411764705882,-0.17647058823529413,-0.9215686274509803,-0.09803921568627451,-0.30392156862745096,-0.38235294117647056,-0.5882352941176471,-0.16666666666666666,-0.6078431372549019,-0.0784313725490196,-0.5784313725490197,-0.08823529411764706,-0.0784313725490196,-0.21568627450980393,-0.38235294117647056,-0.0196078431372549,-0.4019607843137255,0.0,-0.3627450980392157,-0.049019607843137254,0.12745098039215685,-0.029411764705882353,-0.14705882352941177,0.0784313725490196,-0.19607843137254902,0.0784313725490196,-0.16666666666666666,0.029411764705882353 -1,0.0,0.0,-0.4090909090909091,-0.2727272727272727,-0.7159090909090909,-0.38636363636363635,-0.8977272727272727,-0.2840909090909091,-1.0,-0.045454545454545456,-0.6363636363636364,-0.4318181818181818,-0.7613636363636364,-0.38636363636363635,-0.8636363636363636,-0.22727272727272727,-0.9431818181818182,-0.056818181818181816,-0.3522727272727273,-0.29545454545454547,-0.48863636363636365,-0.2840909090909091,-0.5227272727272727,-0.19318181818181818,-0.5113636363636364,-0.125,-0.056818181818181816,-0.125,-0.2159090909090909,-0.1590909090909091,-0.26136363636363635,-0.17045454545454544,-0.26136363636363635,-0.1590909090909091,0.19318181818181818,0.03409090909090909,0.056818181818181816,-0.056818181818181816,0.011363636363636364,-0.11363636363636363,0.0,-0.13636363636363635 -1,0.0,0.0,-0.42,-0.26,-0.74,-0.33,-0.93,-0.18,-1.0,0.03,-0.57,-0.44,-0.75,-0.29,-0.84,-0.15,-0.89,-0.04,-0.3,-0.35,-0.57,-0.13,-0.59,-0.08,-0.54,-0.11,-0.06,-0.2,-0.37,-0.02,-0.41,-0.04,-0.37,-0.1,0.15,-0.05,-0.17,0.05,-0.22,0.01,-0.18,-0.05 -1,0.0,0.0,-0.37755102040816324,-0.25510204081632654,-0.6836734693877551,-0.30612244897959184,-0.8673469387755102,-0.15306122448979592,-1.0,0.07142857142857142,-0.5714285714285714,-0.336734693877551,-0.7346938775510204,-0.22448979591836735,-0.8469387755102041,-0.09183673469387756,-0.8979591836734694,0.02040816326530612,-0.3163265306122449,-0.21428571428571427,-0.5306122448979592,-0.09183673469387756,-0.5510204081632653,-0.030612244897959183,-0.5204081632653061,0.01020408163265306,-0.08163265306122448,-0.07142857142857142,-0.3163265306122449,0.01020408163265306,-0.336734693877551,0.01020408163265306,-0.29591836734693877,-0.01020408163265306,0.12244897959183673,0.08163265306122448,-0.07142857142857142,0.09183673469387756,-0.11224489795918367,0.05102040816326531,-0.09183673469387756,0.02040816326530612 -1,0.0,0.0,-0.43137254901960786,-0.24509803921568626,-0.7450980392156863,-0.2647058823529412,-0.9215686274509803,-0.10784313725490197,-1.0,0.0784313725490196,-0.5588235294117647,-0.35294117647058826,-0.7156862745098039,-0.22549019607843138,-0.8137254901960784,-0.09803921568627451,-0.8627450980392157,0.0,-0.29411764705882354,-0.2549019607843137,-0.5196078431372549,-0.06862745098039216,-0.5490196078431373,-0.0392156862745098,-0.5294117647058824,-0.058823529411764705,-0.06862745098039216,-0.12745098039215685,-0.3235294117647059,0.0196078431372549,-0.38235294117647056,-0.0196078431372549,-0.3627450980392157,-0.0784313725490196,0.14705882352941177,0.00980392156862745,-0.11764705882352941,0.08823529411764706,-0.18627450980392157,0.0392156862745098,-0.16666666666666666,-0.029411764705882353 -1,0.0,0.0,-0.44,-0.18,-0.75,-0.25,-0.93,-0.15,-1.0,0.05,-0.65,-0.42,-0.79,-0.29,-0.89,-0.12,-0.97,0.03,-0.38,-0.36,-0.54,-0.2,-0.63,-0.06,-0.68,0.02,-0.11,-0.25,-0.26,-0.11,-0.36,-0.07,-0.4,-0.06,0.13,-0.12,-0.04,-0.03,-0.13,-0.01,-0.16,-0.03 -1,0.0,0.0,-0.38613861386138615,-0.1485148514851485,-0.7029702970297029,-0.13861386138613863,-0.8613861386138614,0.009900990099009901,-1.0,0.2376237623762376,-0.594059405940594,-0.2376237623762376,-0.7623762376237624,-0.10891089108910891,-0.8910891089108911,0.04950495049504951,-0.9801980198019802,0.2079207920792079,-0.31683168316831684,-0.16831683168316833,-0.5544554455445545,0.039603960396039604,-0.6633663366336634,0.1782178217821782,-0.693069306930693,0.27722772277227725,-0.0594059405940594,-0.04950495049504951,-0.3069306930693069,0.1188118811881188,-0.4158415841584158,0.18811881188118812,-0.43564356435643564,0.22772277227722773,0.1782178217821782,0.07920792079207921,-0.04950495049504951,0.16831683168316833,-0.13861386138613863,0.1782178217821782,-0.1485148514851485,0.1782178217821782 -1,0.0,0.0,-0.37037037037037035,-0.21296296296296297,-0.6944444444444444,-0.18518518518518517,-0.8888888888888888,0.037037037037037035,-1.0,0.24074074074074073,-0.5370370370370371,-0.32407407407407407,-0.7222222222222222,-0.046296296296296294,-0.8148148148148148,0.06481481481481481,-0.8611111111111112,0.1388888888888889,-0.28703703703703703,-0.25925925925925924,-0.5648148148148148,0.14814814814814814,-0.5833333333333334,0.16666666666666666,-0.5740740740740741,0.09259259259259259,-0.07407407407407407,-0.12962962962962962,-0.3888888888888889,0.2222222222222222,-0.4444444444444444,0.18518518518518517,-0.42592592592592593,0.08333333333333333,0.1111111111111111,0.0,-0.19444444444444445,0.2777777777777778,-0.26851851851851855,0.2222222222222222,-0.25925925925925924,0.1111111111111111 -1,0.0,0.0,-0.4148936170212766,-0.13829787234042554,-0.723404255319149,-0.09574468085106383,-0.8723404255319149,0.11702127659574468,-1.0,0.39361702127659576,-0.5531914893617021,-0.20212765957446807,-0.7127659574468085,-0.02127659574468085,-0.8617021276595744,0.14893617021276595,-0.9574468085106383,0.3191489361702128,-0.23404255319148937,-0.1702127659574468,-0.48936170212765956,0.1702127659574468,-0.6170212765957447,0.30851063829787234,-0.648936170212766,0.3829787234042553,0.0425531914893617,-0.05319148936170213,-0.2553191489361702,0.2553191489361702,-0.3829787234042553,0.2978723404255319,-0.4148936170212766,0.2872340425531915,0.2765957446808511,0.09574468085106383,-0.010638297872340425,0.2978723404255319,-0.13829787234042554,0.2872340425531915,-0.1702127659574468,0.2553191489361702 -1,0.0,0.0,-0.44,-0.19,-0.76,-0.17,-0.93,0.03,-1.0,0.26,-0.6,-0.22,-0.75,-0.08,-0.88,0.06,-0.97,0.21,-0.3,-0.17,-0.54,0.06,-0.63,0.13,-0.68,0.16,-0.03,-0.08,-0.31,0.12,-0.45,0.1,-0.49,0.06,0.2,0.0,-0.07,0.13,-0.2,0.08,-0.25,0.03 -1,0.0,0.0,-0.4528301886792453,-0.09433962264150944,-0.7547169811320755,-0.05660377358490566,-0.9150943396226415,0.11320754716981132,-1.0,0.2830188679245283,-0.6226415094339622,-0.27358490566037735,-0.7452830188679245,-0.018867924528301886,-0.8113207547169812,0.12264150943396226,-0.8584905660377359,0.19811320754716982,-0.330188679245283,-0.2830188679245283,-0.5377358490566038,0.12264150943396226,-0.5754716981132075,0.19811320754716982,-0.6037735849056604,0.1792452830188679,-0.05660377358490566,-0.2169811320754717,-0.29245283018867924,0.16037735849056603,-0.37735849056603776,0.1792452830188679,-0.4056603773584906,0.1320754716981132,0.19811320754716982,-0.14150943396226415,-0.03773584905660377,0.1320754716981132,-0.12264150943396226,0.1320754716981132,-0.14150943396226415,0.07547169811320754 -1,0.0,0.0,-0.44036697247706424,-0.08256880733944955,-0.7247706422018348,-0.08256880733944955,-0.8807339449541285,0.05504587155963303,-1.0,0.24770642201834864,-0.6788990825688074,-0.26605504587155965,-0.7981651376146789,-0.06422018348623854,-0.8899082568807339,0.10091743119266056,-0.9541284403669725,0.22935779816513763,-0.41284403669724773,-0.27522935779816515,-0.5871559633027523,0.027522935779816515,-0.6330275229357798,0.1651376146788991,-0.6513761467889908,0.1926605504587156,-0.12844036697247707,-0.2018348623853211,-0.3302752293577982,0.08256880733944955,-0.3944954128440367,0.13761467889908258,-0.41284403669724773,0.11009174311926606,0.12844036697247707,-0.11926605504587157,-0.05504587155963303,0.08256880733944955,-0.13761467889908258,0.11009174311926606,-0.1651376146788991,0.07339449541284404 -1,0.0,0.0,-0.4230769230769231,-0.057692307692307696,-0.7307692307692307,0.0,-0.8846153846153846,0.20192307692307693,-1.0,0.4326923076923077,-0.6538461538461539,-0.20192307692307693,-0.8076923076923077,0.09615384615384616,-0.8942307692307693,0.28846153846153844,-0.9423076923076923,0.4230769230769231,-0.375,-0.21153846153846154,-0.5769230769230769,0.2692307692307692,-0.5865384615384616,0.375,-0.5769230769230769,0.36538461538461536,-0.09615384615384616,-0.125,-0.3269230769230769,0.33653846153846156,-0.36538461538461536,0.36538461538461536,-0.3557692307692308,0.2980769230769231,0.17307692307692307,0.0,-0.07692307692307693,0.3173076923076923,-0.14423076923076922,0.3269230769230769,-0.14423076923076922,0.2692307692307692 -1,0.0,0.0,-0.4883720930232558,-0.06976744186046512,-0.7674418604651163,0.03488372093023256,-0.9069767441860465,0.2558139534883721,-1.0,0.43023255813953487,-0.5813953488372093,-0.22093023255813954,-0.6976744186046512,0.20930232558139536,-0.8023255813953488,0.32558139534883723,-0.8604651162790697,0.36046511627906974,-0.2558139534883721,-0.20930232558139536,-0.3953488372093023,0.37209302325581395,-0.43023255813953487,0.3023255813953488,-0.4418604651162791,0.16279069767441862,0.046511627906976744,-0.09302325581395349,-0.10465116279069768,0.4418604651162791,-0.18604651162790697,0.3372093023255814,-0.22093023255813954,0.19767441860465115,0.32558139534883723,0.046511627906976744,0.1744186046511628,0.4186046511627907,0.08139534883720931,0.36046511627906974,0.011627906976744186,0.27906976744186046 -1,0.0,0.0,-0.5238095238095238,-0.09523809523809523,-0.8333333333333334,-0.10714285714285714,-0.9880952380952381,-0.023809523809523808,-1.0,0.10714285714285714,-0.7142857142857143,-0.32142857142857145,-0.7023809523809523,-0.32142857142857145,-0.7142857142857143,-0.2261904761904762,-0.6904761904761905,-0.19047619047619047,-0.35714285714285715,-0.2857142857142857,-0.34523809523809523,-0.36904761904761907,-0.36904761904761907,-0.35714285714285715,-0.34523809523809523,-0.38095238095238093,-0.023809523809523808,-0.17857142857142858,-0.03571428571428571,-0.25,-0.10714285714285714,-0.2619047619047619,-0.11904761904761904,-0.2857142857142857,0.2619047619047619,-0.047619047619047616,0.21428571428571427,-0.11904761904761904,0.09523809523809523,-0.13095238095238096,0.023809523809523808,-0.16666666666666666 -1,0.0,0.0,-0.4625,0.0375,-0.7875,0.0125,-1.0,0.0125,-1.0,-0.0625,-0.6125,-0.2625,-0.75,-0.2375,-0.8125,-0.225,-0.8625,-0.225,-0.3125,-0.2625,-0.375,-0.4,-0.4375,-0.575,-0.475,-0.7375,-0.0375,-0.225,-0.075,-0.3875,-0.1125,-0.6,-0.15,-0.7875,0.1875,-0.1625,0.2125,-0.2875,0.1875,-0.4625,0.15,-0.625 -1,0.0,0.0,-0.5,0.058823529411764705,-0.8529411764705882,0.014705882352941176,-1.0,-0.10294117647058823,-0.8235294117647058,-0.29411764705882354,-0.7205882352941176,-0.35294117647058826,-0.75,-0.36764705882352944,-0.8088235294117647,-0.38235294117647056,-0.8823529411764706,-0.4264705882352941,-0.3382352941176471,-0.4264705882352941,-0.3235294117647059,-0.5588235294117647,-0.36764705882352944,-0.75,-0.47058823529411764,-0.9705882352941176,-0.014705882352941176,-0.4411764705882353,0.029411764705882353,-0.6029411764705882,0.0,-0.75,-0.10294117647058823,-0.9411764705882353,0.27941176470588236,-0.35294117647058826,0.3382352941176471,-0.5,0.3088235294117647,-0.6470588235294118,0.23529411764705882,-0.8235294117647058 -1,0.0,0.0,-0.38571428571428573,0.1,-0.8,0.07142857142857142,-1.0,-0.17142857142857143,-0.7714285714285715,-0.4142857142857143,-0.8428571428571429,-0.6857142857142857,-0.7285714285714285,-0.6571428571428571,-0.6571428571428571,-0.5,-0.6571428571428571,-0.38571428571428573,-0.5428571428571428,-0.8714285714285714,-0.35714285714285715,-0.7285714285714285,-0.24285714285714285,-0.44285714285714284,-0.22857142857142856,-0.3,-0.22857142857142856,-0.9142857142857143,-0.04285714285714286,-0.7428571428571429,0.0,-0.45714285714285713,-0.014285714285714285,-0.3142857142857143,0.05714285714285714,-0.8571428571428571,0.17142857142857143,-0.7857142857142857,0.21428571428571427,-0.5857142857142857,0.21428571428571427,-0.4714285714285714 -1,0.0,0.0,-0.32926829268292684,0.04878048780487805,-0.7073170731707317,0.0,-0.8292682926829268,-0.2073170731707317,-0.6097560975609756,-0.4268292682926829,-0.7804878048780488,-0.7560975609756098,-0.6585365853658537,-0.6829268292682927,-0.5853658536585366,-0.5,-0.5975609756097561,-0.47560975609756095,-0.5,-0.9634146341463414,-0.3170731707317073,-0.5853658536585366,-0.2926829268292683,-0.2926829268292683,-0.32926829268292684,-0.3048780487804878,-0.18292682926829268,-1.0,0.0,-0.573170731707317,-0.036585365853658534,-0.2804878048780488,-0.0975609756097561,-0.3048780487804878,0.0975609756097561,-0.926829268292683,0.24390243902439024,-0.6097560975609756,0.1951219512195122,-0.35365853658536583,0.13414634146341464,-0.32926829268292684 -1,0.0,0.0,-0.3373493975903614,0.060240963855421686,-0.7228915662650602,0.0,-0.8192771084337349,-0.20481927710843373,-0.6024096385542169,-0.4578313253012048,-0.7590361445783133,-0.7951807228915663,-0.6265060240963856,-0.6867469879518072,-0.5421686746987951,-0.5060240963855421,-0.5421686746987951,-0.5060240963855421,-0.4457831325301205,-0.9879518072289156,-0.27710843373493976,-0.5903614457831325,-0.26506024096385544,-0.2891566265060241,-0.3132530120481928,-0.30120481927710846,-0.12048192771084337,-1.0,0.060240963855421686,-0.5542168674698795,0.0,-0.26506024096385544,-0.08433734939759036,-0.30120481927710846,0.18072289156626506,-0.9036144578313253,0.3373493975903614,-0.5421686746987951,0.25301204819277107,-0.3132530120481928,0.1686746987951807,-0.3253012048192771 -1,0.0,0.0,-0.3488372093023256,0.023255813953488372,-0.686046511627907,-0.09302325581395349,-0.7558139534883721,-0.313953488372093,-0.5697674418604651,-0.5232558139534884,-0.6744186046511628,-0.8488372093023255,-0.6162790697674418,-0.7558139534883721,-0.5232558139534884,-0.4883720930232558,-0.5,-0.43023255813953487,-0.37209302325581395,-1.0,-0.27906976744186046,-0.6046511627906976,-0.26744186046511625,-0.26744186046511625,-0.3023255813953488,-0.27906976744186046,-0.06976744186046512,-0.9883720930232558,0.03488372093023256,-0.5697674418604651,-0.03488372093023256,-0.26744186046511625,-0.08139534883720931,-0.26744186046511625,0.19767441860465115,-0.8953488372093024,0.3023255813953488,-0.6046511627906976,0.22093023255813954,-0.37209302325581395,0.16279069767441862,-0.3372093023255814 -1,0.0,0.0,-0.3333333333333333,0.011494252873563218,-0.6781609195402298,-0.13793103448275862,-0.7586206896551724,-0.39080459770114945,-0.5977011494252874,-0.6206896551724138,-0.6781609195402298,-0.8735632183908046,-0.632183908045977,-0.7816091954022989,-0.5172413793103449,-0.4942528735632184,-0.5172413793103449,-0.4482758620689655,-0.39080459770114945,-1.0,-0.2988505747126437,-0.6896551724137931,-0.26436781609195403,-0.3333333333333333,-0.2988505747126437,-0.3448275862068966,-0.09195402298850575,-0.9655172413793104,-0.011494252873563218,-0.632183908045977,-0.04597701149425287,-0.3218390804597701,-0.08045977011494253,-0.3218390804597701,0.1724137931034483,-0.896551724137931,0.2413793103448276,-0.632183908045977,0.1724137931034483,-0.39080459770114945,0.12643678160919541,-0.3563218390804598 -1,0.0,0.0,-0.3333333333333333,0.023809523809523808,-0.6785714285714286,-0.15476190476190477,-0.7619047619047619,-0.44047619047619047,-0.6071428571428571,-0.6785714285714286,-0.6904761904761905,-0.8571428571428571,-0.6309523809523809,-0.8452380952380952,-0.5357142857142857,-0.5476190476190477,-0.5357142857142857,-0.47619047619047616,-0.40476190476190477,-1.0,-0.30952380952380953,-0.7619047619047619,-0.2857142857142857,-0.38095238095238093,-0.32142857142857145,-0.38095238095238093,-0.09523809523809523,-0.9880952380952381,-0.011904761904761904,-0.7142857142857143,-0.05952380952380952,-0.35714285714285715,-0.09523809523809523,-0.35714285714285715,0.17857142857142858,-0.9166666666666666,0.23809523809523808,-0.7142857142857143,0.17857142857142858,-0.44047619047619047,0.13095238095238096,-0.40476190476190477 -1,0.0,0.0,-0.34146341463414637,0.012195121951219513,-0.6951219512195121,-0.1951219512195122,-0.7560975609756098,-0.5,-0.5975609756097561,-0.7317073170731707,-0.6951219512195121,-0.8536585365853658,-0.6585365853658537,-0.8902439024390244,-0.5609756097560976,-0.5975609756097561,-0.5487804878048781,-0.524390243902439,-0.4024390243902439,-1.0,-0.3170731707317073,-0.8048780487804879,-0.2926829268292683,-0.4024390243902439,-0.32926829268292684,-0.4024390243902439,-0.0975609756097561,-1.0,-0.012195121951219513,-0.7560975609756098,-0.04878048780487805,-0.3780487804878049,-0.0975609756097561,-0.3780487804878049,0.18292682926829268,-0.926829268292683,0.24390243902439024,-0.7317073170731707,0.15853658536585366,-0.4268292682926829,0.0975609756097561,-0.3902439024390244 -1,0.0,0.0,-0.3670886075949367,0.012658227848101266,-0.7341772151898734,-0.22784810126582278,-0.810126582278481,-0.569620253164557,-0.6455696202531646,-0.810126582278481,-0.7088607594936709,-0.8734177215189873,-0.6455696202531646,-0.9113924050632911,-0.5443037974683544,-0.5822784810126582,-0.5569620253164557,-0.4936708860759494,-0.4177215189873418,-1.0,-0.3037974683544304,-0.8734177215189873,-0.27848101265822783,-0.46835443037974683,-0.3291139240506329,-0.46835443037974683,-0.11392405063291139,-1.0,-0.012658227848101266,-0.8227848101265823,-0.05063291139240506,-0.4430379746835443,-0.10126582278481013,-0.4430379746835443,0.17721518987341772,-0.9493670886075949,0.22784810126582278,-0.7974683544303798,0.1518987341772152,-0.4936708860759494,0.10126582278481013,-0.46835443037974683 -1,0.0,0.0,-0.3670886075949367,0.02531645569620253,-0.7215189873417721,-0.24050632911392406,-0.7974683544303798,-0.6075949367088608,-0.6582278481012658,-0.8860759493670886,-0.6962025316455697,-0.8734177215189873,-0.6075949367088608,-0.9240506329113924,-0.5316455696202531,-0.5949367088607594,-0.5316455696202531,-0.5063291139240507,-0.4177215189873418,-1.0,-0.27848101265822783,-0.8987341772151899,-0.26582278481012656,-0.46835443037974683,-0.31645569620253167,-0.4810126582278481,-0.11392405063291139,-0.9873417721518988,0.0,-0.8481012658227848,-0.0379746835443038,-0.4430379746835443,-0.08860759493670886,-0.45569620253164556,0.16455696202531644,-0.9493670886075949,0.24050632911392406,-0.8227848101265823,0.16455696202531644,-0.5063291139240507,0.11392405063291139,-0.4810126582278481 -1,0.0,0.0,-0.38461538461538464,0.02564102564102564,-0.7564102564102564,-0.21794871794871795,-0.8589743589743589,-0.5897435897435898,-0.7435897435897436,-0.8974358974358975,-0.7564102564102564,-0.8846153846153846,-0.6794871794871795,-0.9230769230769231,-0.5897435897435898,-0.6025641025641025,-0.5897435897435898,-0.5384615384615384,-0.47435897435897434,-1.0,-0.34615384615384615,-0.9358974358974359,-0.32051282051282054,-0.5,-0.38461538461538464,-0.5384615384615384,-0.15384615384615385,-1.0,-0.05128205128205128,-0.9102564102564102,-0.08974358974358974,-0.47435897435897434,-0.15384615384615385,-0.5,0.14102564102564102,-0.9615384615384616,0.19230769230769232,-0.8717948717948718,0.11538461538461539,-0.5384615384615384,0.05128205128205128,-0.5256410256410257 -1,0.0,0.0,-0.39473684210526316,-0.013157894736842105,-0.7631578947368421,-0.3026315789473684,-0.8421052631578947,-0.6973684210526315,-0.6973684210526315,-0.9736842105263158,-0.7368421052631579,-0.8947368421052632,-0.6447368421052632,-1.0,-0.5526315789473685,-0.6578947368421053,-0.5657894736842105,-0.5921052631578947,-0.42105263157894735,-1.0,-0.3026315789473684,-1.0,-0.2894736842105263,-0.5263157894736842,-0.35526315789473684,-0.5789473684210527,-0.10526315789473684,-0.9868421052631579,0.0,-0.9473684210526315,-0.05263157894736842,-0.5,-0.13157894736842105,-0.5263157894736842,0.19736842105263158,-0.9342105263157895,0.23684210526315788,-0.8947368421052632,0.14473684210526316,-0.5526315789473685,0.07894736842105263,-0.5394736842105263 -1,0.0,0.0,-0.379746835443038,-0.012658227848101266,-0.7215189873417721,-0.3037974683544304,-0.810126582278481,-0.6708860759493671,-0.7215189873417721,-0.9620253164556962,-0.6835443037974683,-0.8607594936708861,-0.620253164556962,-1.0,-0.5189873417721519,-0.6582278481012658,-0.5316455696202531,-0.569620253164557,-0.3924050632911392,-0.9493670886075949,-0.2911392405063291,-0.9873417721518988,-0.26582278481012656,-0.5316455696202531,-0.34177215189873417,-0.5569620253164557,-0.08860759493670886,-0.9240506329113924,0.012658227848101266,-0.9367088607594937,-0.0379746835443038,-0.4936708860759494,-0.11392405063291139,-0.5063291139240507,0.189873417721519,-0.8860759493670886,0.24050632911392406,-0.8481012658227848,0.1518987341772152,-0.5189873417721519,0.0759493670886076,-0.5189873417721519 -1,0.0,0.0,-0.35802469135802467,-0.012345679012345678,-0.7160493827160493,-0.2839506172839506,-0.8518518518518519,-0.6419753086419753,-0.8148148148148148,-0.9382716049382716,-0.7160493827160493,-0.8518518518518519,-0.691358024691358,-1.0,-0.5679012345679012,-0.6666666666666666,-0.5555555555555556,-0.6049382716049383,-0.4444444444444444,-0.9259259259259259,-0.35802469135802467,-1.0,-0.30864197530864196,-0.5432098765432098,-0.37037037037037035,-0.5925925925925926,-0.16049382716049382,-0.9135802469135802,-0.06172839506172839,-0.9506172839506173,-0.09876543209876543,-0.5185185185185185,-0.16049382716049382,-0.5555555555555556,0.1111111111111111,-0.8888888888888888,0.16049382716049382,-0.8641975308641975,0.08641975308641975,-0.5555555555555556,0.024691358024691357,-0.5555555555555556 -1,0.0,0.0,-0.3855421686746988,-0.03614457831325301,-0.7228915662650602,-0.30120481927710846,-0.8674698795180723,-0.6746987951807228,-0.8072289156626506,-0.9759036144578314,-0.7228915662650602,-0.8433734939759037,-0.7349397590361446,-0.9879518072289156,-0.6144578313253012,-0.6746987951807228,-0.6024096385542169,-0.6385542168674698,-0.46987951807228917,-0.927710843373494,-0.43373493975903615,-1.0,-0.3614457831325301,-0.5783132530120482,-0.43373493975903615,-0.6746987951807228,-0.1927710843373494,-0.927710843373494,-0.14457831325301204,-0.963855421686747,-0.1566265060240964,-0.5421686746987951,-0.21686746987951808,-0.6265060240963856,0.060240963855421686,-0.9156626506024096,0.07228915662650602,-0.891566265060241,0.03614457831325301,-0.5903614457831325,-0.012048192771084338,-0.6144578313253012 -1,0.0,0.0,-0.38372093023255816,-0.05813953488372093,-0.7093023255813954,-0.3488372093023256,-0.813953488372093,-0.7209302325581395,-0.7209302325581395,-0.9767441860465116,-0.6744186046511628,-0.8023255813953488,-0.6744186046511628,-1.0,-0.5697674418604651,-0.686046511627907,-0.5697674418604651,-0.627906976744186,-0.43023255813953487,-0.8604651162790697,-0.4069767441860465,-1.0,-0.3372093023255814,-0.5813953488372093,-0.3953488372093023,-0.6395348837209303,-0.16279069767441862,-0.8604651162790697,-0.12790697674418605,-0.9767441860465116,-0.12790697674418605,-0.5581395348837209,-0.18604651162790697,-0.5930232558139535,0.08139534883720931,-0.8488372093023255,0.08139534883720931,-0.9186046511627907,0.046511627906976744,-0.6046511627906976,0.0,-0.5930232558139535 -1,0.0,0.0,-0.3707865168539326,-0.056179775280898875,-0.6853932584269663,-0.3258426966292135,-0.8202247191011236,-0.6741573033707865,-0.7752808988764045,-0.9550561797752809,-0.6741573033707865,-0.7865168539325843,-0.7078651685393258,-0.9887640449438202,-0.5955056179775281,-0.6966292134831461,-0.5842696629213483,-0.651685393258427,-0.449438202247191,-0.8314606741573034,-0.449438202247191,-1.0,-0.3707865168539326,-0.5842696629213483,-0.42696629213483145,-0.651685393258427,-0.20224719101123595,-0.8314606741573034,-0.16853932584269662,-0.9550561797752809,-0.15730337078651685,-0.5393258426966292,-0.2247191011235955,-0.5842696629213483,0.033707865168539325,-0.8202247191011236,0.033707865168539325,-0.8876404494382022,0.011235955056179775,-0.5842696629213483,-0.0449438202247191,-0.5842696629213483 -1,0.0,0.0,-0.3695652173913043,-0.06521739130434782,-0.6847826086956522,-0.32608695652173914,-0.8260869565217391,-0.6630434782608695,-0.8152173913043478,-0.9239130434782609,-0.6956521739130435,-0.75,-0.7282608695652174,-0.9782608695652174,-0.6086956521739131,-0.6956521739130435,-0.6086956521739131,-0.6413043478260869,-0.4673913043478261,-0.8043478260869565,-0.45652173913043476,-1.0,-0.3804347826086957,-0.5978260869565217,-0.45652173913043476,-0.6630434782608695,-0.22826086956521738,-0.8043478260869565,-0.1956521739130435,-0.9565217391304348,-0.17391304347826086,-0.5652173913043478,-0.2391304347826087,-0.5978260869565217,-0.010869565217391304,-0.782608695652174,0.0,-0.8913043478260869,-0.010869565217391304,-0.6086956521739131,-0.05434782608695652,-0.6086956521739131 -1,0.0,0.0,-0.3473684210526316,-0.07368421052631578,-0.6421052631578947,-0.3263157894736842,-0.7894736842105263,-0.6526315789473685,-0.8105263157894737,-0.9157894736842105,-0.6842105263157895,-0.7052631578947368,-0.7263157894736842,-0.968421052631579,-0.6,-0.7052631578947368,-0.6,-0.631578947368421,-0.4631578947368421,-0.7578947368421053,-0.45263157894736844,-1.0,-0.35789473684210527,-0.6210526315789474,-0.45263157894736844,-0.6631578947368421,-0.23157894736842105,-0.7684210526315789,-0.18947368421052632,-0.9578947368421052,-0.15789473684210525,-0.5894736842105263,-0.24210526315789474,-0.6210526315789474,-0.021052631578947368,-0.7578947368421053,0.010526315789473684,-0.8842105263157894,0.0,-0.6210526315789474,-0.06315789473684211,-0.6210526315789474 -1,0.0,0.0,-0.36082474226804123,-0.08247422680412371,-0.6494845360824743,-0.32989690721649484,-0.7938144329896907,-0.6597938144329897,-0.8041237113402062,-0.9278350515463918,-0.7010309278350515,-0.6907216494845361,-0.7319587628865979,-0.9587628865979382,-0.6082474226804123,-0.6907216494845361,-0.6185567010309279,-0.6185567010309279,-0.4845360824742268,-0.7422680412371134,-0.4742268041237113,-1.0,-0.3917525773195876,-0.6185567010309279,-0.4845360824742268,-0.6494845360824743,-0.24742268041237114,-0.7525773195876289,-0.21649484536082475,-0.9484536082474226,-0.1958762886597938,-0.5773195876288659,-0.27835051546391754,-0.6082474226804123,-0.041237113402061855,-0.7525773195876289,-0.020618556701030927,-0.8762886597938144,-0.030927835051546393,-0.6082474226804123,-0.10309278350515463,-0.6082474226804123 -1,0.0,0.0,-0.35353535353535354,-0.0707070707070707,-0.6262626262626263,-0.3333333333333333,-0.7676767676767676,-0.6565656565656566,-0.8181818181818182,-0.9191919191919192,-0.7070707070707071,-0.6767676767676768,-0.7272727272727273,-0.9494949494949495,-0.6060606060606061,-0.696969696969697,-0.6161616161616161,-0.6161616161616161,-0.494949494949495,-0.7373737373737373,-0.48484848484848486,-1.0,-0.3939393939393939,-0.6262626262626263,-0.48484848484848486,-0.6565656565656566,-0.2727272727272727,-0.7474747474747475,-0.23232323232323232,-0.9696969696969697,-0.20202020202020202,-0.5959595959595959,-0.29292929292929293,-0.6161616161616161,-0.0707070707070707,-0.7474747474747475,-0.04040404040404041,-0.8787878787878788,-0.04040404040404041,-0.6161616161616161,-0.1111111111111111,-0.6060606060606061 -1,0.0,0.0,-0.33663366336633666,-0.07920792079207921,-0.6237623762376238,-0.32673267326732675,-0.7722772277227723,-0.6336633663366337,-0.8217821782178217,-0.900990099009901,-0.7029702970297029,-0.6732673267326733,-0.7227722772277227,-0.9405940594059405,-0.6039603960396039,-0.693069306930693,-0.6039603960396039,-0.6138613861386139,-0.49504950495049505,-0.7227722772277227,-0.48514851485148514,-1.0,-0.38613861386138615,-0.6237623762376238,-0.4752475247524752,-0.6435643564356436,-0.27722772277227725,-0.7326732673267327,-0.24752475247524752,-0.9603960396039604,-0.2079207920792079,-0.594059405940594,-0.2871287128712871,-0.6138613861386139,-0.07920792079207921,-0.7326732673267327,-0.04950495049504951,-0.8712871287128713,-0.04950495049504951,-0.6138613861386139,-0.10891089108910891,-0.6039603960396039 -1,0.0,0.0,-0.34,-0.09,-0.62,-0.33,-0.78,-0.64,-0.85,-0.9,-0.72,-0.62,-0.75,-0.95,-0.62,-0.7,-0.63,-0.61,-0.51,-0.68,-0.5,-1.0,-0.39,-0.63,-0.48,-0.63,-0.29,-0.71,-0.25,-0.95,-0.2,-0.6,-0.29,-0.59,-0.09,-0.71,-0.06,-0.87,-0.05,-0.62,-0.12,-0.59 -1,0.0,0.0,-0.3333333333333333,-0.08080808080808081,-0.6161616161616161,-0.32323232323232326,-0.7878787878787878,-0.6262626262626263,-0.8686868686868687,-0.8686868686868687,-0.7373737373737373,-0.6060606060606061,-0.7676767676767676,-0.9494949494949495,-0.6161616161616161,-0.696969696969697,-0.6262626262626263,-0.5959595959595959,-0.5252525252525253,-0.6666666666666666,-0.5050505050505051,-1.0,-0.3838383838383838,-0.6363636363636364,-0.47474747474747475,-0.6161616161616161,-0.30303030303030304,-0.696969696969697,-0.25252525252525254,-0.9595959595959596,-0.1919191919191919,-0.6060606060606061,-0.29292929292929293,-0.5757575757575758,-0.10101010101010101,-0.7171717171717171,-0.06060606060606061,-0.8787878787878788,-0.050505050505050504,-0.6262626262626263,-0.12121212121212122,-0.5858585858585859 -1,0.0,0.0,-0.34,-0.09,-0.63,-0.32,-0.8,-0.62,-0.9,-0.87,-0.77,-0.61,-0.8,-0.93,-0.65,-0.68,-0.65,-0.59,-0.55,-0.67,-0.55,-1.0,-0.41,-0.64,-0.51,-0.63,-0.33,-0.71,-0.29,-0.96,-0.23,-0.61,-0.33,-0.6,-0.12,-0.73,-0.08,-0.88,-0.06,-0.63,-0.14,-0.6 -1,0.0,0.0,-0.35353535353535354,-0.08080808080808081,-0.6666666666666666,-0.32323232323232326,-0.8585858585858586,-0.6464646464646465,-0.9494949494949495,-0.898989898989899,-0.8080808080808081,-0.5959595959595959,-0.8484848484848485,-0.9292929292929293,-0.6767676767676768,-0.6767676767676768,-0.6868686868686869,-0.5858585858585859,-0.5959595959595959,-0.6666666666666666,-0.5959595959595959,-1.0,-0.4444444444444444,-0.6363636363636364,-0.5454545454545454,-0.6161616161616161,-0.37373737373737376,-0.7070707070707071,-0.3434343434343434,-0.9696969696969697,-0.26262626262626265,-0.6161616161616161,-0.35353535353535354,-0.5959595959595959,-0.16161616161616163,-0.7373737373737373,-0.13131313131313133,-0.898989898989899,-0.10101010101010101,-0.6464646464646465,-0.1717171717171717,-0.6161616161616161 -1,0.0,0.0,-0.3434343434343434,-0.08080808080808081,-0.6464646464646465,-0.31313131313131315,-0.8484848484848485,-0.6363636363636364,-0.9797979797979798,-0.8888888888888888,-0.8181818181818182,-0.5858585858585859,-0.8585858585858586,-0.9191919191919192,-0.6767676767676768,-0.6666666666666666,-0.6868686868686869,-0.5858585858585859,-0.6161616161616161,-0.6666666666666666,-0.5959595959595959,-1.0,-0.43434343434343436,-0.6262626262626263,-0.5454545454545454,-0.6161616161616161,-0.3838383838383838,-0.7171717171717171,-0.35353535353535354,-0.9595959595959596,-0.26262626262626265,-0.6060606060606061,-0.37373737373737376,-0.5959595959595959,-0.18181818181818182,-0.7474747474747475,-0.15151515151515152,-0.8888888888888888,-0.1111111111111111,-0.6363636363636364,-0.18181818181818182,-0.6161616161616161 -1,0.0,0.0,-0.36082474226804123,-0.07216494845360824,-0.6804123711340206,-0.29896907216494845,-0.8762886597938144,-0.6288659793814433,-0.9690721649484536,-0.8865979381443299,-0.8247422680412371,-0.5773195876288659,-0.8865979381443299,-0.9278350515463918,-0.6907216494845361,-0.6701030927835051,-0.6907216494845361,-0.5773195876288659,-0.6082474226804123,-0.6597938144329897,-0.6082474226804123,-1.0,-0.44329896907216493,-0.6288659793814433,-0.5257731958762887,-0.5979381443298969,-0.38144329896907214,-0.7010309278350515,-0.36082474226804123,-0.9587628865979382,-0.26804123711340205,-0.6082474226804123,-0.35051546391752575,-0.5670103092783505,-0.17525773195876287,-0.7319587628865979,-0.15463917525773196,-0.8865979381443299,-0.1134020618556701,-0.6391752577319587,-0.17525773195876287,-0.5979381443298969 -1,0.0,0.0,-0.3711340206185567,-0.061855670103092786,-0.7010309278350515,-0.28865979381443296,-0.8969072164948454,-0.6082474226804123,-1.0,-0.8762886597938144,-0.845360824742268,-0.5670103092783505,-0.9175257731958762,-0.9072164948453608,-0.7319587628865979,-0.6597938144329897,-0.7216494845360825,-0.5567010309278351,-0.6288659793814433,-0.6494845360824743,-0.6391752577319587,-0.9896907216494846,-0.4742268041237113,-0.6185567010309279,-0.5670103092783505,-0.5979381443298969,-0.4020618556701031,-0.7010309278350515,-0.3917525773195876,-0.9587628865979382,-0.29896907216494845,-0.5979381443298969,-0.38144329896907214,-0.5773195876288659,-0.18556701030927836,-0.7319587628865979,-0.17525773195876287,-0.8865979381443299,-0.13402061855670103,-0.6391752577319587,-0.1958762886597938,-0.5876288659793815 -1,0.0,0.0,-0.35353535353535354,-0.0707070707070707,-0.6868686868686869,-0.2828282828282828,-0.898989898989899,-0.5959595959595959,-1.0,-0.8484848484848485,-0.8686868686868687,-0.5353535353535354,-0.9292929292929293,-0.8787878787878788,-0.7474747474747475,-0.6363636363636364,-0.7474747474747475,-0.5555555555555556,-0.6565656565656566,-0.6262626262626263,-0.6666666666666666,-0.9494949494949495,-0.494949494949495,-0.6060606060606061,-0.5959595959595959,-0.5858585858585859,-0.43434343434343436,-0.6868686868686869,-0.42424242424242425,-0.9393939393939394,-0.31313131313131315,-0.5959595959595959,-0.41414141414141414,-0.5757575757575758,-0.23232323232323232,-0.7373737373737373,-0.2222222222222222,-0.8888888888888888,-0.1717171717171717,-0.6464646464646465,-0.24242424242424243,-0.6060606060606061 -1,0.0,0.0,-0.36082474226804123,-0.07216494845360824,-0.711340206185567,-0.26804123711340205,-0.9381443298969072,-0.5773195876288659,-1.0,-0.8247422680412371,-0.8865979381443299,-0.5360824742268041,-0.9587628865979382,-0.8865979381443299,-0.7628865979381443,-0.6391752577319587,-0.7835051546391752,-0.5567010309278351,-0.6701030927835051,-0.6185567010309279,-0.6907216494845361,-0.979381443298969,-0.5154639175257731,-0.6082474226804123,-0.6288659793814433,-0.5773195876288659,-0.44329896907216493,-0.6804123711340206,-0.4329896907216495,-0.9484536082474226,-0.32989690721649484,-0.5876288659793815,-0.4329896907216495,-0.5670103092783505,-0.24742268041237114,-0.7216494845360825,-0.2268041237113402,-0.8865979381443299,-0.17525773195876287,-0.6288659793814433,-0.24742268041237114,-0.5876288659793815 -1,0.0,0.0,-0.3673469387755102,-0.061224489795918366,-0.7244897959183674,-0.2755102040816326,-0.9285714285714286,-0.5918367346938775,-1.0,-0.8367346938775511,-0.8877551020408163,-0.5,-0.9795918367346939,-0.8571428571428571,-0.7653061224489796,-0.6326530612244898,-0.7551020408163265,-0.5408163265306123,-0.673469387755102,-0.6122448979591837,-0.7142857142857143,-0.9387755102040817,-0.5102040816326531,-0.6020408163265306,-0.5918367346938775,-0.5714285714285714,-0.4489795918367347,-0.6836734693877551,-0.45918367346938777,-0.9387755102040817,-0.32653061224489793,-0.6020408163265306,-0.3979591836734694,-0.5510204081632653,-0.25510204081632654,-0.7346938775510204,-0.25510204081632654,-0.8877551020408163,-0.1836734693877551,-0.6428571428571429,-0.23469387755102042,-0.5918367346938775 -1,0.0,0.0,-0.36,-0.04,-0.72,-0.23,-0.95,-0.53,-0.99,-0.78,-0.88,-0.46,-1.0,-0.81,-0.79,-0.59,-0.77,-0.5,-0.67,-0.57,-0.75,-0.9,-0.54,-0.57,-0.6,-0.54,-0.46,-0.65,-0.5,-0.91,-0.36,-0.57,-0.41,-0.52,-0.26,-0.71,-0.29,-0.88,-0.21,-0.63,-0.24,-0.57 -1,0.0,0.0,-0.38,-0.04,-0.74,-0.23,-0.95,-0.55,-0.96,-0.79,-0.9,-0.42,-1.0,-0.79,-0.78,-0.58,-0.76,-0.48,-0.69,-0.54,-0.76,-0.88,-0.54,-0.57,-0.59,-0.52,-0.48,-0.64,-0.51,-0.91,-0.35,-0.58,-0.39,-0.5,-0.29,-0.71,-0.32,-0.88,-0.23,-0.64,-0.25,-0.56 -1,0.0,0.0,-0.36633663366336633,-0.039603960396039604,-0.7227722772277227,-0.21782178217821782,-0.9504950495049505,-0.5247524752475248,-0.9801980198019802,-0.7722772277227723,-0.8811881188118812,-0.42574257425742573,-1.0,-0.7821782178217822,-0.7722772277227723,-0.5742574257425742,-0.7425742574257426,-0.48514851485148514,-0.6732673267326733,-0.5445544554455446,-0.7524752475247525,-0.8712871287128713,-0.5346534653465347,-0.5643564356435643,-0.5742574257425742,-0.504950495049505,-0.4752475247524752,-0.6336633663366337,-0.504950495049505,-0.8910891089108911,-0.3465346534653465,-0.5643564356435643,-0.38613861386138615,-0.48514851485148514,-0.2871287128712871,-0.693069306930693,-0.31683168316831684,-0.8712871287128713,-0.22772277227722773,-0.6336633663366337,-0.2376237623762376,-0.5544554455445545 -1,0.0,0.0,-0.35714285714285715,-0.030612244897959183,-0.7142857142857143,-0.23469387755102042,-0.9081632653061225,-0.5612244897959183,-0.8775510204081632,-0.7959183673469388,-0.8775510204081632,-0.3877551020408163,-1.0,-0.7857142857142857,-0.7755102040816326,-0.6020408163265306,-0.7346938775510204,-0.47959183673469385,-0.673469387755102,-0.5204081632653061,-0.7448979591836735,-0.8775510204081632,-0.5204081632653061,-0.6020408163265306,-0.5408163265306123,-0.5102040816326531,-0.47959183673469385,-0.6122448979591837,-0.4897959183673469,-0.8979591836734694,-0.336734693877551,-0.6020408163265306,-0.3469387755102041,-0.4897959183673469,-0.29591836734693877,-0.6938775510204082,-0.3163265306122449,-0.8673469387755102,-0.21428571428571427,-0.6428571428571429,-0.21428571428571427,-0.5510204081632653 -1,0.0,0.0,-0.358695652173913,-0.05434782608695652,-0.7391304347826086,-0.29347826086956524,-0.9130434782608695,-0.6413043478260869,-0.8695652173913043,-0.8695652173913043,-0.9347826086956522,-0.3804347826086957,-1.0,-0.8695652173913043,-0.7391304347826086,-0.7065217391304348,-0.6847826086956522,-0.5434782608695652,-0.717391304347826,-0.5217391304347826,-0.717391304347826,-0.9565217391304348,-0.4673913043478261,-0.6956521739130435,-0.45652173913043476,-0.5434782608695652,-0.5,-0.6413043478260869,-0.4673913043478261,-0.967391304347826,-0.2826086956521739,-0.6956521739130435,-0.2826086956521739,-0.5217391304347826,-0.30434782608695654,-0.7282608695652174,-0.29347826086956524,-0.9347826086956522,-0.18478260869565216,-0.7391304347826086,-0.17391304347826086,-0.6086956521739131 -1,0.0,0.0,-0.34444444444444444,-0.05555555555555555,-0.7333333333333333,-0.3,-0.8555555555555555,-0.6777777777777778,-0.8,-0.8888888888888888,-0.9888888888888889,-0.3888888888888889,-1.0,-0.8888888888888888,-0.7444444444444445,-0.7666666666666667,-0.6666666666666666,-0.6111111111111112,-0.7777777777777778,-0.5333333333333333,-0.7111111111111111,-0.9555555555555556,-0.4777777777777778,-0.7555555555555555,-0.43333333333333335,-0.5888888888888889,-0.5555555555555556,-0.6555555555555556,-0.4444444444444444,-0.9888888888888889,-0.2777777777777778,-0.7444444444444445,-0.26666666666666666,-0.5666666666666667,-0.35555555555555557,-0.7444444444444445,-0.26666666666666666,-0.9444444444444444,-0.15555555555555556,-0.7444444444444445,-0.15555555555555556,-0.6222222222222222 -1,0.0,0.0,-0.3010752688172043,-0.10752688172043011,-0.6344086021505376,-0.3763440860215054,-0.7526881720430108,-0.7311827956989247,-0.7634408602150538,-0.9247311827956989,-0.946236559139785,-0.46236559139784944,-0.8924731182795699,-0.9354838709677419,-0.6451612903225806,-0.8279569892473119,-0.5698924731182796,-0.6774193548387096,-0.7419354838709677,-0.5806451612903226,-0.6344086021505376,-0.989247311827957,-0.3978494623655914,-0.7849462365591398,-0.3655913978494624,-0.6344086021505376,-0.5268817204301075,-0.6881720430107527,-0.3763440860215054,-1.0,-0.21505376344086022,-0.7741935483870968,-0.22580645161290322,-0.6129032258064516,-0.3333333333333333,-0.7526881720430108,-0.22580645161290322,-0.956989247311828,-0.11827956989247312,-0.7741935483870968,-0.12903225806451613,-0.6559139784946236 -1,0.0,0.0,-0.2857142857142857,-0.11224489795918367,-0.5510204081632653,-0.3877551020408163,-0.6122448979591837,-0.7448979591836735,-0.5816326530612245,-0.9285714285714286,-0.8673469387755102,-0.5,-0.7755102040816326,-0.9489795918367347,-0.5816326530612245,-0.7755102040816326,-0.5816326530612245,-0.6224489795918368,-0.6632653061224489,-0.6122448979591837,-0.5408163265306123,-0.9897959183673469,-0.35714285714285715,-0.7448979591836735,-0.3979591836734694,-0.6224489795918368,-0.4489795918367347,-0.6938775510204082,-0.2857142857142857,-1.0,-0.16326530612244897,-0.7346938775510204,-0.23469387755102042,-0.6020408163265306,-0.25510204081632654,-0.7448979591836735,-0.12244897959183673,-0.9285714285714286,-0.04081632653061224,-0.7142857142857143,-0.11224489795918367,-0.6122448979591837 -1,0.0,0.0,-0.2857142857142857,-0.12244897959183673,-0.5510204081632653,-0.41836734693877553,-0.5612244897959183,-0.7755102040816326,-0.5,-0.9387755102040817,-0.826530612244898,-0.5510204081632653,-0.7142857142857143,-0.9795918367346939,-0.5204081632653061,-0.8061224489795918,-0.5204081632653061,-0.6530612244897959,-0.6122448979591837,-0.6428571428571429,-0.47959183673469385,-1.0,-0.30612244897959184,-0.7551020408163265,-0.336734693877551,-0.6428571428571429,-0.3877551020408163,-0.7142857142857143,-0.22448979591836735,-0.9897959183673469,-0.12244897959183673,-0.7346938775510204,-0.1836734693877551,-0.6122448979591837,-0.19387755102040816,-0.7448979591836735,-0.061224489795918366,-0.9183673469387755,-0.01020408163265306,-0.7142857142857143,-0.07142857142857142,-0.6224489795918368 -1,0.0,0.0,-0.2755102040816326,-0.10204081632653061,-0.4897959183673469,-0.3979591836734694,-0.5204081632653061,-0.7448979591836735,-0.5204081632653061,-0.9285714285714286,-0.7959183673469388,-0.5714285714285714,-0.673469387755102,-0.9795918367346939,-0.5,-0.7755102040816326,-0.5204081632653061,-0.6428571428571429,-0.5816326530612245,-0.6530612244897959,-0.4387755102040816,-1.0,-0.2857142857142857,-0.7142857142857143,-0.3469387755102041,-0.6224489795918368,-0.35714285714285715,-0.7040816326530612,-0.19387755102040816,-0.9795918367346939,-0.10204081632653061,-0.6836734693877551,-0.1836734693877551,-0.5714285714285714,-0.16326530612244897,-0.7448979591836735,-0.030612244897959183,-0.8979591836734694,0.02040816326530612,-0.6632653061224489,-0.05102040816326531,-0.5816326530612245 -1,0.0,0.0,-0.28,-0.12,-0.48,-0.4,-0.49,-0.74,-0.48,-0.95,-0.75,-0.58,-0.64,-0.97,-0.48,-0.77,-0.49,-0.64,-0.54,-0.66,-0.41,-1.0,-0.26,-0.71,-0.32,-0.62,-0.32,-0.71,-0.18,-0.97,-0.09,-0.67,-0.17,-0.56,-0.13,-0.73,-0.02,-0.89,0.02,-0.65,-0.04,-0.56 -1,0.0,0.0,-0.27,-0.12,-0.46,-0.4,-0.45,-0.75,-0.44,-0.97,-0.73,-0.6,-0.61,-0.98,-0.45,-0.77,-0.47,-0.65,-0.51,-0.67,-0.38,-1.0,-0.24,-0.7,-0.3,-0.62,-0.29,-0.71,-0.15,-0.96,-0.07,-0.66,-0.14,-0.56,-0.1,-0.73,0.01,-0.88,0.04,-0.65,-0.01,-0.57 -1,0.0,0.0,-0.25,-0.1,-0.43,-0.4,-0.44,-0.74,-0.44,-0.95,-0.7,-0.61,-0.57,-0.98,-0.41,-0.78,-0.43,-0.66,-0.49,-0.68,-0.35,-1.0,-0.22,-0.72,-0.27,-0.63,-0.28,-0.73,-0.13,-0.97,-0.05,-0.68,-0.12,-0.58,-0.1,-0.75,0.02,-0.88,0.05,-0.66,-0.01,-0.59 -1,0.0,0.0,-0.2621359223300971,-0.14563106796116504,-0.39805825242718446,-0.42718446601941745,-0.3786407766990291,-0.7669902912621359,-0.39805825242718446,-1.0,-0.6310679611650486,-0.6019417475728155,-0.47572815533980584,-0.970873786407767,-0.34951456310679613,-0.7961165048543689,-0.34951456310679613,-0.6407766990291263,-0.4174757281553398,-0.6699029126213593,-0.27184466019417475,-0.9805825242718447,-0.1650485436893204,-0.7281553398058253,-0.18446601941747573,-0.6019417475728155,-0.21359223300970873,-0.6990291262135923,-0.06796116504854369,-0.941747572815534,-0.019417475728155338,-0.6796116504854369,-0.05825242718446602,-0.5436893203883495,-0.038834951456310676,-0.7087378640776699,0.06796116504854369,-0.8446601941747572,0.08737864077669903,-0.6407766990291263,0.038834951456310676,-0.5339805825242718 -1,0.0,0.0,-0.25,-0.16346153846153846,-0.3557692307692308,-0.4519230769230769,-0.3173076923076923,-0.7692307692307693,-0.3076923076923077,-0.9903846153846154,-0.5769230769230769,-0.6634615384615384,-0.40384615384615385,-1.0,-0.2980769230769231,-0.8269230769230769,-0.2980769230769231,-0.6826923076923077,-0.3557692307692308,-0.6923076923076923,-0.19230769230769232,-1.0,-0.11538461538461539,-0.7403846153846154,-0.15384615384615385,-0.6346153846153846,-0.15384615384615385,-0.6923076923076923,0.0,-0.9326923076923077,0.028846153846153848,-0.6634615384615384,-0.019230769230769232,-0.5480769230769231,0.019230769230769232,-0.6730769230769231,0.1346153846153846,-0.8173076923076923,0.1346153846153846,-0.6346153846153846,0.08653846153846154,-0.5384615384615384 -1,0.0,0.0,-0.24074074074074073,-0.18518518518518517,-0.3148148148148148,-0.46296296296296297,-0.25,-0.7592592592592593,-0.24074074074074073,-0.9814814814814815,-0.48148148148148145,-0.7037037037037037,-0.3425925925925926,-1.0,-0.25,-0.8425925925925926,-0.24074074074074073,-0.7407407407407407,-0.2777777777777778,-0.7222222222222222,-0.1388888888888889,-0.9814814814814815,-0.08333333333333333,-0.7222222222222222,-0.12962962962962962,-0.6481481481481481,-0.08333333333333333,-0.6944444444444444,0.046296296296296294,-0.9074074074074074,0.05555555555555555,-0.6388888888888888,0.0,-0.5462962962962963,0.08333333333333333,-0.6574074074074074,0.18518518518518517,-0.7777777777777778,0.16666666666666666,-0.5833333333333334,0.10185185185185185,-0.5185185185185185 -1,0.0,0.0,-0.21818181818181817,-0.19090909090909092,-0.2727272727272727,-0.4818181818181818,-0.20909090909090908,-0.7636363636363637,-0.2,-1.0,-0.44545454545454544,-0.7272727272727273,-0.3181818181818182,-0.990909090909091,-0.20909090909090908,-0.8545454545454545,-0.18181818181818182,-0.7545454545454545,-0.24545454545454545,-0.7363636363636363,-0.1,-0.9818181818181818,-0.03636363636363636,-0.7272727272727273,-0.07272727272727272,-0.6272727272727273,-0.05454545454545454,-0.7,0.08181818181818182,-0.9,0.09090909090909091,-0.6454545454545455,0.03636363636363636,-0.5363636363636364,0.10909090909090909,-0.6454545454545455,0.20909090909090908,-0.7545454545454545,0.19090909090909092,-0.5818181818181818,0.12727272727272726,-0.509090909090909 -1,0.0,0.0,-0.22522522522522523,-0.21621621621621623,-0.26126126126126126,-0.5135135135135135,-0.15315315315315314,-0.7927927927927928,-0.09009009009009009,-1.0,-0.38738738738738737,-0.7567567567567568,-0.1981981981981982,-1.0,-0.12612612612612611,-0.8288288288288288,-0.12612612612612611,-0.7027027027027027,-0.18018018018018017,-0.7297297297297297,-0.009009009009009009,-0.9459459459459459,0.018018018018018018,-0.6936936936936937,-0.018018018018018018,-0.5945945945945946,0.009009009009009009,-0.6756756756756757,0.16216216216216217,-0.8378378378378378,0.14414414414414414,-0.5945945945945946,0.08108108108108109,-0.4864864864864865,0.17117117117117117,-0.6126126126126126,0.27927927927927926,-0.7027027027027027,0.24324324324324326,-0.5405405405405406,0.1891891891891892,-0.46846846846846846 -1,0.0,0.0,-0.21238938053097345,-0.23893805309734514,-0.23893805309734514,-0.5398230088495575,-0.10619469026548672,-0.8053097345132744,-0.02654867256637168,-1.0,-0.30973451327433627,-0.7787610619469026,-0.13274336283185842,-1.0,-0.07079646017699115,-0.8230088495575221,-0.07079646017699115,-0.6991150442477876,-0.10619469026548672,-0.7345132743362832,0.05309734513274336,-0.9203539823008849,0.07079646017699115,-0.672566371681416,0.02654867256637168,-0.584070796460177,0.07964601769911504,-0.6637168141592921,0.22123893805309736,-0.8141592920353983,0.18584070796460178,-0.5663716814159292,0.12389380530973451,-0.4778761061946903,0.23893805309734514,-0.584070796460177,0.3274336283185841,-0.672566371681416,0.2831858407079646,-0.5132743362831859,0.23008849557522124,-0.45132743362831856 -1,0.0,0.0,-0.19298245614035087,-0.2543859649122807,-0.19298245614035087,-0.5614035087719298,-0.05263157894736842,-0.8070175438596491,0.05263157894736842,-1.0,-0.24561403508771928,-0.7894736842105263,-0.07017543859649122,-1.0,-0.043859649122807015,-0.8245614035087719,-0.06140350877192982,-0.7192982456140351,-0.05263157894736842,-0.7280701754385965,0.11403508771929824,-0.9122807017543859,0.08771929824561403,-0.6754385964912281,0.03508771929824561,-0.6228070175438597,0.12280701754385964,-0.6403508771929824,0.2719298245614035,-0.7807017543859649,0.20175438596491227,-0.5526315789473685,0.14035087719298245,-0.49122807017543857,0.2631578947368421,-0.5526315789473685,0.3684210526315789,-0.631578947368421,0.2982456140350877,-0.49122807017543857,0.23684210526315788,-0.4473684210526316 -1,0.0,0.0,-0.17543859649122806,-0.2543859649122807,-0.16666666666666666,-0.5789473684210527,0.008771929824561403,-0.8157894736842105,0.12280701754385964,-1.0,-0.21052631578947367,-0.8070175438596491,-0.017543859649122806,-1.0,-0.008771929824561403,-0.8157894736842105,-0.05263157894736842,-0.7105263157894737,-0.017543859649122806,-0.7368421052631579,0.16666666666666666,-0.9035087719298246,0.13157894736842105,-0.6578947368421053,0.07017543859649122,-0.6052631578947368,0.14912280701754385,-0.6491228070175439,0.32456140350877194,-0.7631578947368421,0.23684210526315788,-0.5350877192982456,0.15789473684210525,-0.47368421052631576,0.2894736842105263,-0.543859649122807,0.40350877192982454,-0.6052631578947368,0.32456140350877194,-0.45614035087719296,0.2631578947368421,-0.42105263157894735 -1,0.0,0.0,-0.17857142857142858,-0.21428571428571427,-0.14285714285714285,-0.5267857142857143,0.044642857142857144,-0.7946428571428571,0.16964285714285715,-1.0,-0.19642857142857142,-0.8214285714285714,0.05357142857142857,-1.0,0.05357142857142857,-0.7857142857142857,-0.017857142857142856,-0.6875,0.0,-0.7678571428571429,0.23214285714285715,-0.875,0.17857142857142858,-0.6071428571428571,0.09821428571428571,-0.5714285714285714,0.16964285714285715,-0.6785714285714286,0.38392857142857145,-0.7142857142857143,0.2767857142857143,-0.48214285714285715,0.1875,-0.45535714285714285,0.3125,-0.5982142857142857,0.44642857142857145,-0.5535714285714286,0.3482142857142857,-0.38392857142857145,0.25892857142857145,-0.38392857142857145 -1,0.0,0.0,-0.15178571428571427,-0.24107142857142858,-0.11607142857142858,-0.5535714285714286,0.08035714285714286,-0.7946428571428571,0.23214285714285715,-0.9642857142857143,-0.09821428571428571,-0.8303571428571429,0.14285714285714285,-1.0,0.09821428571428571,-0.7946428571428571,0.008928571428571428,-0.7142857142857143,0.08928571428571429,-0.7410714285714286,0.29464285714285715,-0.8660714285714286,0.19642857142857142,-0.625,0.125,-0.6160714285714286,0.24107142857142858,-0.6339285714285714,0.41964285714285715,-0.6785714285714286,0.2857142857142857,-0.4642857142857143,0.20535714285714285,-0.45535714285714285,0.36607142857142855,-0.5178571428571429,0.4732142857142857,-0.5089285714285714,0.3482142857142857,-0.35714285714285715,0.2857142857142857,-0.36607142857142855 -1,0.0,0.0,-0.13761467889908258,-0.22935779816513763,-0.06422018348623854,-0.5596330275229358,0.1834862385321101,-0.8073394495412844,0.3669724770642202,-0.9541284403669725,-0.05504587155963303,-0.8532110091743119,0.23853211009174313,-1.0,0.1834862385321101,-0.7889908256880734,0.08256880733944955,-0.7247706422018348,0.13761467889908258,-0.7706422018348624,0.41284403669724773,-0.8440366972477065,0.28440366972477066,-0.5963302752293578,0.1926605504587156,-0.5963302752293578,0.30275229357798167,-0.6513761467889908,0.5321100917431193,-0.6513761467889908,0.3669724770642202,-0.44036697247706424,0.27522935779816515,-0.45871559633027525,0.42201834862385323,-0.5412844036697247,0.5596330275229358,-0.46788990825688076,0.41284403669724773,-0.3211009174311927,0.3394495412844037,-0.3577981651376147 -1,0.0,0.0,-0.11428571428571428,-0.24761904761904763,0.009523809523809525,-0.580952380952381,0.3047619047619048,-0.8095238095238095,0.49523809523809526,-0.9809523809523809,0.0,-0.9047619047619048,0.3523809523809524,-1.0,0.29523809523809524,-0.7904761904761904,0.18095238095238095,-0.7047619047619048,0.19047619047619047,-0.8095238095238095,0.5047619047619047,-0.8380952380952381,0.38095238095238093,-0.580952380952381,0.2761904761904762,-0.5523809523809524,0.3523809523809524,-0.6857142857142857,0.6095238095238096,-0.6285714285714286,0.44761904761904764,-0.4095238095238095,0.3333333333333333,-0.38095238095238093,0.47619047619047616,-0.5523809523809524,0.6190476190476191,-0.45714285714285713,0.47619047619047616,-0.29523809523809524,0.38095238095238093,-0.29523809523809524 -1,0.0,0.0,-0.09803921568627451,-0.2647058823529412,0.029411764705882353,-0.5980392156862745,0.35294117647058826,-0.8137254901960784,0.5588235294117647,-0.9803921568627451,0.0196078431372549,-0.9411764705882353,0.43137254901960786,-1.0,0.35294117647058826,-0.7647058823529411,0.21568627450980393,-0.6862745098039216,0.20588235294117646,-0.8235294117647058,0.5784313725490197,-0.8137254901960784,0.43137254901960786,-0.5588235294117647,0.3137254901960784,-0.5098039215686274,0.37254901960784315,-0.6862745098039216,0.6764705882352942,-0.6176470588235294,0.49019607843137253,-0.4117647058823529,0.3627450980392157,-0.37254901960784315,0.5,-0.5490196078431373,0.6666666666666666,-0.46078431372549017,0.5098039215686274,-0.30392156862745096,0.4019607843137255,-0.29411764705882354 -1,0.0,0.0,-0.11764705882352941,-0.2647058823529412,0.0196078431372549,-0.5784313725490197,0.3431372549019608,-0.803921568627451,0.5588235294117647,-0.9705882352941176,0.058823529411764705,-0.9215686274509803,0.4215686274509804,-1.0,0.3235294117647059,-0.7647058823529411,0.20588235294117646,-0.7058823529411765,0.24509803921568626,-0.8137254901960784,0.5686274509803921,-0.8235294117647058,0.4019607843137255,-0.5588235294117647,0.30392156862745096,-0.5294117647058824,0.4019607843137255,-0.6666666666666666,0.6764705882352942,-0.6372549019607843,0.46078431372549017,-0.4019607843137255,0.35294117647058826,-0.38235294117647056,0.5196078431372549,-0.5294117647058824,0.6666666666666666,-0.46078431372549017,0.49019607843137253,-0.30392156862745096,0.39215686274509803,-0.30392156862745096 -1,0.0,0.0,-0.07142857142857142,-0.29591836734693877,0.10204081632653061,-0.6224489795918368,0.4387755102040816,-0.8061224489795918,0.6632653061224489,-0.9489795918367347,0.16326530612244897,-0.9591836734693877,0.5510204081632653,-1.0,0.4387755102040816,-0.7653061224489796,0.30612244897959184,-0.6938775510204082,0.32653061224489793,-0.8061224489795918,0.673469387755102,-0.8061224489795918,0.5,-0.5612244897959183,0.37755102040816324,-0.5306122448979592,0.46938775510204084,-0.6326530612244898,0.7551020408163265,-0.5918367346938775,0.5306122448979592,-0.3979591836734694,0.3979591836734694,-0.3673469387755102,0.5714285714285714,-0.46938775510204084,0.7244897959183674,-0.41836734693877553,0.5510204081632653,-0.2857142857142857,0.4489795918367347,-0.2653061224489796 -1,0.0,0.0,-0.09278350515463918,-0.27835051546391754,0.09278350515463918,-0.6082474226804123,0.4639175257731959,-0.8041237113402062,0.711340206185567,-0.9690721649484536,0.17525773195876287,-0.9690721649484536,0.5773195876288659,-1.0,0.44329896907216493,-0.7731958762886598,0.30927835051546393,-0.7319587628865979,0.36082474226804123,-0.8350515463917526,0.711340206185567,-0.7938144329896907,0.4845360824742268,-0.5257731958762887,0.38144329896907214,-0.5257731958762887,0.5154639175257731,-0.6701030927835051,0.7938144329896907,-0.5773195876288659,0.5360824742268041,-0.3711340206185567,0.41237113402061853,-0.3711340206185567,0.6288659793814433,-0.5154639175257731,0.7835051546391752,-0.41237113402061853,0.5670103092783505,-0.26804123711340205,0.4536082474226804,-0.28865979381443296 -1,0.0,0.0,-0.07368421052631578,-0.28421052631578947,0.12631578947368421,-0.5894736842105263,0.5052631578947369,-0.7894736842105263,0.7578947368421053,-0.9473684210526315,0.2,-0.9894736842105263,0.631578947368421,-1.0,0.4842105263157895,-0.7684210526315789,0.3368421052631579,-0.7578947368421053,0.37894736842105264,-0.8421052631578947,0.7578947368421053,-0.7894736842105263,0.5157894736842106,-0.5263157894736842,0.4,-0.5789473684210527,0.5263157894736842,-0.6736842105263158,0.8421052631578947,-0.5578947368421052,0.5578947368421052,-0.3684210526315789,0.4421052631578947,-0.4105263157894737,0.631578947368421,-0.5157894736842106,0.8105263157894737,-0.3894736842105263,0.5789473684210527,-0.25263157894736843,0.47368421052631576,-0.30526315789473685 -1,0.0,0.0,-0.052083333333333336,-0.2604166666666667,0.15625,-0.5625,0.5520833333333334,-0.75,0.8125,-0.9166666666666666,0.25,-1.0,0.6979166666666666,-0.9270833333333334,0.5208333333333334,-0.6875,0.3854166666666667,-0.71875,0.4270833333333333,-0.8541666666666666,0.7916666666666666,-0.7083333333333334,0.53125,-0.4583333333333333,0.4166666666666667,-0.5416666666666666,0.5729166666666666,-0.6770833333333334,0.8541666666666666,-0.4791666666666667,0.5625,-0.3020833333333333,0.4583333333333333,-0.3958333333333333,0.6770833333333334,-0.53125,0.8229166666666666,-0.3229166666666667,0.5833333333333334,-0.19791666666666666,0.5,-0.2708333333333333 -1,0.0,0.0,-0.07368421052631578,-0.2631578947368421,0.14736842105263157,-0.5684210526315789,0.5473684210526316,-0.7578947368421053,0.8210526315789474,-0.9368421052631579,0.28421052631578947,-1.0,0.7052631578947368,-0.9368421052631579,0.5263157894736842,-0.6947368421052632,0.4,-0.7052631578947368,0.4631578947368421,-0.8736842105263158,0.8,-0.6947368421052632,0.5052631578947369,-0.45263157894736844,0.4,-0.5368421052631579,0.6105263157894737,-0.6947368421052632,0.8631578947368421,-0.4842105263157895,0.5473684210526316,-0.3157894736842105,0.45263157894736844,-0.4,0.7157894736842105,-0.5473684210526316,0.8315789473684211,-0.3263157894736842,0.5789473684210527,-0.2,0.5052631578947369,-0.28421052631578947 -1,0.0,0.0,-0.08163265306122448,-0.25510204081632654,0.1326530612244898,-0.5612244897959183,0.5,-0.7755102040816326,0.7653061224489796,-0.9693877551020408,0.30612244897959184,-1.0,0.6428571428571429,-0.8775510204081632,0.47959183673469385,-0.6428571428571429,0.37755102040816324,-0.6632653061224489,0.4897959183673469,-0.8979591836734694,0.7755102040816326,-0.6530612244897959,0.47959183673469385,-0.42857142857142855,0.37755102040816324,-0.5306122448979592,0.6224489795918368,-0.7346938775510204,0.8367346938775511,-0.4387755102040816,0.5204081632653061,-0.2857142857142857,0.4387755102040816,-0.40816326530612246,0.7244897959183674,-0.5714285714285714,0.7959183673469388,-0.2857142857142857,0.5510204081632653,-0.16326530612244897,0.4897959183673469,-0.2653061224489796 -1,0.0,0.0,-0.09375,-0.2708333333333333,0.125,-0.5729166666666666,0.5208333333333334,-0.7708333333333334,0.78125,-0.9583333333333334,0.2604166666666667,-1.0,0.5729166666666666,-0.9375,0.4791666666666667,-0.71875,0.4479166666666667,-0.7291666666666666,0.46875,-0.8958333333333334,0.7395833333333334,-0.71875,0.4583333333333333,-0.46875,0.3958333333333333,-0.5625,0.625,-0.7291666666666666,0.8333333333333334,-0.4895833333333333,0.5104166666666666,-0.3020833333333333,0.4479166666666667,-0.4270833333333333,0.7395833333333334,-0.5625,0.8125,-0.3125,0.5520833333333334,-0.17708333333333334,0.4895833333333333,-0.2916666666666667 -1,0.0,0.0,-0.06521739130434782,-0.2608695652173913,0.16304347826086957,-0.5760869565217391,0.5652173913043478,-0.7717391304347826,0.8586956521739131,-0.9130434782608695,0.30434782608695654,-1.0,0.6847826086956522,-0.9347826086956522,0.5108695652173914,-0.6847826086956522,0.41304347826086957,-0.6956521739130435,0.4782608695652174,-0.8478260869565217,0.8260869565217391,-0.7065217391304348,0.5217391304347826,-0.44565217391304346,0.42391304347826086,-0.5217391304347826,0.6195652173913043,-0.6630434782608695,0.9021739130434783,-0.4782608695652174,0.5652173913043478,-0.2826086956521739,0.4673913043478261,-0.3695652173913043,0.7282608695652174,-0.4891304347826087,0.8804347826086957,-0.30434782608695654,0.6086956521739131,-0.17391304347826086,0.5108695652173914,-0.2391304347826087 -1,0.0,0.0,-0.09574468085106383,-0.24468085106382978,0.1276595744680851,-0.5638297872340425,0.5319148936170213,-0.7659574468085106,0.8297872340425532,-0.9361702127659575,0.2872340425531915,-1.0,0.648936170212766,-0.8829787234042553,0.5,-0.6382978723404256,0.39361702127659576,-0.648936170212766,0.48936170212765956,-0.8936170212765957,0.7872340425531915,-0.6595744680851063,0.48936170212765956,-0.4148936170212766,0.39361702127659576,-0.48936170212765956,0.6382978723404256,-0.723404255319149,0.8829787234042553,-0.44680851063829785,0.5531914893617021,-0.2765957446808511,0.4574468085106383,-0.35106382978723405,0.7553191489361702,-0.5638297872340425,0.851063829787234,-0.2978723404255319,0.5957446808510638,-0.1595744680851064,0.5106382978723404,-0.24468085106382978 -1,0.0,0.0,-0.07526881720430108,-0.24731182795698925,0.17204301075268819,-0.5698924731182796,0.5591397849462365,-0.7849462365591398,0.8387096774193549,-0.956989247311828,0.26881720430107525,-1.0,0.6666666666666666,-0.8709677419354839,0.5161290322580645,-0.6236559139784946,0.40860215053763443,-0.6451612903225806,0.46236559139784944,-0.8709677419354839,0.7956989247311828,-0.6559139784946236,0.5161290322580645,-0.40860215053763443,0.43010752688172044,-0.4838709677419355,0.6129032258064516,-0.7096774193548387,0.8924731182795699,-0.45161290322580644,0.5698924731182796,-0.26881720430107525,0.4731182795698925,-0.3548387096774194,0.7311827956989247,-0.5483870967741935,0.8709677419354839,-0.3118279569892473,0.6236559139784946,-0.17204301075268819,0.5268817204301075,-0.24731182795698925 -1,0.0,0.0,-0.08695652173913043,-0.2826086956521739,0.14130434782608695,-0.6086956521739131,0.5217391304347826,-0.8260869565217391,0.8043478260869565,-0.9782608695652174,0.2391304347826087,-1.0,0.6413043478260869,-0.9021739130434783,0.4891304347826087,-0.6521739130434783,0.3804347826086957,-0.6630434782608695,0.42391304347826086,-0.8695652173913043,0.7717391304347826,-0.7065217391304348,0.5108695652173914,-0.45652173913043476,0.40217391304347827,-0.5,0.5869565217391305,-0.6956521739130435,0.8695652173913043,-0.4891304347826087,0.5652173913043478,-0.30434782608695654,0.44565217391304346,-0.358695652173913,0.717391304347826,-0.532608695652174,0.8695652173913043,-0.358695652173913,0.6195652173913043,-0.22826086956521738,0.5108695652173914,-0.2608695652173913 -1,0.0,0.0,-0.0989010989010989,-0.26373626373626374,0.10989010989010989,-0.6153846153846154,0.4835164835164835,-0.8461538461538461,0.7692307692307693,-1.0,0.25274725274725274,-0.989010989010989,0.6483516483516484,-0.9340659340659341,0.4945054945054945,-0.6813186813186813,0.37362637362637363,-0.6593406593406593,0.42857142857142855,-0.8461538461538461,0.7912087912087912,-0.7142857142857143,0.5274725274725275,-0.46153846153846156,0.4175824175824176,-0.5054945054945055,0.5824175824175825,-0.6703296703296703,0.8791208791208791,-0.5054945054945055,0.5824175824175825,-0.31868131868131866,0.46153846153846156,-0.3516483516483517,0.7032967032967034,-0.4945054945054945,0.8681318681318682,-0.3626373626373626,0.6373626373626373,-0.23076923076923078,0.5274725274725275,-0.26373626373626374 -1,0.0,0.0,-0.09183673469387756,-0.2857142857142857,0.061224489795918366,-0.6326530612244898,0.35714285714285715,-0.8673469387755102,0.6122448979591837,-1.0,0.17346938775510204,-0.8979591836734694,0.5204081632653061,-0.9183673469387755,0.42857142857142855,-0.6836734693877551,0.32653061224489793,-0.5918367346938775,0.3469387755102041,-0.7755102040816326,0.673469387755102,-0.7448979591836735,0.5,-0.5,0.3673469387755102,-0.4489795918367347,0.4897959183673469,-0.6224489795918368,0.7653061224489796,-0.5612244897959183,0.5510204081632653,-0.3673469387755102,0.3979591836734694,-0.3163265306122449,0.6020408163265306,-0.46938775510204084,0.7755102040816326,-0.41836734693877553,0.6122448979591837,-0.29591836734693877,0.4897959183673469,-0.2653061224489796 -1,0.0,0.0,-0.12745098039215685,-0.2647058823529412,0.0,-0.6078431372549019,0.2647058823529412,-0.8529411764705882,0.5196078431372549,-1.0,0.09803921568627451,-0.8725490196078431,0.4019607843137255,-0.9215686274509803,0.3137254901960784,-0.696078431372549,0.20588235294117646,-0.6176470588235294,0.28431372549019607,-0.7647058823529411,0.5686274509803921,-0.7549019607843137,0.4019607843137255,-0.5098039215686274,0.29411764705882354,-0.4803921568627451,0.43137254901960786,-0.6372549019607843,0.6764705882352942,-0.5784313725490197,0.46078431372549017,-0.38235294117647056,0.3431372549019608,-0.3627450980392157,0.5588235294117647,-0.5098039215686274,0.696078431372549,-0.4411764705882353,0.5294117647058824,-0.3137254901960784,0.4117647058823529,-0.30392156862745096 -1,0.0,0.0,-0.1509433962264151,-0.2169811320754717,-0.0660377358490566,-0.5471698113207547,0.1509433962264151,-0.8207547169811321,0.3867924528301887,-1.0,0.0,-0.8301886792452831,0.3113207547169811,-0.8867924528301887,0.2358490566037736,-0.6981132075471698,0.1320754716981132,-0.6509433962264151,0.18867924528301888,-0.7641509433962265,0.5,-0.7452830188679245,0.33962264150943394,-0.5283018867924528,0.2358490566037736,-0.5283018867924528,0.3490566037735849,-0.6698113207547169,0.6037735849056604,-0.6037735849056604,0.41509433962264153,-0.4056603773584906,0.29245283018867924,-0.4056603773584906,0.4811320754716981,-0.5849056603773585,0.6415094339622641,-0.4811320754716981,0.4811320754716981,-0.33962264150943394,0.36792452830188677,-0.3490566037735849 -1,0.0,0.0,-0.1509433962264151,-0.22641509433962265,-0.0660377358490566,-0.5471698113207547,0.16981132075471697,-0.8207547169811321,0.4056603773584906,-1.0,0.009433962264150943,-0.8679245283018868,0.2830188679245283,-0.8962264150943396,0.2358490566037736,-0.6792452830188679,0.1792452830188679,-0.6320754716981132,0.19811320754716982,-0.8018867924528302,0.46226415094339623,-0.7641509433962265,0.3113207547169811,-0.5283018867924528,0.2169811320754717,-0.5471698113207547,0.3584905660377358,-0.7075471698113207,0.6037735849056604,-0.6037735849056604,0.4056603773584906,-0.4056603773584906,0.3113207547169811,-0.4339622641509434,0.49056603773584906,-0.6037735849056604,0.6415094339622641,-0.4811320754716981,0.4811320754716981,-0.330188679245283,0.3867924528301887,-0.36792452830188677 -1,0.0,0.0,-0.17757009345794392,-0.19626168224299065,-0.1308411214953271,-0.5327102803738317,0.06542056074766354,-0.8130841121495327,0.2803738317757009,-1.0,-0.09345794392523364,-0.8130841121495327,0.1308411214953271,-0.9439252336448598,0.12149532710280374,-0.7476635514018691,0.07476635514018691,-0.6448598130841121,0.102803738317757,-0.7570093457943925,0.32710280373831774,-0.8317757009345794,0.24299065420560748,-0.5700934579439252,0.16822429906542055,-0.514018691588785,0.27102803738317754,-0.6635514018691588,0.48598130841121495,-0.6822429906542056,0.35514018691588783,-0.4485981308411215,0.2523364485981308,-0.3925233644859813,0.42990654205607476,-0.5700934579439252,0.5700934579439252,-0.5420560747663551,0.4485981308411215,-0.38317757009345793,0.3364485981308411,-0.3364485981308411 -1,0.0,0.0,-0.18518518518518517,-0.2037037037037037,-0.18518518518518517,-0.5370370370370371,-0.027777777777777776,-0.8240740740740741,0.18518518518518517,-1.0,-0.17592592592592593,-0.7870370370370371,0.046296296296296294,-0.9444444444444444,0.06481481481481481,-0.75,0.009259259259259259,-0.6574074074074074,0.018518518518518517,-0.7407407407407407,0.26851851851851855,-0.8425925925925926,0.19444444444444445,-0.5833333333333334,0.1111111111111111,-0.5185185185185185,0.2037037037037037,-0.6666666666666666,0.42592592592592593,-0.7129629629629629,0.2962962962962963,-0.4722222222222222,0.19444444444444445,-0.4074074074074074,0.3611111111111111,-0.5925925925925926,0.5092592592592593,-0.5740740740740741,0.3888888888888889,-0.4074074074074074,0.28703703703703703,-0.3611111111111111 -1,0.0,0.0,-0.19230769230769232,-0.18269230769230768,-0.22115384615384615,-0.49038461538461536,-0.08653846153846154,-0.7884615384615384,0.10576923076923077,-1.0,-0.28846153846153844,-0.7980769230769231,-0.08653846153846154,-0.9615384615384616,-0.038461538461538464,-0.875,-0.04807692307692308,-0.8269230769230769,-0.07692307692307693,-0.7884615384615384,0.16346153846153846,-0.9038461538461539,0.10576923076923077,-0.6346153846153846,0.04807692307692308,-0.5961538461538461,0.125,-0.7403846153846154,0.3557692307692308,-0.7788461538461539,0.23076923076923078,-0.5096153846153846,0.14423076923076922,-0.46153846153846156,0.3076923076923077,-0.6826923076923077,0.46153846153846156,-0.6346153846153846,0.34615384615384615,-0.4326923076923077,0.2403846153846154,-0.40384615384615385 -1,0.0,0.0,-0.21153846153846154,-0.17307692307692307,-0.2692307692307692,-0.49038461538461536,-0.14423076923076922,-0.7884615384615384,0.019230769230769232,-1.0,-0.3173076923076923,-0.7788461538461539,-0.19230769230769232,-0.9711538461538461,-0.1346153846153846,-0.8461538461538461,-0.1346153846153846,-0.7788461538461539,-0.10576923076923077,-0.7596153846153846,0.0673076923076923,-0.9326923076923077,0.038461538461538464,-0.6442307692307693,-0.009615384615384616,-0.6057692307692307,0.09615384615384616,-0.7019230769230769,0.27884615384615385,-0.8173076923076923,0.19230769230769232,-0.5192307692307693,0.10576923076923077,-0.4807692307692308,0.27884615384615385,-0.6346153846153846,0.41346153846153844,-0.6730769230769231,0.3173076923076923,-0.46153846153846156,0.22115384615384615,-0.4326923076923077 -1,0.0,0.0,-0.27450980392156865,-0.14705882352941177,-0.4411764705882353,-0.45098039215686275,-0.4215686274509804,-0.7843137254901961,-0.27450980392156865,-1.0,-0.5,-0.7450980392156863,-0.43137254901960786,-0.9803921568627451,-0.3137254901960784,-0.7941176470588235,-0.28431372549019607,-0.6764705882352942,-0.28431372549019607,-0.7549019607843137,-0.18627450980392157,-0.9705882352941176,-0.12745098039215685,-0.6764705882352942,-0.1568627450980392,-0.6176470588235294,-0.06862745098039216,-0.7352941176470589,0.049019607843137254,-0.9019607843137255,0.049019607843137254,-0.5980392156862745,-0.00980392156862745,-0.5392156862745098,0.13725490196078433,-0.696078431372549,0.21568627450980393,-0.803921568627451,0.17647058823529413,-0.5882352941176471,0.10784313725490197,-0.5294117647058824 -1,0.0,0.0,-0.26732673267326734,-0.12871287128712872,-0.46534653465346537,-0.43564356435643564,-0.46534653465346537,-0.7623762376237624,-0.36633663366336633,-0.9801980198019802,-0.6138613861386139,-0.7029702970297029,-0.5544554455445545,-0.9801980198019802,-0.4158415841584158,-0.900990099009901,-0.37623762376237624,-0.8217821782178217,-0.38613861386138615,-0.7425742574257426,-0.297029702970297,-1.0,-0.18811881188118812,-0.7029702970297029,-0.22772277227722773,-0.6336633663366337,-0.15841584158415842,-0.7425742574257426,-0.039603960396039604,-0.9405940594059405,0.0,-0.6336633663366337,-0.0594059405940594,-0.5544554455445545,0.04950495049504951,-0.7326732673267327,0.1485148514851485,-0.8415841584158416,0.13861386138613863,-0.6138613861386139,0.0594059405940594,-0.5445544554455446 -1,0.0,0.0,-0.29411764705882354,-0.13725490196078433,-0.5098039215686274,-0.4411764705882353,-0.5098039215686274,-0.7647058823529411,-0.39215686274509803,-0.9705882352941176,-0.5882352941176471,-0.7254901960784313,-0.5588235294117647,-0.9803921568627451,-0.45098039215686275,-0.8235294117647058,-0.43137254901960786,-0.7254901960784313,-0.37254901960784315,-0.7647058823529411,-0.3137254901960784,-1.0,-0.23529411764705882,-0.7058823529411765,-0.27450980392156865,-0.6470588235294118,-0.14705882352941177,-0.7647058823529411,-0.06862745098039216,-0.9509803921568627,-0.0392156862745098,-0.6470588235294118,-0.08823529411764706,-0.5784313725490197,0.06862745098039216,-0.7352941176470589,0.11764705882352941,-0.8627450980392157,0.10784313725490197,-0.6274509803921569,0.049019607843137254,-0.5588235294117647 -1,0.0,0.0,-0.30303030303030304,-0.1111111111111111,-0.5454545454545454,-0.3939393939393939,-0.6060606060606061,-0.7373737373737373,-0.5050505050505051,-0.9595959595959596,-0.7070707070707071,-0.6868686868686869,-0.5858585858585859,-1.0,-0.43434343434343436,-0.7777777777777778,-0.4444444444444444,-0.6666666666666666,-0.48484848484848486,-0.7373737373737373,-0.3434343434343434,-1.0,-0.2222222222222222,-0.6868686868686869,-0.29292929292929293,-0.6363636363636364,-0.26262626262626265,-0.7676767676767676,-0.09090909090909091,-0.9595959595959596,-0.030303030303030304,-0.6464646464646465,-0.12121212121212122,-0.5757575757575758,-0.050505050505050504,-0.7878787878787878,0.08080808080808081,-0.8787878787878788,0.09090909090909091,-0.6363636363636364,0.010101010101010102,-0.5757575757575758 -1,0.0,0.0,-0.32653061224489793,-0.10204081632653061,-0.5918367346938775,-0.3979591836734694,-0.6428571428571429,-0.7346938775510204,-0.5306122448979592,-0.9387755102040817,-0.7040816326530612,-0.6836734693877551,-0.6428571428571429,-0.9795918367346939,-0.4897959183673469,-0.7755102040816326,-0.47959183673469385,-0.6428571428571429,-0.47959183673469385,-0.7448979591836735,-0.40816326530612246,-1.0,-0.2857142857142857,-0.6938775510204082,-0.3163265306122449,-0.6122448979591837,-0.25510204081632654,-0.7653061224489796,-0.16326530612244897,-0.9795918367346939,-0.09183673469387756,-0.6632653061224489,-0.1326530612244898,-0.5714285714285714,-0.030612244897959183,-0.7755102040816326,0.02040816326530612,-0.9183673469387755,0.04081632653061224,-0.6836734693877551,0.01020408163265306,-0.5918367346938775 -1,0.0,0.0,-0.3163265306122449,-0.10204081632653061,-0.5612244897959183,-0.3979591836734694,-0.5714285714285714,-0.7448979591836735,-0.47959183673469385,-0.9693877551020408,-0.6938775510204082,-0.6632653061224489,-0.6632653061224489,-0.9795918367346939,-0.5102040816326531,-0.8061224489795918,-0.47959183673469385,-0.6938775510204082,-0.46938775510204084,-0.7346938775510204,-0.42857142857142855,-1.0,-0.29591836734693877,-0.6938775510204082,-0.32653061224489793,-0.6122448979591837,-0.24489795918367346,-0.7653061224489796,-0.1836734693877551,-0.9897959183673469,-0.10204081632653061,-0.6632653061224489,-0.12244897959183673,-0.5714285714285714,-0.030612244897959183,-0.7653061224489796,0.030612244897959183,-0.9081632653061225,0.05102040816326531,-0.673469387755102,0.02040816326530612,-0.5816326530612245 -1,0.0,0.0,-0.3333333333333333,-0.07291666666666667,-0.6458333333333334,-0.375,-0.75,-0.7395833333333334,-0.65625,-0.9583333333333334,-0.8229166666666666,-0.5625,-0.6979166666666666,-0.9479166666666666,-0.5208333333333334,-0.7916666666666666,-0.5208333333333334,-0.65625,-0.6145833333333334,-0.6458333333333334,-0.4479166666666667,-0.9895833333333334,-0.3020833333333333,-0.7395833333333334,-0.34375,-0.6145833333333334,-0.40625,-0.71875,-0.21875,-1.0,-0.11458333333333333,-0.7291666666666666,-0.17708333333333334,-0.59375,-0.19791666666666666,-0.78125,-0.052083333333333336,-0.9479166666666666,-0.010416666666666666,-0.7395833333333334,-0.08333333333333333,-0.6145833333333334 -1,0.0,0.0,-0.35106382978723405,-0.07446808510638298,-0.6914893617021277,-0.3617021276595745,-0.776595744680851,-0.7340425531914894,-0.648936170212766,-0.925531914893617,-0.8191489361702128,-0.5319148936170213,-0.7127659574468085,-0.9148936170212766,-0.5957446808510638,-0.7340425531914894,-0.648936170212766,-0.6063829787234043,-0.6170212765957447,-0.6276595744680851,-0.48936170212765956,-0.9680851063829787,-0.39361702127659576,-0.7340425531914894,-0.4574468085106383,-0.6063829787234043,-0.4148936170212766,-0.7127659574468085,-0.26595744680851063,-1.0,-0.19148936170212766,-0.7340425531914894,-0.2553191489361702,-0.5851063829787234,-0.20212765957446807,-0.776595744680851,-0.11702127659574468,-0.9680851063829787,-0.07446808510638298,-0.7446808510638298,-0.13829787234042554,-0.6170212765957447 -1,0.0,0.0,-0.3181818181818182,0.011363636363636364,-0.6931818181818182,-0.2159090909090909,-0.9090909090909091,-0.5909090909090909,-0.8977272727272727,-0.8636363636363636,-0.9431818181818182,-0.3409090909090909,-0.9204545454545454,-0.7727272727272727,-0.6931818181818182,-0.7159090909090909,-0.6363636363636364,-0.625,-0.7954545454545454,-0.5,-0.6590909090909091,-0.8977272727272727,-0.4318181818181818,-0.6818181818181818,-0.45454545454545453,-0.5340909090909091,-0.6136363636363636,-0.6477272727272727,-0.4090909090909091,-1.0,-0.25,-0.7386363636363636,-0.3068181818181818,-0.5568181818181818,-0.42045454545454547,-0.7727272727272727,-0.26136363636363635,-0.9886363636363636,-0.17045454545454544,-0.7613636363636364,-0.22727272727272727,-0.6022727272727273 -1,0.0,0.0,-0.2018348623853211,0.045871559633027525,-0.5596330275229358,-0.045871559633027525,-0.8440366972477065,-0.24770642201834864,-1.0,-0.3944954128440367,-0.7981651376146789,-0.09174311926605505,-0.7981651376146789,-0.44954128440366975,-0.5963302752293578,-0.42201834862385323,-0.5871559633027523,-0.3486238532110092,-0.7064220183486238,-0.22935779816513763,-0.6238532110091743,-0.5779816513761468,-0.41284403669724773,-0.43119266055045874,-0.44954128440366975,-0.3119266055045872,-0.6055045871559633,-0.3669724770642202,-0.48623853211009177,-0.6972477064220184,-0.30275229357798167,-0.5045871559633027,-0.3302752293577982,-0.3577981651376147,-0.47706422018348627,-0.5045871559633027,-0.3944954128440367,-0.7064220183486238,-0.27522935779816515,-0.5504587155963303,-0.29357798165137616,-0.43119266055045874 -1,0.0,0.0,-0.23015873015873015,0.09523809523809523,-0.5396825396825397,0.07142857142857142,-0.8015873015873016,0.0,-1.0,-0.03968253968253968,-0.6746031746031746,-0.05555555555555555,-0.8095238095238095,-0.18253968253968253,-0.7380952380952381,-0.18253968253968253,-0.746031746031746,-0.19047619047619047,-0.6111111111111112,-0.1984126984126984,-0.7380952380952381,-0.31746031746031744,-0.5396825396825397,-0.21428571428571427,-0.5396825396825397,-0.18253968253968253,-0.5396825396825397,-0.30952380952380953,-0.6349206349206349,-0.4365079365079365,-0.4523809523809524,-0.29365079365079366,-0.4523809523809524,-0.23809523809523808,-0.42857142857142855,-0.42063492063492064,-0.5238095238095238,-0.49206349206349204,-0.4126984126984127,-0.373015873015873,-0.40476190476190477,-0.30952380952380953 -1,0.0,0.0,-0.18461538461538463,0.13076923076923078,-0.5153846153846153,0.16153846153846155,-0.8076923076923077,0.08461538461538462,-1.0,0.007692307692307693,-0.7076923076923077,0.046153846153846156,-0.8307692307692308,-0.09230769230769231,-0.6076923076923076,-0.05384615384615385,-0.6,-0.038461538461538464,-0.6461538461538462,-0.11538461538461539,-0.7692307692307693,-0.23846153846153847,-0.5076923076923077,-0.13076923076923078,-0.5461538461538461,-0.1076923076923077,-0.5692307692307692,-0.24615384615384617,-0.6461538461538462,-0.3923076923076923,-0.4307692307692308,-0.24615384615384617,-0.47692307692307695,-0.19230769230769232,-0.4846153846153846,-0.3769230769230769,-0.5307692307692308,-0.46153846153846156,-0.3923076923076923,-0.34615384615384615,-0.4076923076923077,-0.2923076923076923 -1,0.0,0.0,-0.19083969465648856,0.15267175572519084,-0.5267175572519084,0.21374045801526717,-0.8244274809160306,0.16030534351145037,-1.0,0.09923664122137404,-0.7404580152671756,0.11450381679389313,-0.8549618320610687,-0.03816793893129771,-0.6259541984732825,-0.007633587786259542,-0.6259541984732825,0.030534351145038167,-0.6717557251908397,-0.04580152671755725,-0.7786259541984732,-0.183206106870229,-0.5267175572519084,-0.08396946564885496,-0.5877862595419847,-0.03816793893129771,-0.5877862595419847,-0.19083969465648856,-0.6564885496183206,-0.3282442748091603,-0.45038167938931295,-0.1984732824427481,-0.5114503816793893,-0.13740458015267176,-0.5038167938931297,-0.3282442748091603,-0.549618320610687,-0.40458015267175573,-0.40458015267175573,-0.3053435114503817,-0.4351145038167939,-0.2595419847328244 -1,0.0,0.0,-0.1937984496124031,0.17054263565891473,-0.5193798449612403,0.24806201550387597,-0.8217054263565892,0.21705426356589147,-1.0,0.13178294573643412,-0.7286821705426356,0.14728682170542637,-0.875968992248062,0.023255813953488372,-0.6511627906976745,0.03875968992248062,-0.6201550387596899,0.06976744186046512,-0.6744186046511628,-0.023255813953488372,-0.8062015503875969,-0.13178294573643412,-0.5426356589147286,-0.06201550387596899,-0.5813953488372093,-0.023255813953488372,-0.5968992248062015,-0.17829457364341086,-0.6976744186046512,-0.2868217054263566,-0.4728682170542636,-0.17829457364341086,-0.5038759689922481,-0.12403100775193798,-0.5038759689922481,-0.32558139534883723,-0.5891472868217055,-0.3875968992248062,-0.43410852713178294,-0.2868217054263566,-0.43410852713178294,-0.24806201550387597 -1,0.0,0.0,-0.1889763779527559,0.18110236220472442,-0.5196850393700787,0.28346456692913385,-0.8188976377952756,0.2677165354330709,-1.0,0.18110236220472442,-0.7244094488188977,0.1968503937007874,-0.889763779527559,0.06299212598425197,-0.6535433070866141,0.07874015748031496,-0.6299212598425197,0.11811023622047244,-0.6771653543307087,0.031496062992125984,-0.8346456692913385,-0.10236220472440945,-0.5433070866141733,-0.031496062992125984,-0.6062992125984252,0.023622047244094488,-0.6062992125984252,-0.13385826771653545,-0.7244094488188977,-0.2677165354330709,-0.47244094488188976,-0.15748031496062992,-0.5118110236220472,-0.09448818897637795,-0.5275590551181102,-0.28346456692913385,-0.6141732283464567,-0.36220472440944884,-0.44881889763779526,-0.2677165354330709,-0.44881889763779526,-0.2125984251968504 -1,0.0,0.0,-0.1796875,0.1875,-0.5,0.3046875,-0.8046875,0.3046875,-1.0,0.234375,-0.71875,0.2265625,-0.8984375,0.09375,-0.6640625,0.1015625,-0.625,0.140625,-0.671875,0.0546875,-0.8359375,-0.0703125,-0.546875,-0.0078125,-0.578125,0.0390625,-0.609375,-0.109375,-0.7421875,-0.2421875,-0.484375,-0.140625,-0.4921875,-0.078125,-0.53125,-0.265625,-0.6328125,-0.3515625,-0.4609375,-0.2578125,-0.4453125,-0.203125 -1,0.0,0.0,-0.17054263565891473,0.1937984496124031,-0.4806201550387597,0.3178294573643411,-0.7829457364341085,0.3333333333333333,-1.0,0.2868217054263566,-0.7054263565891473,0.26356589147286824,-0.8837209302325582,0.15503875968992248,-0.6434108527131783,0.13953488372093023,-0.5968992248062015,0.17054263565891473,-0.6744186046511628,0.09302325581395349,-0.8449612403100775,-0.023255813953488372,-0.5426356589147286,0.031007751937984496,-0.5891472868217055,0.07751937984496124,-0.6124031007751938,-0.07751937984496124,-0.7441860465116279,-0.1937984496124031,-0.4806201550387597,-0.10852713178294573,-0.5116279069767442,-0.046511627906976744,-0.5426356589147286,-0.24031007751937986,-0.6434108527131783,-0.3023255813953488,-0.46511627906976744,-0.2248062015503876,-0.4573643410852713,-0.17829457364341086 -1,0.0,0.0,-0.1640625,0.203125,-0.46875,0.34375,-0.78125,0.3671875,-1.0,0.3359375,-0.703125,0.296875,-0.890625,0.203125,-0.6484375,0.171875,-0.59375,0.1953125,-0.6796875,0.1171875,-0.859375,0.0234375,-0.5546875,0.0625,-0.59375,0.109375,-0.625,-0.0546875,-0.7734375,-0.15625,-0.5,-0.078125,-0.515625,-0.0234375,-0.5625,-0.21875,-0.671875,-0.2734375,-0.4921875,-0.203125,-0.4765625,-0.1484375 -1,0.0,0.0,-0.15748031496062992,0.2125984251968504,-0.47244094488188976,0.36220472440944884,-0.7795275590551181,0.3937007874015748,-1.0,0.3543307086614173,-0.7007874015748031,0.31496062992125984,-0.905511811023622,0.2204724409448819,-0.6614173228346457,0.1968503937007874,-0.5984251968503937,0.2204724409448819,-0.6850393700787402,0.14173228346456693,-0.8740157480314961,0.047244094488188976,-0.5669291338582677,0.07874015748031496,-0.5826771653543307,0.12598425196850394,-0.6377952755905512,-0.031496062992125984,-0.7874015748031497,-0.13385826771653545,-0.5118110236220472,-0.06299212598425197,-0.5196850393700787,-0.007874015748031496,-0.5748031496062992,-0.2047244094488189,-0.6929133858267716,-0.25984251968503935,-0.5039370078740157,-0.1889763779527559,-0.48031496062992124,-0.14173228346456693 -1,0.0,0.0,-0.1532258064516129,0.21774193548387097,-0.4596774193548387,0.3790322580645161,-0.7580645161290323,0.4274193548387097,-1.0,0.41935483870967744,-0.7096774193548387,0.3548387096774194,-0.9274193548387096,0.25806451612903225,-0.6774193548387096,0.22580645161290322,-0.6048387096774194,0.25,-0.6935483870967742,0.1693548387096774,-0.8870967741935484,0.07258064516129033,-0.5725806451612904,0.08870967741935484,-0.5806451612903226,0.14516129032258066,-0.6451612903225806,-0.008064516129032258,-0.8064516129032258,-0.11290322580645161,-0.5161290322580645,-0.056451612903225805,-0.5080645161290323,0.008064516129032258,-0.5887096774193549,-0.18548387096774194,-0.7096774193548387,-0.24193548387096775,-0.5161290322580645,-0.1774193548387097,-0.4838709677419355,-0.12903225806451613 -1,0.0,0.0,-0.144,0.224,-0.448,0.392,-0.76,0.44,-1.0,0.424,-0.704,0.392,-0.928,0.28,-0.68,0.24,-0.616,0.272,-0.688,0.2,-0.888,0.08,-0.568,0.096,-0.6,0.168,-0.648,0.016,-0.808,-0.104,-0.52,-0.048,-0.536,0.024,-0.6,-0.16,-0.704,-0.232,-0.504,-0.168,-0.496,-0.104 -1,0.0,0.0,-0.152,0.216,-0.464,0.384,-0.776,0.432,-1.0,0.4,-0.712,0.352,-0.944,0.256,-0.696,0.232,-0.624,0.256,-0.696,0.168,-0.904,0.064,-0.584,0.08,-0.592,0.144,-0.648,-0.016,-0.816,-0.12,-0.528,-0.056,-0.52,0.0,-0.592,-0.184,-0.72,-0.24,-0.512,-0.176,-0.48,-0.128 -1,0.0,0.0,-0.14285714285714285,0.23015873015873015,-0.4523809523809524,0.3968253968253968,-0.7619047619047619,0.4444444444444444,-1.0,0.42857142857142855,-0.7063492063492064,0.3888888888888889,-0.9365079365079365,0.2857142857142857,-0.6984126984126984,0.2619047619047619,-0.6349206349206349,0.29365079365079366,-0.6904761904761905,0.1984126984126984,-0.8888888888888888,0.0873015873015873,-0.5793650793650794,0.1111111111111111,-0.6111111111111112,0.1746031746031746,-0.6507936507936508,0.023809523809523808,-0.8095238095238095,-0.0873015873015873,-0.5238095238095238,-0.031746031746031744,-0.5396825396825397,0.03968253968253968,-0.6031746031746031,-0.15079365079365079,-0.7063492063492064,-0.21428571428571427,-0.5079365079365079,-0.14285714285714285,-0.5,-0.0873015873015873 -1,0.0,0.0,-0.16535433070866143,0.2204724409448819,-0.47244094488188976,0.3700787401574803,-0.7795275590551181,0.4015748031496063,-1.0,0.36220472440944884,-0.7244094488188977,0.33070866141732286,-0.952755905511811,0.23622047244094488,-0.7244094488188977,0.2204724409448819,-0.6614173228346457,0.25196850393700787,-0.7007874015748031,0.14173228346456693,-0.8976377952755905,0.031496062992125984,-0.5905511811023622,0.07086614173228346,-0.5984251968503937,0.12598425196850394,-0.6456692913385826,-0.031496062992125984,-0.8031496062992126,-0.14173228346456693,-0.5196850393700787,-0.06299212598425197,-0.5196850393700787,-0.007874015748031496,-0.5826771653543307,-0.2047244094488189,-0.7086614173228346,-0.25984251968503935,-0.5118110236220472,-0.1889763779527559,-0.48031496062992124,-0.14173228346456693 -1,0.0,0.0,-0.17557251908396945,0.19083969465648856,-0.48854961832061067,0.3053435114503817,-0.7786259541984732,0.31297709923664124,-1.0,0.29770992366412213,-0.7175572519083969,0.2900763358778626,-0.9389312977099237,0.16793893129770993,-0.7175572519083969,0.16030534351145037,-0.6564885496183206,0.1984732824427481,-0.6793893129770993,0.11450381679389313,-0.8778625954198473,-0.022900763358778626,-0.5801526717557252,0.030534351145038167,-0.5877862595419847,0.0916030534351145,-0.6183206106870229,-0.05343511450381679,-0.7709923664122137,-0.183206106870229,-0.5038167938931297,-0.0916030534351145,-0.4961832061068702,-0.030534351145038167,-0.549618320610687,-0.21374045801526717,-0.6564885496183206,-0.2900763358778626,-0.48091603053435117,-0.20610687022900764,-0.4580152671755725,-0.1450381679389313 -1,0.0,0.0,-0.20930232558139536,0.1937984496124031,-0.5271317829457365,0.31007751937984496,-0.813953488372093,0.29457364341085274,-1.0,0.21705426356589147,-0.7441860465116279,0.24806201550387597,-0.9767441860465116,0.11627906976744186,-0.7674418604651163,0.13953488372093023,-0.7131782945736435,0.17829457364341086,-0.689922480620155,0.06976744186046512,-0.8837209302325582,-0.06201550387596899,-0.5968992248062015,0.007751937984496124,-0.6201550387596899,0.06976744186046512,-0.6124031007751938,-0.09302325581395349,-0.7596899224806202,-0.20930232558139536,-0.5038759689922481,-0.10852713178294573,-0.5116279069767442,-0.05426356589147287,-0.5348837209302325,-0.24806201550387597,-0.6434108527131783,-0.3178294573643411,-0.4728682170542636,-0.2248062015503876,-0.4496124031007752,-0.17829457364341086 -1,0.0,0.0,-0.2109375,0.171875,-0.53125,0.25,-0.796875,0.1953125,-0.9375,0.0703125,-0.7578125,0.1640625,-1.0,0.0390625,-0.7890625,0.0703125,-0.71875,0.1328125,-0.6875,-0.0078125,-0.875,-0.125,-0.609375,-0.0390625,-0.6328125,0.015625,-0.6015625,-0.1640625,-0.734375,-0.2578125,-0.4921875,-0.1484375,-0.5078125,-0.1015625,-0.515625,-0.3046875,-0.609375,-0.359375,-0.4375,-0.2578125,-0.4296875,-0.21875 -1,0.0,0.0,-0.24615384615384617,0.14615384615384616,-0.5615384615384615,0.2,-0.823076923076923,0.12307692307692308,-0.9461538461538461,-0.023076923076923078,-0.7769230769230769,0.06153846153846154,-1.0,-0.046153846153846156,-0.8153846153846154,0.0,-0.7538461538461538,0.046153846153846156,-0.7,-0.1,-0.8692307692307693,-0.2,-0.6307692307692307,-0.08461538461538462,-0.6538461538461539,-0.05384615384615385,-0.5923076923076923,-0.23846153846153847,-0.7153846153846154,-0.3076923076923077,-0.5,-0.16923076923076924,-0.5307692307692308,-0.14615384615384616,-0.4846153846153846,-0.35384615384615387,-0.5615384615384615,-0.3769230769230769,-0.4230769230769231,-0.25384615384615383,-0.4307692307692308,-0.23846153846153847 -1,0.0,0.0,-0.28346456692913385,0.11023622047244094,-0.6141732283464567,0.09448818897637795,-0.8661417322834646,-0.031496062992125984,-0.9448818897637795,-0.2047244094488189,-0.7874015748031497,-0.10236220472440945,-1.0,-0.23622047244094488,-0.8110236220472441,-0.13385826771653545,-0.7559055118110236,-0.08661417322834646,-0.6929133858267716,-0.2440944881889764,-0.8503937007874016,-0.36220472440944884,-0.6377952755905512,-0.2047244094488189,-0.6456692913385826,-0.18110236220472442,-0.5669291338582677,-0.36220472440944884,-0.6771653543307087,-0.4409448818897638,-0.49606299212598426,-0.2677165354330709,-0.5118110236220472,-0.25196850393700787,-0.4409448818897638,-0.44881889763779526,-0.5118110236220472,-0.4881889763779528,-0.3937007874015748,-0.33858267716535434,-0.4015748031496063,-0.31496062992125984 -1,0.0,0.0,-0.31666666666666665,0.075,-0.6833333333333333,0.0,-0.9,-0.225,-0.8916666666666667,-0.425,-0.8166666666666667,-0.20833333333333334,-1.0,-0.4,-0.8083333333333333,-0.26666666666666666,-0.775,-0.2,-0.6833333333333333,-0.35,-0.8333333333333334,-0.525,-0.625,-0.325,-0.6583333333333333,-0.30833333333333335,-0.5333333333333333,-0.4583333333333333,-0.6333333333333333,-0.6,-0.4666666666666667,-0.375,-0.5,-0.35833333333333334,-0.39166666666666666,-0.5416666666666666,-0.45,-0.6,-0.3416666666666667,-0.425,-0.36666666666666664,-0.4083333333333333 -1,0.0,0.0,-0.3274336283185841,0.035398230088495575,-0.6814159292035398,-0.07964601769911504,-0.8938053097345132,-0.3185840707964602,-0.8849557522123894,-0.5132743362831859,-0.8141592920353983,-0.2743362831858407,-1.0,-0.5309734513274337,-0.8053097345132744,-0.37168141592920356,-0.7699115044247787,-0.2920353982300885,-0.6548672566371682,-0.40707964601769914,-0.7964601769911505,-0.6460176991150443,-0.5663716814159292,-0.40707964601769914,-0.6106194690265486,-0.36283185840707965,-0.4778761061946903,-0.504424778761062,-0.5663716814159292,-0.6991150442477876,-0.3893805309734513,-0.4247787610619469,-0.415929203539823,-0.3893805309734513,-0.30973451327433627,-0.584070796460177,-0.3805309734513274,-0.6902654867256637,-0.26548672566371684,-0.4778761061946903,-0.2743362831858407,-0.4336283185840708 -1,0.0,0.0,-0.3584905660377358,0.009433962264150943,-0.7169811320754716,-0.14150943396226415,-0.9433962264150944,-0.42452830188679247,-0.9622641509433962,-0.6320754716981132,-0.8301886792452831,-0.37735849056603776,-1.0,-0.6509433962264151,-0.8113207547169812,-0.46226415094339623,-0.7830188679245284,-0.3867924528301887,-0.6509433962264151,-0.49056603773584906,-0.7735849056603774,-0.7547169811320755,-0.5754716981132075,-0.4811320754716981,-0.6320754716981132,-0.4528301886792453,-0.46226415094339623,-0.5849056603773585,-0.5377358490566038,-0.7830188679245284,-0.3867924528301887,-0.49056603773584906,-0.4339622641509434,-0.46226415094339623,-0.27358490566037735,-0.6509433962264151,-0.33962264150943394,-0.7735849056603774,-0.25471698113207547,-0.5471698113207547,-0.27358490566037735,-0.5 -1,0.0,0.0,-0.34285714285714286,0.0,-0.6952380952380952,-0.17142857142857143,-0.9142857142857143,-0.44761904761904764,-0.9619047619047619,-0.6666666666666666,-0.819047619047619,-0.42857142857142855,-1.0,-0.7047619047619048,-0.8095238095238095,-0.5142857142857142,-0.780952380952381,-0.44761904761904764,-0.638095238095238,-0.5333333333333333,-0.7619047619047619,-0.7904761904761904,-0.5619047619047619,-0.49523809523809526,-0.6190476190476191,-0.49523809523809526,-0.44761904761904764,-0.6190476190476191,-0.5142857142857142,-0.8,-0.38095238095238093,-0.4857142857142857,-0.42857142857142855,-0.4857142857142857,-0.2571428571428571,-0.6761904761904762,-0.3047619047619048,-0.780952380952381,-0.22857142857142856,-0.5428571428571428,-0.26666666666666666,-0.5238095238095238 -1,0.0,0.0,-0.38613861386138615,-0.0297029702970297,-0.7326732673267327,-0.22772277227722773,-0.9504950495049505,-0.5247524752475248,-1.0,-0.7623762376237624,-0.8415841584158416,-0.49504950495049505,-1.0,-0.7821782178217822,-0.8217821782178217,-0.5742574257425742,-0.7920792079207921,-0.504950495049505,-0.6435643564356436,-0.6039603960396039,-0.7524752475247525,-0.8613861386138614,-0.5742574257425742,-0.5544554455445545,-0.6138613861386139,-0.5544554455445545,-0.43564356435643564,-0.6732673267326733,-0.49504950495049505,-0.8613861386138614,-0.37623762376237624,-0.5445544554455446,-0.42574257425742573,-0.5346534653465347,-0.2376237623762376,-0.7227722772277227,-0.27722772277227725,-0.8316831683168316,-0.21782178217821782,-0.5841584158415841,-0.24752475247524752,-0.5544554455445545 -1,0.0,0.0,-0.3829787234042553,-0.06382978723404255,-0.7340425531914894,-0.2978723404255319,-0.9361702127659575,-0.6063829787234043,-1.0,-0.8617021276595744,-0.8191489361702128,-0.6063829787234043,-0.9680851063829787,-0.9361702127659575,-0.8297872340425532,-0.723404255319149,-0.7872340425531915,-0.6170212765957447,-0.6170212765957447,-0.7021276595744681,-0.7127659574468085,-0.9787234042553191,-0.574468085106383,-0.6702127659574468,-0.5957446808510638,-0.6276595744680851,-0.40425531914893614,-0.7659574468085106,-0.4574468085106383,-0.9574468085106383,-0.3617021276595745,-0.6382978723404256,-0.3829787234042553,-0.5957446808510638,-0.19148936170212766,-0.7872340425531915,-0.23404255319148937,-0.9148936170212766,-0.19148936170212766,-0.6808510638297872,-0.20212765957446807,-0.6276595744680851 -1,0.0,0.0,-0.3958333333333333,-0.07291666666666667,-0.7083333333333334,-0.34375,-0.875,-0.6666666666666666,-0.9166666666666666,-0.9270833333333334,-0.75,-0.65625,-0.8645833333333334,-0.9895833333333334,-0.7604166666666666,-0.7708333333333334,-0.7291666666666666,-0.6666666666666666,-0.5416666666666666,-0.7395833333333334,-0.6145833333333334,-1.0,-0.5104166666666666,-0.6875,-0.53125,-0.6666666666666666,-0.3229166666666667,-0.78125,-0.375,-0.96875,-0.3020833333333333,-0.65625,-0.3333333333333333,-0.625,-0.11458333333333333,-0.7916666666666666,-0.13541666666666666,-0.9166666666666666,-0.11458333333333333,-0.6770833333333334,-0.14583333333333334,-0.6354166666666666 -1,0.0,0.0,-0.38144329896907214,-0.061855670103092786,-0.6804123711340206,-0.31958762886597936,-0.845360824742268,-0.6494845360824743,-0.8969072164948454,-0.9175257731958762,-0.7319587628865979,-0.6391752577319587,-0.8247422680412371,-0.979381443298969,-0.711340206185567,-0.7628865979381443,-0.6804123711340206,-0.6597938144329897,-0.5154639175257731,-0.711340206185567,-0.5773195876288659,-1.0,-0.4639175257731959,-0.6597938144329897,-0.4948453608247423,-0.6288659793814433,-0.28865979381443296,-0.7422680412371134,-0.31958762886597936,-0.9484536082474226,-0.26804123711340205,-0.6082474226804123,-0.29896907216494845,-0.5773195876288659,-0.07216494845360824,-0.7525773195876289,-0.09278350515463918,-0.8762886597938144,-0.08247422680412371,-0.6185567010309279,-0.12371134020618557,-0.5876288659793815 -1,0.0,0.0,-0.39,-0.1,-0.68,-0.37,-0.82,-0.7,-0.83,-0.97,-0.67,-0.68,-0.76,-1.0,-0.66,-0.75,-0.64,-0.65,-0.46,-0.73,-0.51,-1.0,-0.42,-0.65,-0.44,-0.63,-0.24,-0.75,-0.27,-0.96,-0.23,-0.61,-0.25,-0.58,-0.03,-0.75,-0.05,-0.9,-0.06,-0.65,-0.08,-0.58 -1,0.0,0.0,-0.37254901960784315,-0.09803921568627451,-0.6372549019607843,-0.37254901960784315,-0.7647058823529411,-0.696078431372549,-0.7941176470588235,-0.9509803921568627,-0.6470588235294118,-0.6764705882352942,-0.696078431372549,-0.9901960784313726,-0.6078431372549019,-0.7549019607843137,-0.5980392156862745,-0.6470588235294118,-0.43137254901960786,-0.7254901960784313,-0.45098039215686275,-1.0,-0.38235294117647056,-0.6568627450980392,-0.4117647058823529,-0.6274509803921569,-0.21568627450980393,-0.7352941176470589,-0.22549019607843138,-0.9411764705882353,-0.19607843137254902,-0.6078431372549019,-0.22549019607843138,-0.5686274509803921,0.0,-0.7254901960784313,-0.00980392156862745,-0.8627450980392157,-0.029411764705882353,-0.6274509803921569,-0.058823529411764705,-0.5686274509803921 -1,0.0,0.0,-0.3592233009708738,-0.1262135922330097,-0.6116504854368932,-0.4174757281553398,-0.7184466019417476,-0.7378640776699029,-0.7475728155339806,-0.9902912621359223,-0.6019417475728155,-0.6893203883495146,-0.6504854368932039,-1.0,-0.5631067961165048,-0.7669902912621359,-0.5436893203883495,-0.6601941747572816,-0.3883495145631068,-0.7184466019417476,-0.4174757281553398,-1.0,-0.34951456310679613,-0.6601941747572816,-0.3592233009708738,-0.6213592233009708,-0.17475728155339806,-0.7281553398058253,-0.18446601941747573,-0.9320388349514563,-0.17475728155339806,-0.6019417475728155,-0.18446601941747573,-0.5631067961165048,0.038834951456310676,-0.7087378640776699,0.02912621359223301,-0.8543689320388349,0.009708737864077669,-0.6213592233009708,-0.019417475728155338,-0.5728155339805825 -1,0.0,0.0,-0.3557692307692308,-0.11538461538461539,-0.5961538461538461,-0.40384615384615385,-0.6923076923076923,-0.7115384615384616,-0.7307692307692307,-0.9711538461538461,-0.5865384615384616,-0.6923076923076923,-0.625,-1.0,-0.5576923076923077,-0.7596153846153846,-0.5480769230769231,-0.6442307692307693,-0.38461538461538464,-0.7211538461538461,-0.38461538461538464,-1.0,-0.33653846153846156,-0.6538461538461539,-0.36538461538461536,-0.6153846153846154,-0.16346153846153846,-0.7211538461538461,-0.16346153846153846,-0.9230769230769231,-0.16346153846153846,-0.5865384615384616,-0.19230769230769232,-0.5576923076923077,0.04807692307692308,-0.6923076923076923,0.038461538461538464,-0.8365384615384616,0.009615384615384616,-0.6057692307692307,-0.028846153846153848,-0.5480769230769231 -1,0.0,0.0,-0.32407407407407407,-0.1111111111111111,-0.5555555555555556,-0.37962962962962965,-0.6481481481481481,-0.6851851851851852,-0.6574074074074074,-0.9351851851851852,-0.5555555555555556,-0.6759259259259259,-0.5833333333333334,-1.0,-0.5185185185185185,-0.7777777777777778,-0.5,-0.6481481481481481,-0.35185185185185186,-0.7037037037037037,-0.35185185185185186,-0.9629629629629629,-0.3148148148148148,-0.6388888888888888,-0.3425925925925926,-0.6018518518518519,-0.14814814814814814,-0.7037037037037037,-0.1388888888888889,-0.8888888888888888,-0.14814814814814814,-0.5648148148148148,-0.16666666666666666,-0.5370370370370371,0.046296296296296294,-0.6759259259259259,0.05555555555555555,-0.7962962962962963,0.018518518518518517,-0.5740740740740741,-0.009259259259259259,-0.5277777777777778 -1,0.0,0.0,-0.32432432432432434,-0.12612612612612611,-0.5135135135135135,-0.42342342342342343,-0.5675675675675675,-0.7207207207207207,-0.5855855855855856,-0.9819819819819819,-0.4864864864864865,-0.6936936936936937,-0.4774774774774775,-1.0,-0.43243243243243246,-0.7927927927927928,-0.40540540540540543,-0.6306306306306306,-0.2882882882882883,-0.7027027027027027,-0.25225225225225223,-0.990990990990991,-0.22522522522522523,-0.6576576576576577,-0.24324324324324326,-0.5315315315315315,-0.0990990990990991,-0.6846846846846847,-0.05405405405405406,-0.9279279279279279,-0.07207207207207207,-0.6036036036036037,-0.0990990990990991,-0.46846846846846846,0.08108108108108109,-0.6396396396396397,0.11711711711711711,-0.8198198198198198,0.08108108108108109,-0.6036036036036037,0.04504504504504504,-0.4954954954954955 -1,0.0,0.0,-0.28695652173913044,-0.10434782608695652,-0.4782608695652174,-0.3739130434782609,-0.5391304347826087,-0.6521739130434783,-0.5565217391304348,-0.9043478260869565,-0.45217391304347826,-0.6869565217391305,-0.43478260869565216,-1.0,-0.391304347826087,-0.8173913043478261,-0.3826086956521739,-0.6695652173913044,-0.2608695652173913,-0.6869565217391305,-0.2,-0.9652173913043478,-0.19130434782608696,-0.6521739130434783,-0.22608695652173913,-0.5478260869565217,-0.06956521739130435,-0.6608695652173913,-0.008695652173913044,-0.8782608695652174,-0.043478260869565216,-0.5826086956521739,-0.09565217391304348,-0.46956521739130436,0.10434782608695652,-0.6173913043478261,0.14782608695652175,-0.7913043478260869,0.10434782608695652,-0.591304347826087,0.05217391304347826,-0.4956521739130435 -1,0.0,0.0,-0.27049180327868855,-0.10655737704918032,-0.4344262295081967,-0.3442622950819672,-0.4918032786885246,-0.5819672131147541,-0.5081967213114754,-0.819672131147541,-0.4098360655737705,-0.6721311475409836,-0.4426229508196721,-1.0,-0.4016393442622951,-0.8934426229508197,-0.36885245901639346,-0.7459016393442623,-0.22131147540983606,-0.680327868852459,-0.1885245901639344,-0.9672131147540983,-0.1721311475409836,-0.7213114754098361,-0.20491803278688525,-0.5655737704918032,-0.04918032786885246,-0.639344262295082,0.0,-0.860655737704918,-0.03278688524590164,-0.6147540983606558,-0.09016393442622951,-0.47540983606557374,0.11475409836065574,-0.5819672131147541,0.16393442622950818,-0.7622950819672131,0.11475409836065574,-0.5983606557377049,0.05737704918032787,-0.48360655737704916 -1,0.0,0.0,-0.25984251968503935,-0.08661417322834646,-0.4251968503937008,-0.30708661417322836,-0.4881889763779528,-0.5433070866141733,-0.5433070866141733,-0.7637795275590551,-0.41732283464566927,-0.6692913385826772,-0.44881889763779526,-0.968503937007874,-0.3937007874015748,-0.937007874015748,-0.3464566929133858,-0.8110236220472441,-0.23622047244094488,-0.6850393700787402,-0.2047244094488189,-1.0,-0.1732283464566929,-0.8346456692913385,-0.18110236220472442,-0.6692913385826772,-0.06299212598425197,-0.6456692913385826,0.0,-0.8661417322834646,-0.007874015748031496,-0.6614173228346457,-0.05511811023622047,-0.5039370078740157,0.11023622047244094,-0.5748031496062992,0.1732283464566929,-0.7480314960629921,0.13385826771653545,-0.6220472440944882,0.07086614173228346,-0.5039370078740157 -1,0.0,0.0,-0.26153846153846155,-0.07692307692307693,-0.4230769230769231,-0.2846153846153846,-0.49230769230769234,-0.5153846153846153,-0.5538461538461539,-0.7230769230769231,-0.4230769230769231,-0.6538461538461539,-0.46153846153846156,-0.9538461538461539,-0.38461538461538464,-0.9384615384615385,-0.3230769230769231,-0.823076923076923,-0.24615384615384617,-0.676923076923077,-0.2076923076923077,-1.0,-0.16153846153846155,-0.8769230769230769,-0.16153846153846155,-0.7153846153846154,-0.06923076923076923,-0.6307692307692307,0.0,-0.8538461538461538,0.007692307692307693,-0.6615384615384615,-0.038461538461538464,-0.5,0.09230769230769231,-0.5538461538461539,0.16923076923076924,-0.7230769230769231,0.13076923076923078,-0.6076923076923076,0.06923076923076923,-0.5 -1,0.0,0.0,-0.25190839694656486,-0.06870229007633588,-0.4122137404580153,-0.26717557251908397,-0.48091603053435117,-0.4732824427480916,-0.5572519083969466,-0.6793893129770993,-0.37404580152671757,-0.6641221374045801,-0.4351145038167939,-0.9236641221374046,-0.3969465648854962,-0.9923664122137404,-0.33587786259541985,-0.916030534351145,-0.1984732824427481,-0.6793893129770993,-0.17557251908396945,-1.0,-0.12213740458015267,-0.9694656488549618,-0.10687022900763359,-0.8244274809160306,-0.030534351145038167,-0.6412213740458015,0.030534351145038167,-0.8854961832061069,0.05343511450381679,-0.7786259541984732,0.03816793893129771,-0.6259541984732825,0.13740458015267176,-0.5572519083969466,0.20610687022900764,-0.732824427480916,0.183206106870229,-0.6717557251908397,0.1450381679389313,-0.5648854961832062 -1,0.0,0.0,-0.26515151515151514,-0.06818181818181818,-0.4166666666666667,-0.26515151515151514,-0.4772727272727273,-0.4696969696969697,-0.5378787878787878,-0.6666666666666666,-0.36363636363636365,-0.6666666666666666,-0.4166666666666667,-0.9090909090909091,-0.38636363636363635,-1.0,-0.32575757575757575,-0.9545454545454546,-0.18181818181818182,-0.6742424242424242,-0.14393939393939395,-0.9772727272727273,-0.10606060606060606,-1.0,-0.09090909090909091,-0.8863636363636364,-0.007575757575757576,-0.6287878787878788,0.06060606060606061,-0.8712121212121212,0.07575757575757576,-0.8106060606060606,0.05303030303030303,-0.6590909090909091,0.15151515151515152,-0.5454545454545454,0.22727272727272727,-0.7121212121212122,0.21212121212121213,-0.6742424242424242,0.17424242424242425,-0.5757575757575758 -1,0.0,0.0,-0.2556390977443609,-0.06766917293233082,-0.39849624060150374,-0.2556390977443609,-0.45112781954887216,-0.45112781954887216,-0.5037593984962406,-0.6466165413533834,-0.3533834586466165,-0.6541353383458647,-0.40601503759398494,-0.9022556390977443,-0.3609022556390977,-1.0,-0.2932330827067669,-0.9473684210526315,-0.16541353383458646,-0.6691729323308271,-0.12781954887218044,-0.9473684210526315,-0.07518796992481203,-0.9924812030075187,-0.05263157894736842,-0.8796992481203008,0.007518796992481203,-0.6090225563909775,0.08270676691729323,-0.8421052631578947,0.09774436090225563,-0.8195488721804511,0.08270676691729323,-0.706766917293233,0.17293233082706766,-0.5112781954887218,0.2556390977443609,-0.6691729323308271,0.24812030075187969,-0.6466165413533834,0.21052631578947367,-0.5714285714285714 -1,0.0,0.0,-0.25757575757575757,-0.045454545454545456,-0.42424242424242425,-0.23484848484848486,-0.4696969696969697,-0.44696969696969696,-0.5075757575757576,-0.6363636363636364,-0.36363636363636365,-0.6515151515151515,-0.4166666666666667,-0.9015151515151515,-0.3787878787878788,-1.0,-0.3181818181818182,-0.946969696969697,-0.17424242424242425,-0.6666666666666666,-0.14393939393939395,-0.9621212121212122,-0.09848484848484848,-1.0,-0.07575757575757576,-0.8939393939393939,0.0,-0.6136363636363636,0.06060606060606061,-0.8636363636363636,0.07575757575757576,-0.8409090909090909,0.05303030303030303,-0.7272727272727273,0.16666666666666666,-0.5151515151515151,0.25,-0.6742424242424242,0.22727272727272727,-0.6439393939393939,0.1893939393939394,-0.5606060606060606 -1,0.0,0.0,-0.25384615384615383,-0.038461538461538464,-0.4307692307692308,-0.2230769230769231,-0.4846153846153846,-0.4307692307692308,-0.4846153846153846,-0.6230769230769231,-0.38461538461538464,-0.6538461538461539,-0.4230769230769231,-0.9076923076923077,-0.3769230769230769,-1.0,-0.3153846153846154,-0.9307692307692308,-0.18461538461538463,-0.6692307692307692,-0.14615384615384616,-0.9692307692307692,-0.09230769230769231,-1.0,-0.07692307692307693,-0.8769230769230769,-0.007692307692307693,-0.6153846153846154,0.06153846153846154,-0.8692307692307693,0.07692307692307693,-0.8153846153846154,0.046153846153846156,-0.676923076923077,0.16923076923076924,-0.5153846153846153,0.25384615384615383,-0.6692307692307692,0.23076923076923078,-0.6230769230769231,0.18461538461538463,-0.5230769230769231 -1,0.0,0.0,-0.2558139534883721,-0.03875968992248062,-0.4496124031007752,-0.20930232558139536,-0.5116279069767442,-0.4263565891472868,-0.4573643410852713,-0.6201550387596899,-0.3875968992248062,-0.6511627906976745,-0.4263565891472868,-0.9224806201550387,-0.3488372093023256,-0.9612403100775194,-0.27906976744186046,-0.8604651162790697,-0.1937984496124031,-0.6666666666666666,-0.16279069767441862,-1.0,-0.10077519379844961,-0.9457364341085271,-0.08527131782945736,-0.7906976744186046,-0.015503875968992248,-0.6124031007751938,0.046511627906976744,-0.8682170542635659,0.06201550387596899,-0.7441860465116279,0.046511627906976744,-0.5813953488372093,0.16279069767441862,-0.5193798449612403,0.21705426356589147,-0.6666666666666666,0.20155038759689922,-0.5813953488372093,0.17054263565891473,-0.46511627906976744 -1,0.0,0.0,-0.26153846153846155,-0.038461538461538464,-0.43846153846153846,-0.2076923076923077,-0.49230769230769234,-0.43846153846153846,-0.45384615384615384,-0.6307692307692307,-0.3923076923076923,-0.6538461538461539,-0.43846153846153846,-0.9230769230769231,-0.36153846153846153,-0.9615384615384616,-0.2846153846153846,-0.8692307692307693,-0.2,-0.676923076923077,-0.17692307692307693,-1.0,-0.1076923076923077,-0.9153846153846154,-0.09230769230769231,-0.7692307692307693,-0.015384615384615385,-0.6307692307692307,0.038461538461538464,-0.8769230769230769,0.05384615384615385,-0.7230769230769231,0.03076923076923077,-0.5769230769230769,0.15384615384615385,-0.5384615384615384,0.2076923076923077,-0.676923076923077,0.18461538461538463,-0.5692307692307692,0.15384615384615385,-0.47692307692307695 -1,0.0,0.0,-0.2595419847328244,-0.03816793893129771,-0.44274809160305345,-0.21374045801526717,-0.5038167938931297,-0.44274809160305345,-0.4351145038167939,-0.6335877862595419,-0.4122137404580153,-0.6641221374045801,-0.45038167938931295,-0.9389312977099237,-0.366412213740458,-0.9618320610687023,-0.29770992366412213,-0.8625954198473282,-0.21374045801526717,-0.6793893129770993,-0.183206106870229,-1.0,-0.12213740458015267,-0.8854961832061069,-0.12213740458015267,-0.7404580152671756,-0.030534351145038167,-0.6259541984732825,0.030534351145038167,-0.8702290076335878,0.030534351145038167,-0.7099236641221374,0.0,-0.5725190839694656,0.13740458015267176,-0.5343511450381679,0.19083969465648856,-0.6641221374045801,0.16030534351145037,-0.549618320610687,0.11450381679389313,-0.4580152671755725 -1,0.0,0.0,-0.2631578947368421,-0.05263157894736842,-0.45112781954887216,-0.23308270676691728,-0.49624060150375937,-0.44360902255639095,-0.42857142857142855,-0.6240601503759399,-0.39097744360902253,-0.6541353383458647,-0.43609022556390975,-0.9323308270676691,-0.3609022556390977,-0.9624060150375939,-0.3007518796992481,-0.8571428571428571,-0.19548872180451127,-0.6766917293233082,-0.18796992481203006,-1.0,-0.11278195488721804,-0.9323308270676691,-0.09022556390977443,-0.7744360902255639,-0.022556390977443608,-0.6240601503759399,0.007518796992481203,-0.8947368421052632,0.03759398496240601,-0.7744360902255639,0.03007518796992481,-0.6165413533834586,0.14285714285714285,-0.5413533834586466,0.18045112781954886,-0.6766917293233082,0.17293233082706766,-0.5864661654135338,0.14285714285714285,-0.47368421052631576 -1,0.0,0.0,-0.2462686567164179,-0.05970149253731343,-0.44029850746268656,-0.22388059701492538,-0.4925373134328358,-0.44029850746268656,-0.40298507462686567,-0.6119402985074627,-0.3805970149253731,-0.6492537313432836,-0.43283582089552236,-0.9253731343283582,-0.35074626865671643,-0.9626865671641791,-0.27611940298507465,-0.8656716417910447,-0.1865671641791045,-0.664179104477612,-0.1791044776119403,-1.0,-0.09701492537313433,-0.9477611940298507,-0.06716417910447761,-0.7761194029850746,-0.014925373134328358,-0.6194029850746269,0.022388059701492536,-0.8805970149253731,0.05970149253731343,-0.7761194029850746,0.05970149253731343,-0.6119402985074627,0.14925373134328357,-0.5298507462686567,0.19402985074626866,-0.6567164179104478,0.1865671641791045,-0.5597014925373134,0.15671641791044777,-0.44776119402985076 -1,0.0,0.0,-0.2537313432835821,-0.06716417910447761,-0.44029850746268656,-0.2462686567164179,-0.4925373134328358,-0.4626865671641791,-0.39552238805970147,-0.6343283582089553,-0.3656716417910448,-0.6567164179104478,-0.417910447761194,-0.9253731343283582,-0.35074626865671643,-0.9701492537313433,-0.2835820895522388,-0.8656716417910447,-0.17164179104477612,-0.6716417910447762,-0.15671641791044777,-1.0,-0.1044776119402985,-0.9552238805970149,-0.08955223880597014,-0.7910447761194029,0.0,-0.6194029850746269,0.03731343283582089,-0.8955223880597015,0.05223880597014925,-0.7835820895522388,0.03731343283582089,-0.6119402985074627,0.16417910447761194,-0.5298507462686567,0.21641791044776118,-0.6716417910447762,0.19402985074626866,-0.5746268656716418,0.14925373134328357,-0.44776119402985076 -1,0.0,0.0,-0.2631578947368421,-0.05263157894736842,-0.45864661654135336,-0.22556390977443608,-0.518796992481203,-0.45112781954887216,-0.41353383458646614,-0.6165413533834586,-0.39097744360902253,-0.6390977443609023,-0.45112781954887216,-0.9172932330827067,-0.3684210526315789,-0.9849624060150376,-0.2932330827067669,-0.8947368421052632,-0.19548872180451127,-0.6616541353383458,-0.18796992481203006,-1.0,-0.09774436090225563,-0.9548872180451128,-0.05263157894736842,-0.7744360902255639,-0.022556390977443608,-0.6165413533834586,0.022556390977443608,-0.8796992481203008,0.06766917293233082,-0.7593984962406015,0.07518796992481203,-0.5789473684210527,0.14285714285714285,-0.5263157894736842,0.19548872180451127,-0.6541353383458647,0.18796992481203006,-0.556390977443609,0.15789473684210525,-0.42105263157894735 -1,0.0,0.0,-0.2537313432835821,-0.04477611940298507,-0.44776119402985076,-0.22388059701492538,-0.5074626865671642,-0.44029850746268656,-0.41044776119402987,-0.6044776119402985,-0.373134328358209,-0.6417910447761194,-0.43283582089552236,-0.917910447761194,-0.3656716417910448,-0.9552238805970149,-0.29850746268656714,-0.8507462686567164,-0.1865671641791045,-0.664179104477612,-0.1791044776119403,-1.0,-0.11194029850746269,-0.9477611940298507,-0.08208955223880597,-0.7686567164179104,-0.014925373134328358,-0.6194029850746269,0.022388059701492536,-0.8805970149253731,0.05970149253731343,-0.753731343283582,0.05223880597014925,-0.5671641791044776,0.14925373134328357,-0.5298507462686567,0.19402985074626866,-0.6567164179104478,0.1791044776119403,-0.5522388059701493,0.1417910447761194,-0.4253731343283582 -1,0.0,0.0,-0.2556390977443609,-0.05263157894736842,-0.45112781954887216,-0.21804511278195488,-0.5112781954887218,-0.43609022556390975,-0.40601503759398494,-0.5939849624060151,-0.38345864661654133,-0.6390977443609023,-0.45112781954887216,-0.9172932330827067,-0.3684210526315789,-0.9699248120300752,-0.2857142857142857,-0.8796992481203008,-0.19548872180451127,-0.6691729323308271,-0.18796992481203006,-1.0,-0.10526315789473684,-0.9398496240601504,-0.06766917293233082,-0.7669172932330827,-0.015037593984962405,-0.6240601503759399,0.022556390977443608,-0.8796992481203008,0.06015037593984962,-0.7443609022556391,0.05263157894736842,-0.556390977443609,0.15037593984962405,-0.5338345864661654,0.19548872180451127,-0.6691729323308271,0.18796992481203006,-0.5639097744360902,0.15789473684210525,-0.43609022556390975 -1,0.0,0.0,-0.26515151515151514,-0.05303030303030303,-0.4621212121212121,-0.2196969696969697,-0.5227272727272727,-0.44696969696969696,-0.4166666666666667,-0.6136363636363636,-0.3939393939393939,-0.6439393939393939,-0.45454545454545453,-0.9166666666666666,-0.36363636363636365,-0.9621212121212122,-0.2727272727272727,-0.8712121212121212,-0.20454545454545456,-0.6742424242424242,-0.20454545454545456,-1.0,-0.10606060606060606,-0.9318181818181818,-0.06060606060606061,-0.7575757575757576,-0.022727272727272728,-0.6287878787878788,0.015151515151515152,-0.8712121212121212,0.06818181818181818,-0.7121212121212122,0.06818181818181818,-0.5227272727272727,0.13636363636363635,-0.5454545454545454,0.18181818181818182,-0.6742424242424242,0.18181818181818182,-0.5606060606060606,0.1590909090909091,-0.4318181818181818 -1,0.0,0.0,-0.25757575757575757,-0.045454545454545456,-0.45454545454545453,-0.21212121212121213,-0.5151515151515151,-0.4393939393939394,-0.4166666666666667,-0.6060606060606061,-0.3787878787878788,-0.6439393939393939,-0.4393939393939394,-0.9242424242424242,-0.3484848484848485,-0.946969696969697,-0.26515151515151514,-0.8409090909090909,-0.1893939393939394,-0.6666666666666666,-0.18181818181818182,-1.0,-0.09090909090909091,-0.9166666666666666,-0.05303030303030303,-0.7272727272727273,-0.007575757575757576,-0.6212121212121212,0.03787878787878788,-0.8560606060606061,0.07575757575757576,-0.6893939393939394,0.06060606060606061,-0.49242424242424243,0.15151515151515152,-0.5378787878787878,0.19696969696969696,-0.6666666666666666,0.1893939393939394,-0.5454545454545454,0.15151515151515152,-0.4166666666666667 -1,0.0,0.0,-0.2556390977443609,-0.045112781954887216,-0.45112781954887216,-0.21804511278195488,-0.5112781954887218,-0.45112781954887216,-0.40601503759398494,-0.6090225563909775,-0.37593984962406013,-0.6390977443609023,-0.43609022556390975,-0.9172932330827067,-0.3533834586466165,-0.9548872180451128,-0.2781954887218045,-0.8646616541353384,-0.18045112781954886,-0.6691729323308271,-0.18045112781954886,-1.0,-0.09022556390977443,-0.9398496240601504,-0.05263157894736842,-0.7593984962406015,-0.007518796992481203,-0.6240601503759399,0.03759398496240601,-0.8796992481203008,0.07518796992481203,-0.7293233082706767,0.06766917293233082,-0.5488721804511278,0.15789473684210525,-0.5338345864661654,0.20300751879699247,-0.6616541353383458,0.19548872180451127,-0.5488721804511278,0.15789473684210525,-0.42857142857142855 -1,0.0,0.0,-0.2537313432835821,-0.05223880597014925,-0.44776119402985076,-0.22388059701492538,-0.5074626865671642,-0.4552238805970149,-0.39552238805970147,-0.6119402985074627,-0.373134328358209,-0.6417910447761194,-0.43283582089552236,-0.917910447761194,-0.34328358208955223,-0.9477611940298507,-0.26119402985074625,-0.8507462686567164,-0.1791044776119403,-0.664179104477612,-0.17164179104477612,-1.0,-0.08208955223880597,-0.9253731343283582,-0.05223880597014925,-0.746268656716418,-0.007462686567164179,-0.6194029850746269,0.03731343283582089,-0.8656716417910447,0.07462686567164178,-0.7164179104477612,0.05970149253731343,-0.5223880597014925,0.15671641791044777,-0.5298507462686567,0.20149253731343283,-0.6567164179104478,0.19402985074626866,-0.5373134328358209,0.14925373134328357,-0.41044776119402987 -1,0.0,0.0,-0.2556390977443609,-0.045112781954887216,-0.45864661654135336,-0.22556390977443608,-0.518796992481203,-0.45112781954887216,-0.41353383458646614,-0.6090225563909775,-0.38345864661654133,-0.6466165413533834,-0.43609022556390975,-0.9172932330827067,-0.3533834586466165,-0.9624060150375939,-0.2706766917293233,-0.8646616541353384,-0.18796992481203006,-0.6691729323308271,-0.17293233082706766,-1.0,-0.08270676691729323,-0.9323308270676691,-0.045112781954887216,-0.7518796992481203,-0.015037593984962405,-0.6240601503759399,0.03759398496240601,-0.8646616541353384,0.07518796992481203,-0.7218045112781954,0.06766917293233082,-0.5338345864661654,0.15037593984962405,-0.5338345864661654,0.19548872180451127,-0.6541353383458647,0.19548872180451127,-0.5413533834586466,0.15789473684210525,-0.41353383458646614 -1,0.0,0.0,-0.2556390977443609,-0.05263157894736842,-0.45112781954887216,-0.22556390977443608,-0.5112781954887218,-0.44360902255639095,-0.39849624060150374,-0.6090225563909775,-0.3609022556390977,-0.6466165413533834,-0.41353383458646614,-0.9323308270676691,-0.3308270676691729,-0.9398496240601504,-0.2631578947368421,-0.8120300751879699,-0.17293233082706766,-0.6691729323308271,-0.16541353383458646,-1.0,-0.09022556390977443,-0.9172932330827067,-0.06015037593984962,-0.7293233082706767,0.0,-0.6240601503759399,0.03759398496240601,-0.8872180451127819,0.07518796992481203,-0.7443609022556391,0.06766917293233082,-0.556390977443609,0.16541353383458646,-0.5263157894736842,0.21052631578947367,-0.6466165413533834,0.19548872180451127,-0.5338345864661654,0.15789473684210525,-0.39849624060150374 -1,0.0,0.0,-0.2537313432835821,-0.04477611940298507,-0.4552238805970149,-0.22388059701492538,-0.5074626865671642,-0.44776119402985076,-0.40298507462686567,-0.6044776119402985,-0.3656716417910448,-0.6417910447761194,-0.4253731343283582,-0.917910447761194,-0.3358208955223881,-0.9477611940298507,-0.26119402985074625,-0.8432835820895522,-0.1791044776119403,-0.6716417910447762,-0.17164179104477612,-1.0,-0.08208955223880597,-0.9328358208955224,-0.05223880597014925,-0.753731343283582,-0.007462686567164179,-0.6268656716417911,0.029850746268656716,-0.8805970149253731,0.07462686567164178,-0.746268656716418,0.06716417910447761,-0.5671641791044776,0.15671641791044777,-0.5373134328358209,0.19402985074626866,-0.6492537313432836,0.1865671641791045,-0.5373134328358209,0.15671641791044777,-0.4253731343283582 -1,0.0,0.0,-0.24444444444444444,-0.05185185185185185,-0.4444444444444444,-0.22962962962962963,-0.4962962962962963,-0.45925925925925926,-0.4,-0.6148148148148148,-0.35555555555555557,-0.6444444444444445,-0.4148148148148148,-0.9185185185185185,-0.31851851851851853,-0.9481481481481482,-0.23703703703703705,-0.8444444444444444,-0.17037037037037037,-0.6666666666666666,-0.17037037037037037,-1.0,-0.07407407407407407,-0.9259259259259259,-0.037037037037037035,-0.7407407407407407,0.0,-0.6296296296296297,0.02962962962962963,-0.8740740740740741,0.08888888888888889,-0.725925925925926,0.08888888888888889,-0.5407407407407407,0.15555555555555556,-0.5407407407407407,0.1925925925925926,-0.6518518518518519,0.1925925925925926,-0.5407407407407407,0.17037037037037037,-0.4074074074074074 -1,0.0,0.0,-0.24817518248175183,-0.058394160583941604,-0.44525547445255476,-0.23357664233576642,-0.49635036496350365,-0.45985401459854014,-0.38686131386861317,-0.6131386861313869,-0.35036496350364965,-0.6423357664233577,-0.40875912408759124,-0.927007299270073,-0.31386861313868614,-0.9416058394160584,-0.24087591240875914,-0.8321167883211679,-0.17518248175182483,-0.6715328467153284,-0.1678832116788321,-1.0,-0.072992700729927,-0.9124087591240876,-0.0364963503649635,-0.7299270072992701,-0.0072992700729927005,-0.6277372262773723,0.0364963503649635,-0.8759124087591241,0.08759124087591241,-0.7299270072992701,0.08759124087591241,-0.5474452554744526,0.145985401459854,-0.5328467153284672,0.19708029197080293,-0.656934306569343,0.19708029197080293,-0.5474452554744526,0.1678832116788321,-0.41605839416058393 -1,0.0,0.0,-0.24817518248175183,-0.058394160583941604,-0.43795620437956206,-0.24087591240875914,-0.49635036496350365,-0.45985401459854014,-0.38686131386861317,-0.6131386861313869,-0.34306569343065696,-0.6423357664233577,-0.40145985401459855,-0.9343065693430657,-0.31386861313868614,-0.9416058394160584,-0.24087591240875914,-0.8248175182481752,-0.16058394160583941,-0.6642335766423357,-0.15328467153284672,-1.0,-0.08029197080291971,-0.9124087591240876,-0.058394160583941604,-0.7299270072992701,0.0072992700729927005,-0.6204379562043796,0.043795620437956206,-0.8686131386861314,0.08029197080291971,-0.7226277372262774,0.072992700729927,-0.5401459854014599,0.16058394160583941,-0.5255474452554745,0.20437956204379562,-0.6423357664233577,0.19708029197080293,-0.5328467153284672,0.16058394160583941,-0.40875912408759124 -1,0.0,0.0,-0.25,-0.07352941176470588,-0.4411764705882353,-0.25,-0.5,-0.47058823529411764,-0.39705882352941174,-0.625,-0.35294117647058826,-0.6544117647058824,-0.39705882352941174,-0.9485294117647058,-0.3088235294117647,-0.9705882352941176,-0.23529411764705882,-0.8529411764705882,-0.16176470588235295,-0.6691176470588235,-0.13970588235294118,-1.0,-0.051470588235294115,-0.9191176470588235,-0.029411764705882353,-0.7352941176470589,0.0,-0.6176470588235294,0.0661764705882353,-0.8382352941176471,0.10294117647058823,-0.6911764705882353,0.08823529411764706,-0.5,0.15441176470588236,-0.5220588235294118,0.21323529411764705,-0.6397058823529411,0.21323529411764705,-0.5294117647058824,0.17647058823529413,-0.40441176470588236 -1,0.0,0.0,-0.24087591240875914,-0.072992700729927,-0.4306569343065693,-0.24817518248175183,-0.48905109489051096,-0.45985401459854014,-0.3795620437956204,-0.6058394160583942,-0.3357664233576642,-0.656934306569343,-0.3795620437956204,-0.9416058394160584,-0.291970802919708,-0.9562043795620438,-0.22627737226277372,-0.8394160583941606,-0.15328467153284672,-0.6715328467153284,-0.12408759124087591,-1.0,-0.051094890510948905,-0.9197080291970803,-0.0364963503649635,-0.7372262773722628,0.014598540145985401,-0.6131386861313869,0.08029197080291971,-0.8540145985401459,0.10218978102189781,-0.708029197080292,0.08029197080291971,-0.5182481751824818,0.17518248175182483,-0.5109489051094891,0.23357664233576642,-0.6277372262773723,0.2116788321167883,-0.5182481751824818,0.1678832116788321,-0.39416058394160586 -1,0.0,0.0,-0.23357664233576642,-0.072992700729927,-0.4233576642335766,-0.2846715328467153,-0.45985401459854014,-0.5109489051094891,-0.3284671532846715,-0.6277372262773723,-0.291970802919708,-0.6788321167883211,-0.3357664233576642,-0.9635036496350365,-0.25547445255474455,-0.9562043795620438,-0.20437956204379562,-0.8321167883211679,-0.10948905109489052,-0.6861313868613139,-0.08029197080291971,-1.0,-0.029197080291970802,-0.9197080291970803,-0.0364963503649635,-0.7518248175182481,0.051094890510948905,-0.6204379562043796,0.10218978102189781,-0.8686131386861314,0.10218978102189781,-0.7518248175182481,0.072992700729927,-0.5912408759124088,0.2116788321167883,-0.5109489051094891,0.25547445255474455,-0.6277372262773723,0.21897810218978103,-0.5328467153284672,0.1678832116788321,-0.4233576642335766 -1,0.0,0.0,-0.2318840579710145,-0.07971014492753623,-0.42028985507246375,-0.2898550724637681,-0.4492753623188406,-0.5217391304347826,-0.30434782608695654,-0.6304347826086957,-0.2753623188405797,-0.6739130434782609,-0.30434782608695654,-0.9565217391304348,-0.2246376811594203,-0.9420289855072463,-0.17391304347826086,-0.8115942028985508,-0.09420289855072464,-0.6811594202898551,-0.050724637681159424,-1.0,-0.014492753623188406,-0.9057971014492754,-0.021739130434782608,-0.717391304347826,0.06521739130434782,-0.6159420289855072,0.12318840579710146,-0.8333333333333334,0.11594202898550725,-0.6739130434782609,0.08695652173913043,-0.5,0.2028985507246377,-0.5,0.2536231884057971,-0.5942028985507246,0.21739130434782608,-0.4782608695652174,0.15942028985507245,-0.3695652173913043 -1,0.0,0.0,-0.2318840579710145,-0.08695652173913043,-0.41304347826086957,-0.30434782608695654,-0.4420289855072464,-0.5289855072463768,-0.3115942028985507,-0.6521739130434783,-0.2608695652173913,-0.6884057971014492,-0.2826086956521739,-0.9710144927536232,-0.2028985507246377,-0.9637681159420289,-0.15942028985507245,-0.8405797101449275,-0.07971014492753623,-0.6884057971014492,-0.021739130434782608,-1.0,0.021739130434782608,-0.9057971014492754,0.007246376811594203,-0.7318840579710145,0.07246376811594203,-0.6159420289855072,0.14492753623188406,-0.8405797101449275,0.14492753623188406,-0.7028985507246377,0.10869565217391304,-0.5362318840579711,0.21014492753623187,-0.5,0.26811594202898553,-0.5942028985507246,0.2318840579710145,-0.4927536231884058,0.17391304347826086,-0.391304347826087 -1,0.0,0.0,-0.22627737226277372,-0.08759124087591241,-0.40145985401459855,-0.31386861313868614,-0.40875912408759124,-0.5328467153284672,-0.26277372262773724,-0.635036496350365,-0.21897810218978103,-0.6934306569343066,-0.24087591240875914,-0.9854014598540146,-0.1678832116788321,-0.9416058394160584,-0.13138686131386862,-0.7883211678832117,-0.043795620437956206,-0.6788321167883211,0.021897810218978103,-1.0,0.058394160583941604,-0.8832116788321168,0.043795620437956206,-0.6934306569343066,0.10948905109489052,-0.5985401459854015,0.18248175182481752,-0.8029197080291971,0.17518248175182483,-0.6496350364963503,0.13138686131386862,-0.48905109489051096,0.24817518248175183,-0.46715328467153283,0.30656934306569344,-0.5547445255474452,0.25547445255474455,-0.44525547445255476,0.19708029197080293,-0.34306569343065696 -1,0.0,0.0,-0.24087591240875914,-0.0948905109489051,-0.4233576642335766,-0.30656934306569344,-0.4306569343065693,-0.5401459854014599,-0.2846715328467153,-0.6496350364963503,-0.24817518248175183,-0.6934306569343066,-0.26277372262773724,-0.9927007299270073,-0.1897810218978102,-0.9927007299270073,-0.145985401459854,-0.8613138686131386,-0.06569343065693431,-0.6861313868613139,0.0072992700729927005,-1.0,0.051094890510948905,-0.8905109489051095,0.0364963503649635,-0.7007299270072993,0.08759124087591241,-0.6131386861313869,0.17518248175182483,-0.8175182481751825,0.1678832116788321,-0.6642335766423357,0.13138686131386862,-0.49635036496350365,0.21897810218978103,-0.48905109489051096,0.2846715328467153,-0.5620437956204379,0.24817518248175183,-0.45255474452554745,0.1897810218978102,-0.35036496350364965 -1,0.0,0.0,-0.22794117647058823,-0.09558823529411764,-0.40441176470588236,-0.33088235294117646,-0.40441176470588236,-0.5588235294117647,-0.25,-0.6397058823529411,-0.20588235294117646,-0.6985294117647058,-0.20588235294117646,-1.0,-0.15441176470588236,-0.9705882352941176,-0.125,-0.8308823529411765,-0.029411764705882353,-0.6838235294117647,0.051470588235294115,-0.9926470588235294,0.07352941176470588,-0.8823529411764706,0.04411764705882353,-0.6911764705882353,0.125,-0.6029411764705882,0.20588235294117646,-0.8161764705882353,0.18382352941176472,-0.6691176470588235,0.1323529411764706,-0.5,0.25,-0.47058823529411764,0.3014705882352941,-0.5441176470588235,0.2426470588235294,-0.4264705882352941,0.17647058823529413,-0.3161764705882353 -1,0.0,0.0,-0.23357664233576642,-0.11678832116788321,-0.40145985401459855,-0.34306569343065696,-0.39416058394160586,-0.5766423357664233,-0.22627737226277372,-0.656934306569343,-0.1897810218978102,-0.7007299270072993,-0.1897810218978102,-1.0,-0.13138686131386862,-0.9708029197080292,-0.10218978102189781,-0.8248175182481752,-0.0072992700729927005,-0.6788321167883211,0.08029197080291971,-0.9927007299270073,0.10948905109489052,-0.8686131386861314,0.072992700729927,-0.6715328467153284,0.1386861313868613,-0.5912408759124088,0.22627737226277372,-0.781021897810219,0.20437956204379562,-0.6131386861313869,0.145985401459854,-0.43795620437956206,0.25547445255474455,-0.45985401459854014,0.31386861313868614,-0.5401459854014599,0.26277372262773724,-0.4306569343065693,0.1897810218978102,-0.3284671532846715 -1,0.0,0.0,-0.22857142857142856,-0.12857142857142856,-0.38571428571428573,-0.36428571428571427,-0.36428571428571427,-0.5928571428571429,-0.18571428571428572,-0.6357142857142857,-0.15714285714285714,-0.7,-0.14285714285714285,-1.0,-0.1,-0.9357142857142857,-0.09285714285714286,-0.7785714285714286,0.02142857142857143,-0.6642857142857143,0.12142857142857143,-0.9571428571428572,0.12142857142857143,-0.8142857142857143,0.07857142857142857,-0.6285714285714286,0.15714285714285714,-0.5785714285714286,0.25,-0.7428571428571429,0.20714285714285716,-0.5785714285714286,0.1357142857142857,-0.42142857142857143,0.2714285714285714,-0.44285714285714284,0.32142857142857145,-0.5071428571428571,0.2642857142857143,-0.39285714285714285,0.18571428571428572,-0.3 -1,0.0,0.0,-0.22535211267605634,-0.13380281690140844,-0.3732394366197183,-0.36619718309859156,-0.3591549295774648,-0.5845070422535211,-0.19014084507042253,-0.647887323943662,-0.14788732394366197,-0.6971830985915493,-0.1267605633802817,-1.0,-0.08450704225352113,-0.9577464788732394,-0.07746478873239436,-0.8169014084507042,0.02112676056338028,-0.6619718309859155,0.13380281690140844,-0.9577464788732394,0.13380281690140844,-0.8169014084507042,0.08450704225352113,-0.6338028169014085,0.15492957746478872,-0.5704225352112676,0.2535211267605634,-0.7323943661971831,0.2112676056338028,-0.5633802816901409,0.14084507042253522,-0.4084507042253521,0.2605633802816901,-0.43661971830985913,0.323943661971831,-0.5070422535211268,0.2676056338028169,-0.4014084507042254,0.19014084507042253,-0.30985915492957744 -1,0.0,0.0,-0.23404255319148937,-0.14184397163120568,-0.3829787234042553,-0.3971631205673759,-0.3475177304964539,-0.6170212765957447,-0.1702127659574468,-0.6524822695035462,-0.14893617021276595,-0.7163120567375887,-0.10638297872340426,-1.0,-0.07801418439716312,-0.9645390070921985,-0.07801418439716312,-0.8297872340425532,0.028368794326241134,-0.6737588652482269,0.14184397163120568,-0.950354609929078,0.1276595744680851,-0.8156028368794326,0.06382978723404255,-0.6312056737588653,0.16312056737588654,-0.5673758865248227,0.2553191489361702,-0.7163120567375887,0.19148936170212766,-0.5602836879432624,0.11347517730496454,-0.41134751773049644,0.2624113475177305,-0.4326241134751773,0.3191489361702128,-0.48936170212765956,0.24113475177304963,-0.3829787234042553,0.16312056737588654,-0.2978723404255319 -1,0.0,0.0,-0.22857142857142856,-0.14285714285714285,-0.37857142857142856,-0.4,-0.35714285714285715,-0.6214285714285714,-0.17142857142857143,-0.6571428571428571,-0.12142857142857143,-0.7142857142857143,-0.07142857142857142,-1.0,-0.04285714285714286,-0.95,-0.05,-0.8,0.05,-0.6571428571428571,0.17142857142857143,-0.9428571428571428,0.14285714285714285,-0.8071428571428572,0.07142857142857142,-0.6214285714285714,0.17857142857142858,-0.55,0.2785714285714286,-0.7071428571428572,0.19285714285714287,-0.5428571428571428,0.09285714285714286,-0.4,0.2785714285714286,-0.40714285714285714,0.32857142857142857,-0.45,0.2357142857142857,-0.34285714285714286,0.1357142857142857,-0.2642857142857143 -1,0.0,0.0,-0.21678321678321677,-0.16083916083916083,-0.34265734265734266,-0.4195804195804196,-0.3146853146853147,-0.6433566433566433,-0.13986013986013987,-0.6783216783216783,-0.06993006993006994,-0.7202797202797203,-0.013986013986013986,-1.0,-0.006993006993006993,-0.9230769230769231,-0.027972027972027972,-0.7762237762237763,0.09090909090909091,-0.6503496503496503,0.23776223776223776,-0.9230769230769231,0.18181818181818182,-0.7692307692307693,0.09090909090909091,-0.6083916083916084,0.21678321678321677,-0.5314685314685315,0.3146853146853147,-0.6573426573426573,0.1958041958041958,-0.4965034965034965,0.0979020979020979,-0.38461538461538464,0.3006993006993007,-0.3776223776223776,0.35664335664335667,-0.43356643356643354,0.2517482517482518,-0.3356643356643357,0.15384615384615385,-0.27972027972027974 -1,0.0,0.0,-0.2152777777777778,-0.18055555555555555,-0.3333333333333333,-0.4444444444444444,-0.2986111111111111,-0.6527777777777778,-0.125,-0.6805555555555556,-0.04861111111111111,-0.7222222222222222,0.027777777777777776,-1.0,0.027777777777777776,-0.9375,-0.006944444444444444,-0.7916666666666666,0.10416666666666667,-0.6388888888888888,0.2638888888888889,-0.8819444444444444,0.19444444444444445,-0.7361111111111112,0.09722222222222222,-0.5833333333333334,0.2222222222222222,-0.5138888888888888,0.3402777777777778,-0.6458333333333334,0.2152777777777778,-0.5,0.10416666666666667,-0.3888888888888889,0.3055555555555556,-0.3611111111111111,0.375,-0.4027777777777778,0.2638888888888889,-0.3194444444444444,0.1597222222222222,-0.2638888888888889 -1,0.0,0.0,-0.2112676056338028,-0.19718309859154928,-0.31690140845070425,-0.47183098591549294,-0.2605633802816901,-0.6830985915492958,-0.08450704225352113,-0.6830985915492958,-0.02112676056338028,-0.7323943661971831,0.07042253521126761,-1.0,0.06338028169014084,-0.9366197183098591,0.028169014084507043,-0.795774647887324,0.13380281690140844,-0.647887323943662,0.3028169014084507,-0.8873239436619719,0.22535211267605634,-0.7464788732394366,0.1267605633802817,-0.5845070422535211,0.2535211267605634,-0.5211267605633803,0.3732394366197183,-0.6549295774647887,0.24647887323943662,-0.5140845070422535,0.1267605633802817,-0.39436619718309857,0.33098591549295775,-0.3591549295774648,0.4084507042253521,-0.4154929577464789,0.2887323943661972,-0.3380281690140845,0.18309859154929578,-0.28169014084507044 -1,0.0,0.0,-0.20279720279720279,-0.1958041958041958,-0.3006993006993007,-0.46853146853146854,-0.2517482517482518,-0.6783216783216783,-0.07692307692307693,-0.6993006993006993,0.0,-0.7272727272727273,0.09090909090909091,-1.0,0.0979020979020979,-0.9440559440559441,0.055944055944055944,-0.8041958041958042,0.15384615384615385,-0.6363636363636364,0.3146853146853147,-0.8671328671328671,0.23776223776223776,-0.7272727272727273,0.1258741258741259,-0.5734265734265734,0.25874125874125875,-0.4965034965034965,0.38461538461538464,-0.6223776223776224,0.2517482517482518,-0.48951048951048953,0.1258741258741259,-0.38461538461538464,0.3356643356643357,-0.3356643356643357,0.40559440559440557,-0.3776223776223776,0.27972027972027974,-0.3076923076923077,0.16783216783216784,-0.26573426573426573 -1,0.0,0.0,-0.19444444444444445,-0.20833333333333334,-0.2847222222222222,-0.5,-0.2152777777777778,-0.7013888888888888,-0.034722222222222224,-0.6944444444444444,0.027777777777777776,-0.7291666666666666,0.13194444444444445,-1.0,0.125,-0.9305555555555556,0.08333333333333333,-0.7847222222222222,0.18055555555555555,-0.6319444444444444,0.3541666666666667,-0.8611111111111112,0.2708333333333333,-0.7083333333333334,0.1527777777777778,-0.5555555555555556,0.2847222222222222,-0.5,0.3958333333333333,-0.6111111111111112,0.2638888888888889,-0.4722222222222222,0.1388888888888889,-0.3680555555555556,0.3541666666666667,-0.3333333333333333,0.4236111111111111,-0.3819444444444444,0.2986111111111111,-0.3055555555555556,0.1875,-0.2569444444444444 -1,0.0,0.0,-0.1917808219178082,-0.21232876712328766,-0.273972602739726,-0.5,-0.19863013698630136,-0.6986301369863014,-0.0273972602739726,-0.678082191780822,0.0410958904109589,-0.726027397260274,0.1506849315068493,-1.0,0.1506849315068493,-0.9315068493150684,0.10273972602739725,-0.7876712328767124,0.19863013698630136,-0.6232876712328768,0.363013698630137,-0.8287671232876712,0.2808219178082192,-0.678082191780822,0.1643835616438356,-0.5273972602739726,0.3013698630136986,-0.4863013698630137,0.3972602739726027,-0.5684931506849316,0.2671232876712329,-0.4383561643835616,0.14383561643835616,-0.3356164383561644,0.363013698630137,-0.3219178082191781,0.4246575342465753,-0.3561643835616438,0.3013698630136986,-0.273972602739726,0.19863013698630136,-0.2328767123287671 -1,0.0,0.0,-0.19047619047619047,-0.21768707482993196,-0.2653061224489796,-0.5034013605442177,-0.19727891156462585,-0.7074829931972789,-0.027210884353741496,-0.673469387755102,0.04081632653061224,-0.7210884353741497,0.1564625850340136,-1.0,0.14965986394557823,-0.9387755102040817,0.10204081632653061,-0.7959183673469388,0.19727891156462585,-0.6190476190476191,0.3673469387755102,-0.8231292517006803,0.2653061224489796,-0.6870748299319728,0.14285714285714285,-0.54421768707483,0.29931972789115646,-0.48299319727891155,0.4013605442176871,-0.5714285714285714,0.25170068027210885,-0.4421768707482993,0.1292517006802721,-0.35374149659863946,0.35374149659863946,-0.32653061224489793,0.42857142857142855,-0.35374149659863946,0.2925170068027211,-0.2789115646258503,0.1836734693877551,-0.24489795918367346 -1,0.0,0.0,-0.17567567567567569,-0.21621621621621623,-0.25,-0.5067567567567568,-0.17567567567567569,-0.6959459459459459,-0.006756756756756757,-0.6621621621621622,0.06756756756756757,-0.722972972972973,0.1891891891891892,-1.0,0.16891891891891891,-0.918918918918919,0.11486486486486487,-0.7702702702702703,0.21621621621621623,-0.6216216216216216,0.38513513513513514,-0.8175675675675675,0.28378378378378377,-0.668918918918919,0.16216216216216217,-0.5337837837837838,0.31756756756756754,-0.4797297297297297,0.4189189189189189,-0.5675675675675675,0.2702702702702703,-0.4391891891891892,0.14189189189189189,-0.35135135135135137,0.3716216216216216,-0.3108108108108108,0.42567567567567566,-0.34459459459459457,0.2972972972972973,-0.27702702702702703,0.18243243243243243,-0.23648648648648649 -1,0.0,0.0,-0.16891891891891891,-0.22972972972972974,-0.23648648648648649,-0.5202702702702703,-0.16891891891891891,-0.7162162162162162,-0.006756756756756757,-0.6824324324324325,0.07432432432432433,-0.7432432432432432,0.20270270270270271,-1.0,0.1891891891891892,-0.9391891891891891,0.12837837837837837,-0.8040540540540541,0.22297297297297297,-0.6283783783783784,0.41216216216216217,-0.8175675675675675,0.30405405405405406,-0.6891891891891891,0.17567567567567569,-0.5540540540540541,0.31756756756756754,-0.4797297297297297,0.4189189189189189,-0.5540540540540541,0.2702702702702703,-0.43243243243243246,0.14864864864864866,-0.35135135135135137,0.36486486486486486,-0.31756756756756754,0.43243243243243246,-0.33783783783783783,0.30405405405405406,-0.2702702702702703,0.19594594594594594,-0.24324324324324326 -1,0.0,0.0,-0.16778523489932887,-0.2348993288590604,-0.22818791946308725,-0.5167785234899329,-0.15436241610738255,-0.7181208053691275,0.020134228187919462,-0.6912751677852349,0.09395973154362416,-0.7315436241610739,0.2348993288590604,-1.0,0.2080536912751678,-0.9194630872483222,0.14093959731543623,-0.7718120805369127,0.24161073825503357,-0.610738255033557,0.42953020134228187,-0.7986577181208053,0.31543624161073824,-0.6577181208053692,0.18120805369127516,-0.5302013422818792,0.3288590604026846,-0.46308724832214765,0.44966442953020136,-0.5503355704697986,0.28859060402684567,-0.4228187919463087,0.1610738255033557,-0.3422818791946309,0.3825503355704698,-0.30201342281879195,0.4563758389261745,-0.33557046979865773,0.3221476510067114,-0.2684563758389262,0.21476510067114093,-0.2348993288590604 -1,0.0,0.0,-0.15894039735099338,-0.23841059602649006,-0.2185430463576159,-0.5231788079470199,-0.1390728476821192,-0.7152317880794702,0.033112582781456956,-0.6821192052980133,0.09933774834437085,-0.7350993377483444,0.23841059602649006,-1.0,0.2119205298013245,-0.9271523178807947,0.1390728476821192,-0.7814569536423841,0.24503311258278146,-0.6158940397350994,0.4304635761589404,-0.8079470198675497,0.31788079470198677,-0.6754966887417219,0.18543046357615894,-0.5496688741721855,0.33112582781456956,-0.46357615894039733,0.4370860927152318,-0.5496688741721855,0.2847682119205298,-0.4304635761589404,0.16556291390728478,-0.3509933774834437,0.37748344370860926,-0.2980132450331126,0.4503311258278146,-0.33774834437086093,0.32450331125827814,-0.271523178807947,0.2251655629139073,-0.24503311258278146 -1,0.0,0.0,-0.15789473684210525,-0.24342105263157895,-0.21710526315789475,-0.5263157894736842,-0.13157894736842105,-0.7171052631578947,0.039473684210526314,-0.6710526315789473,0.1118421052631579,-0.7368421052631579,0.25,-1.0,0.23026315789473684,-0.9210526315789473,0.15789473684210525,-0.7763157894736842,0.25,-0.618421052631579,0.4342105263157895,-0.8092105263157895,0.3223684210526316,-0.6710526315789473,0.18421052631578946,-0.5460526315789473,0.32894736842105265,-0.47368421052631576,0.4407894736842105,-0.5592105263157895,0.2894736842105263,-0.4407894736842105,0.16447368421052633,-0.35526315789473684,0.375,-0.3026315789473684,0.45394736842105265,-0.34868421052631576,0.32894736842105265,-0.28289473684210525,0.2236842105263158,-0.25 -1,0.0,0.0,-0.1568627450980392,-0.24183006535947713,-0.21568627450980393,-0.5294117647058824,-0.1437908496732026,-0.7320261437908496,0.032679738562091505,-0.7124183006535948,0.10457516339869281,-0.738562091503268,0.23529411764705882,-1.0,0.2222222222222222,-0.9281045751633987,0.1568627450980392,-0.7908496732026143,0.24183006535947713,-0.6209150326797386,0.42483660130718953,-0.8235294117647058,0.3137254901960784,-0.6928104575163399,0.17647058823529413,-0.5620915032679739,0.32679738562091504,-0.477124183006536,0.4444444444444444,-0.5686274509803921,0.2875816993464052,-0.4444444444444444,0.1568627450980392,-0.35947712418300654,0.37254901960784315,-0.3137254901960784,0.45098039215686275,-0.35294117647058826,0.3202614379084967,-0.28104575163398693,0.21568627450980393,-0.24183006535947713 -1,0.0,0.0,-0.1568627450980392,-0.24183006535947713,-0.21568627450980393,-0.5294117647058824,-0.1503267973856209,-0.7320261437908496,0.0196078431372549,-0.7254901960784313,0.1111111111111111,-0.738562091503268,0.26143790849673204,-1.0,0.23529411764705882,-0.9281045751633987,0.1568627450980392,-0.7843137254901961,0.24836601307189543,-0.6209150326797386,0.43137254901960786,-0.8104575163398693,0.3202614379084967,-0.673202614379085,0.1830065359477124,-0.5424836601307189,0.3333333333333333,-0.47058823529411764,0.43790849673202614,-0.5555555555555556,0.28104575163398693,-0.43137254901960786,0.1568627450980392,-0.3464052287581699,0.3790849673202614,-0.30718954248366015,0.4444444444444444,-0.33986928104575165,0.3137254901960784,-0.27450980392156865,0.20915032679738563,-0.24183006535947713 -1,0.0,0.0,-0.1503267973856209,-0.2549019607843137,-0.19607843137254902,-0.5490196078431373,-0.13725490196078433,-0.7516339869281046,0.032679738562091505,-0.7254901960784313,0.12418300653594772,-0.7516339869281046,0.27450980392156865,-1.0,0.23529411764705882,-0.934640522875817,0.16339869281045752,-0.7973856209150327,0.2549019607843137,-0.6274509803921569,0.4444444444444444,-0.8235294117647058,0.3202614379084967,-0.6993464052287581,0.1830065359477124,-0.5751633986928104,0.3333333333333333,-0.477124183006536,0.45098039215686275,-0.5816993464052288,0.2875816993464052,-0.47058823529411764,0.1568627450980392,-0.39215686274509803,0.3790849673202614,-0.3137254901960784,0.45098039215686275,-0.3660130718954248,0.3202614379084967,-0.30718954248366015,0.20915032679738563,-0.27450980392156865 -1,0.0,0.0,-0.15483870967741936,-0.2645161290322581,-0.2129032258064516,-0.5483870967741935,-0.14838709677419354,-0.7548387096774194,0.025806451612903226,-0.7290322580645161,0.11612903225806452,-0.7419354838709677,0.2645161290322581,-1.0,0.22580645161290322,-0.9161290322580645,0.14838709677419354,-0.7806451612903226,0.23870967741935484,-0.6193548387096774,0.4258064516129032,-0.8064516129032258,0.3032258064516129,-0.6709677419354839,0.17419354838709677,-0.5483870967741935,0.3225806451612903,-0.4774193548387097,0.432258064516129,-0.5612903225806452,0.27741935483870966,-0.45161290322580644,0.15483870967741936,-0.3741935483870968,0.36129032258064514,-0.3161290322580645,0.432258064516129,-0.34838709677419355,0.3032258064516129,-0.2967741935483871,0.2064516129032258,-0.2645161290322581 -1,0.0,0.0,-0.1503267973856209,-0.2679738562091503,-0.19607843137254902,-0.5555555555555556,-0.12418300653594772,-0.7516339869281046,0.0392156862745098,-0.7254901960784313,0.13725490196078433,-0.7516339869281046,0.2875816993464052,-1.0,0.2549019607843137,-0.9281045751633987,0.17647058823529413,-0.7973856209150327,0.26143790849673204,-0.6274509803921569,0.45751633986928103,-0.803921568627451,0.32679738562091504,-0.673202614379085,0.1895424836601307,-0.5555555555555556,0.33986928104575165,-0.477124183006536,0.46405228758169936,-0.5620915032679739,0.29411764705882354,-0.45098039215686275,0.16339869281045752,-0.3790849673202614,0.3790849673202614,-0.30718954248366015,0.46405228758169936,-0.3464052287581699,0.32679738562091504,-0.2875816993464052,0.21568627450980393,-0.26143790849673204 -1,0.0,0.0,-0.1513157894736842,-0.2565789473684211,-0.20394736842105263,-0.5460526315789473,-0.13815789473684212,-0.756578947368421,0.039473684210526314,-0.7302631578947368,0.13815789473684212,-0.743421052631579,0.29605263157894735,-1.0,0.2565789473684211,-0.9276315789473685,0.17763157894736842,-0.7894736842105263,0.26973684210526316,-0.618421052631579,0.46710526315789475,-0.8092105263157895,0.3355263157894737,-0.6776315789473685,0.19736842105263158,-0.5526315789473685,0.34868421052631576,-0.46710526315789475,0.46710526315789475,-0.5526315789473685,0.29605263157894735,-0.4407894736842105,0.16447368421052633,-0.3684210526315789,0.3881578947368421,-0.3026315789473684,0.45394736842105265,-0.32894736842105265,0.3157894736842105,-0.27631578947368424,0.21052631578947367,-0.2565789473684211 -1,0.0,0.0,-0.14666666666666667,-0.26666666666666666,-0.19333333333333333,-0.5666666666666667,-0.12666666666666668,-0.7666666666666667,0.05333333333333334,-0.7333333333333333,0.15333333333333332,-0.7533333333333333,0.32,-1.0,0.2866666666666667,-0.9466666666666667,0.20666666666666667,-0.8133333333333334,0.2866666666666667,-0.6266666666666667,0.48,-0.8,0.3466666666666667,-0.6733333333333333,0.20666666666666667,-0.5533333333333333,0.36,-0.4666666666666667,0.48,-0.5466666666666666,0.30666666666666664,-0.44,0.17333333333333334,-0.36666666666666664,0.4,-0.3,0.47333333333333333,-0.32666666666666666,0.3333333333333333,-0.2733333333333333,0.22666666666666666,-0.25333333333333335 -1,0.0,0.0,-0.15789473684210525,-0.2565789473684211,-0.20394736842105263,-0.5592105263157895,-0.125,-0.7697368421052632,0.05263157894736842,-0.7302631578947368,0.13815789473684212,-0.743421052631579,0.3026315789473684,-1.0,0.26973684210526316,-0.9342105263157895,0.19078947368421054,-0.8026315789473685,0.26973684210526316,-0.625,0.46710526315789475,-0.8157894736842105,0.34868421052631576,-0.6907894736842105,0.21052631578947367,-0.5723684210526315,0.34868421052631576,-0.47368421052631576,0.45394736842105265,-0.5526315789473685,0.2894736842105263,-0.4407894736842105,0.16447368421052633,-0.3684210526315789,0.3881578947368421,-0.3092105263157895,0.4473684210526316,-0.34210526315789475,0.3092105263157895,-0.28289473684210525,0.21052631578947367,-0.2565789473684211 -1,0.0,0.0,-0.152317880794702,-0.2582781456953642,-0.1986754966887417,-0.5629139072847682,-0.12582781456953643,-0.7682119205298014,0.059602649006622516,-0.7350993377483444,0.15894039735099338,-0.7549668874172185,0.32450331125827814,-1.0,0.2913907284768212,-0.9403973509933775,0.2119205298013245,-0.8079470198675497,0.2913907284768212,-0.6291390728476821,0.48344370860927155,-0.7947019867549668,0.3509933774834437,-0.6688741721854304,0.2119205298013245,-0.5496688741721855,0.36423841059602646,-0.47019867549668876,0.4768211920529801,-0.543046357615894,0.304635761589404,-0.4370860927152318,0.17880794701986755,-0.3708609271523179,0.40397350993377484,-0.304635761589404,0.46357615894039733,-0.32450331125827814,0.32450331125827814,-0.271523178807947,0.2185430463576159,-0.25165562913907286 -1,0.0,0.0,-0.1513157894736842,-0.2631578947368421,-0.19078947368421054,-0.5592105263157895,-0.10526315789473684,-0.7631578947368421,0.06578947368421052,-0.7302631578947368,0.16447368421052633,-0.75,0.32894736842105265,-1.0,0.29605263157894735,-0.9342105263157895,0.21710526315789475,-0.8092105263157895,0.2894736842105263,-0.625,0.4934210526315789,-0.8026315789473685,0.3618421052631579,-0.6842105263157895,0.2236842105263158,-0.5723684210526315,0.3618421052631579,-0.46710526315789475,0.48026315789473684,-0.5526315789473685,0.3092105263157895,-0.45394736842105265,0.18421052631578946,-0.3815789473684211,0.39473684210526316,-0.3026315789473684,0.46710526315789475,-0.3355263157894737,0.32894736842105265,-0.28289473684210525,0.23026315789473684,-0.2631578947368421 -1,0.0,0.0,-0.152317880794702,-0.2582781456953642,-0.19205298013245034,-0.5629139072847682,-0.11258278145695365,-0.7682119205298014,0.06622516556291391,-0.7350993377483444,0.16556291390728478,-0.7483443708609272,0.32450331125827814,-1.0,0.2913907284768212,-0.9536423841059603,0.2185430463576159,-0.8278145695364238,0.2913907284768212,-0.6291390728476821,0.4966887417218543,-0.8145695364238411,0.3708609271523179,-0.7086092715231788,0.23178807947019867,-0.5827814569536424,0.3708609271523179,-0.4768211920529801,0.4900662251655629,-0.5695364238410596,0.32450331125827814,-0.47019867549668876,0.1986754966887417,-0.39072847682119205,0.3973509933774834,-0.304635761589404,0.46357615894039733,-0.33774834437086093,0.33112582781456956,-0.2913907284768212,0.23178807947019867,-0.26490066225165565 -1,0.0,0.0,-0.15894039735099338,-0.25165562913907286,-0.1986754966887417,-0.5496688741721855,-0.11258278145695365,-0.7483443708609272,0.06622516556291391,-0.7284768211920529,0.152317880794702,-0.7417218543046358,0.31788079470198677,-1.0,0.2913907284768212,-0.9403973509933775,0.2185430463576159,-0.8013245033112583,0.2847682119205298,-0.6158940397350994,0.4966887417218543,-0.8079470198675497,0.3708609271523179,-0.6887417218543046,0.23178807947019867,-0.5629139072847682,0.3576158940397351,-0.46357615894039733,0.48344370860927155,-0.543046357615894,0.31788079470198677,-0.4304635761589404,0.19205298013245034,-0.3576158940397351,0.39072847682119205,-0.2913907284768212,0.47019867549668876,-0.32450331125827814,0.33112582781456956,-0.26490066225165565,0.23178807947019867,-0.24503311258278146 -1,0.0,0.0,-0.13815789473684212,-0.25,-0.18421052631578946,-0.5460526315789473,-0.09868421052631579,-0.743421052631579,0.07894736842105263,-0.7105263157894737,0.1513157894736842,-0.7368421052631579,0.29605263157894735,-1.0,0.28289473684210525,-0.9342105263157895,0.21052631578947367,-0.7960526315789473,0.28289473684210525,-0.625,0.48026315789473684,-0.8421052631578947,0.3815789473684211,-0.7302631578947368,0.2565789473684211,-0.5986842105263158,0.3684210526315789,-0.48026315789473684,0.48026315789473684,-0.5789473684210527,0.3355263157894737,-0.47368421052631576,0.21710526315789475,-0.3881578947368421,0.40789473684210525,-0.3092105263157895,0.4605263157894737,-0.34868421052631576,0.34210526315789475,-0.2894736842105263,0.24342105263157895,-0.2565789473684211 -1,0.0,0.0,-0.152317880794702,-0.23841059602649006,-0.2052980132450331,-0.5298013245033113,-0.11258278145695365,-0.7152317880794702,0.0728476821192053,-0.6821192052980133,0.11920529801324503,-0.7417218543046358,0.26490066225165565,-1.0,0.2582781456953642,-0.9470198675496688,0.1986754966887417,-0.8145695364238411,0.2582781456953642,-0.6291390728476821,0.46357615894039733,-0.847682119205298,0.3708609271523179,-0.7350993377483444,0.24503311258278146,-0.6026490066225165,0.33774834437086093,-0.48344370860927155,0.48344370860927155,-0.5960264900662252,0.3443708609271523,-0.4768211920529801,0.2119205298013245,-0.3841059602649007,0.3841059602649007,-0.31788079470198677,0.47019867549668876,-0.3576158940397351,0.3509933774834437,-0.2980132450331126,0.24503311258278146,-0.2582781456953642 -1,0.0,0.0,-0.16447368421052633,-0.21710526315789475,-0.21710526315789475,-0.5,-0.13815789473684212,-0.6973684210526315,0.05263157894736842,-0.6907894736842105,0.09210526315789473,-0.7302631578947368,0.21710526315789475,-1.0,0.21052631578947367,-0.9539473684210527,0.15789473684210525,-0.8289473684210527,0.23026315789473684,-0.631578947368421,0.4276315789473684,-0.868421052631579,0.34868421052631576,-0.756578947368421,0.23026315789473684,-0.618421052631579,0.3223684210526316,-0.4934210526315789,0.46710526315789475,-0.625,0.34210526315789475,-0.5,0.2236842105263158,-0.39473684210526316,0.3815789473684211,-0.32894736842105265,0.4605263157894737,-0.375,0.35526315789473684,-0.3092105263157895,0.2565789473684211,-0.2565789473684211 -1,0.0,0.0,-0.16233766233766234,-0.2077922077922078,-0.23376623376623376,-0.474025974025974,-0.15584415584415584,-0.6753246753246753,0.025974025974025976,-0.6883116883116883,0.05844155844155844,-0.7337662337662337,0.18181818181818182,-1.0,0.18181818181818182,-0.948051948051948,0.13636363636363635,-0.8181818181818182,0.2012987012987013,-0.6428571428571429,0.4025974025974026,-0.8766233766233766,0.33116883116883117,-0.7597402597402597,0.22077922077922077,-0.6168831168831169,0.2987012987012987,-0.5064935064935064,0.44805194805194803,-0.6233766233766234,0.3246753246753247,-0.5,0.2077922077922078,-0.4025974025974026,0.36363636363636365,-0.34415584415584416,0.44805194805194803,-0.38961038961038963,0.34415584415584416,-0.3181818181818182,0.24675324675324675,-0.2792207792207792 -1,0.0,0.0,-0.15584415584415584,-0.2012987012987013,-0.23376623376623376,-0.461038961038961,-0.16883116883116883,-0.6558441558441559,0.012987012987012988,-0.6688311688311688,0.045454545454545456,-0.7337662337662337,0.15584415584415584,-1.0,0.16233766233766234,-0.9415584415584416,0.11688311688311688,-0.7987012987012987,0.19480519480519481,-0.6428571428571429,0.37662337662337664,-0.8831168831168831,0.3246753246753247,-0.7597402597402597,0.22727272727272727,-0.6168831168831169,0.2987012987012987,-0.512987012987013,0.44155844155844154,-0.6298701298701299,0.33766233766233766,-0.5,0.22077922077922077,-0.3961038961038961,0.36363636363636365,-0.35714285714285715,0.44805194805194803,-0.38961038961038963,0.35714285714285715,-0.3181818181818182,0.2597402597402597,-0.2727272727272727 -1,0.0,0.0,-0.17419354838709677,-0.17419354838709677,-0.2645161290322581,-0.43870967741935485,-0.1870967741935484,-0.6387096774193548,0.0,-0.6580645161290323,0.0,-0.7354838709677419,0.1032258064516129,-1.0,0.12258064516129032,-0.9290322580645162,0.09032258064516129,-0.7806451612903226,0.16129032258064516,-0.6580645161290323,0.3419354838709677,-0.896774193548387,0.3096774193548387,-0.7677419354838709,0.21935483870967742,-0.6193548387096774,0.2709677419354839,-0.5290322580645161,0.4064516129032258,-0.632258064516129,0.3161290322580645,-0.49032258064516127,0.2064516129032258,-0.38064516129032255,0.33548387096774196,-0.38064516129032255,0.41935483870967744,-0.4064516129032258,0.33548387096774196,-0.3225806451612903,0.23870967741935484,-0.2709677419354839 -1,0.0,0.0,-0.16666666666666666,-0.17307692307692307,-0.2692307692307692,-0.42948717948717946,-0.21153846153846154,-0.6282051282051282,-0.02564102564102564,-0.6474358974358975,-0.03205128205128205,-0.7243589743589743,0.05128205128205128,-1.0,0.08333333333333333,-0.9102564102564102,0.0641025641025641,-0.7628205128205128,0.1282051282051282,-0.6538461538461539,0.28205128205128205,-0.9102564102564102,0.26282051282051283,-0.7564102564102564,0.1858974358974359,-0.5961538461538461,0.23717948717948717,-0.5384615384615384,0.3782051282051282,-0.6730769230769231,0.3076923076923077,-0.5192307692307693,0.20512820512820512,-0.3974358974358974,0.3141025641025641,-0.391025641025641,0.3974358974358974,-0.42948717948717946,0.3269230769230769,-0.33974358974358976,0.24358974358974358,-0.27564102564102566 -1,0.0,0.0,-0.16352201257861634,-0.16981132075471697,-0.27672955974842767,-0.42138364779874216,-0.22641509433962265,-0.6226415094339622,-0.050314465408805034,-0.6477987421383647,-0.06289308176100629,-0.7232704402515723,0.012578616352201259,-1.0,0.03773584905660377,-0.9056603773584906,0.018867924528301886,-0.7547169811320755,0.09433962264150944,-0.6666666666666666,0.23270440251572327,-0.9245283018867925,0.20754716981132076,-0.7735849056603774,0.13836477987421383,-0.610062893081761,0.2138364779874214,-0.559748427672956,0.33962264150943394,-0.7169811320754716,0.2830188679245283,-0.5723270440251572,0.1949685534591195,-0.44654088050314467,0.3018867924528302,-0.4276729559748428,0.37735849056603776,-0.4779874213836478,0.31446540880503143,-0.389937106918239,0.2389937106918239,-0.3081761006289308 -1,0.0,0.0,-0.17834394904458598,-0.17197452229299362,-0.3057324840764331,-0.40764331210191085,-0.25477707006369427,-0.5987261146496815,-0.07643312101910828,-0.643312101910828,-0.11464968152866242,-0.7197452229299363,-0.07006369426751592,-1.0,-0.03821656050955414,-0.910828025477707,-0.050955414012738856,-0.7579617834394905,0.044585987261146494,-0.6751592356687898,0.15286624203821655,-0.9490445859872612,0.1464968152866242,-0.7961783439490446,0.09554140127388536,-0.6178343949044586,0.17197452229299362,-0.5859872611464968,0.28662420382165604,-0.7579617834394905,0.24203821656050956,-0.6178343949044586,0.17197452229299362,-0.4713375796178344,0.2802547770700637,-0.45222929936305734,0.3503184713375796,-0.5159235668789809,0.29936305732484075,-0.4267515923566879,0.22929936305732485,-0.33121019108280253 -1,0.0,0.0,-0.17307692307692307,-0.15384615384615385,-0.3141025641025641,-0.3782051282051282,-0.27564102564102566,-0.5641025641025641,-0.10256410256410256,-0.6153846153846154,-0.1282051282051282,-0.7115384615384616,-0.08333333333333333,-1.0,-0.05128205128205128,-0.9102564102564102,-0.0641025641025641,-0.7435897435897436,0.038461538461538464,-0.6666666666666666,0.1346153846153846,-0.9487179487179487,0.1346153846153846,-0.8012820512820513,0.08974358974358974,-0.6217948717948718,0.16666666666666666,-0.5769230769230769,0.27564102564102566,-0.7564102564102564,0.24358974358974358,-0.6217948717948718,0.1794871794871795,-0.47435897435897434,0.28205128205128205,-0.44871794871794873,0.3525641025641026,-0.5064102564102564,0.30128205128205127,-0.41025641025641024,0.23717948717948717,-0.32051282051282054 -1,0.0,0.0,-0.19607843137254902,-0.12418300653594772,-0.35294117647058826,-0.35294117647058826,-0.32679738562091504,-0.5555555555555556,-0.1437908496732026,-0.6209150326797386,-0.1830065359477124,-0.7124183006535948,-0.16339869281045752,-1.0,-0.1111111111111111,-0.9019607843137255,-0.10457516339869281,-0.7320261437908496,-0.013071895424836602,-0.6862745098039216,0.058823529411764705,-0.9738562091503268,0.0718954248366013,-0.8169934640522876,0.0457516339869281,-0.6339869281045751,0.12418300653594772,-0.6078431372549019,0.21568627450980393,-0.7973856209150327,0.20915032679738563,-0.6535947712418301,0.16339869281045752,-0.5032679738562091,0.24836601307189543,-0.48366013071895425,0.3006535947712418,-0.5359477124183006,0.26143790849673204,-0.43790849673202614,0.20915032679738563,-0.3333333333333333 -1,0.0,0.0,-0.21052631578947367,-0.13157894736842105,-0.3684210526315789,-0.34210526315789475,-0.35526315789473684,-0.5394736842105263,-0.19736842105263158,-0.631578947368421,-0.2236842105263158,-0.7039473684210527,-0.21052631578947367,-1.0,-0.15789473684210525,-0.9144736842105263,-0.13815789473684212,-0.743421052631579,-0.05263157894736842,-0.6842105263157895,0.019736842105263157,-0.9736842105263158,0.039473684210526314,-0.8223684210526315,0.013157894736842105,-0.6447368421052632,0.08552631578947369,-0.6052631578947368,0.17105263157894737,-0.8092105263157895,0.16447368421052633,-0.6710526315789473,0.125,-0.5263157894736842,0.20394736842105263,-0.4868421052631579,0.26973684210526316,-0.5592105263157895,0.23684210526315788,-0.46710526315789475,0.18421052631578946,-0.375 -1,0.0,0.0,-0.2214765100671141,-0.1342281879194631,-0.38926174496644295,-0.348993288590604,-0.37583892617449666,-0.5436241610738255,-0.2080536912751678,-0.6241610738255033,-0.24161073825503357,-0.7181208053691275,-0.24161073825503357,-1.0,-0.19463087248322147,-0.9194630872483222,-0.174496644295302,-0.7583892617449665,-0.06711409395973154,-0.6912751677852349,0.006711409395973154,-0.9798657718120806,0.020134228187919462,-0.8389261744966443,-0.006711409395973154,-0.6644295302013423,0.08053691275167785,-0.6174496644295302,0.16778523489932887,-0.8120805369127517,0.1476510067114094,-0.6778523489932886,0.10067114093959731,-0.5302013422818792,0.2080536912751678,-0.4966442953020134,0.28187919463087246,-0.5771812080536913,0.24161073825503357,-0.4966442953020134,0.174496644295302,-0.40939597315436244 -1,0.0,0.0,-0.22916666666666666,-0.11805555555555555,-0.4097222222222222,-0.3333333333333333,-0.3888888888888889,-0.5416666666666666,-0.2152777777777778,-0.6180555555555556,-0.2708333333333333,-0.7222222222222222,-0.2847222222222222,-1.0,-0.2361111111111111,-0.9375,-0.20833333333333334,-0.7847222222222222,-0.09027777777777778,-0.7152777777777778,-0.020833333333333332,-1.0,0.0,-0.875,-0.020833333333333332,-0.6944444444444444,0.0625,-0.6388888888888888,0.1527777777777778,-0.8333333333333334,0.14583333333333334,-0.7083333333333334,0.09722222222222222,-0.5625,0.19444444444444445,-0.5208333333333334,0.2847222222222222,-0.6111111111111112,0.24305555555555555,-0.5277777777777778,0.18055555555555555,-0.4305555555555556 -1,0.0,0.0,-0.22916666666666666,-0.1111111111111111,-0.4236111111111111,-0.3194444444444444,-0.4166666666666667,-0.5277777777777778,-0.2569444444444444,-0.6180555555555556,-0.2986111111111111,-0.7013888888888888,-0.3333333333333333,-0.9861111111111112,-0.2847222222222222,-0.9097222222222222,-0.2569444444444444,-0.7569444444444444,-0.11805555555555555,-0.7013888888888888,-0.06944444444444445,-1.0,-0.05555555555555555,-0.8888888888888888,-0.06944444444444445,-0.7152777777777778,0.034722222222222224,-0.6319444444444444,0.1111111111111111,-0.8541666666666666,0.09722222222222222,-0.7430555555555556,0.05555555555555555,-0.6041666666666666,0.18055555555555555,-0.5277777777777778,0.2638888888888889,-0.6319444444444444,0.2222222222222222,-0.5694444444444444,0.1597222222222222,-0.4791666666666667 -1,0.0,0.0,-0.24113475177304963,-0.09929078014184398,-0.44680851063829785,-0.2907801418439716,-0.45390070921985815,-0.48936170212765956,-0.28368794326241137,-0.5815602836879432,-0.3404255319148936,-0.6737588652482269,-0.3900709219858156,-0.9716312056737588,-0.3475177304964539,-0.9078014184397163,-0.3049645390070922,-0.7588652482269503,-0.15602836879432624,-0.6879432624113475,-0.12056737588652482,-1.0,-0.09929078014184398,-0.8723404255319149,-0.10638297872340426,-0.7021276595744681,0.0070921985815602835,-0.6312056737588653,0.07092198581560284,-0.8652482269503546,0.05673758865248227,-0.75177304964539,0.028368794326241134,-0.6170212765957447,0.16312056737588654,-0.524822695035461,0.24822695035460993,-0.6524822695035462,0.20567375886524822,-0.5957446808510638,0.14893617021276595,-0.5177304964539007 -1,0.0,0.0,-0.23741007194244604,-0.07913669064748201,-0.460431654676259,-0.26618705035971224,-0.48201438848920863,-0.4748201438848921,-0.31654676258992803,-0.5827338129496403,-0.37410071942446044,-0.6690647482014388,-0.4460431654676259,-0.9568345323741008,-0.37410071942446044,-0.8920863309352518,-0.31654676258992803,-0.7410071942446043,-0.18705035971223022,-0.6906474820143885,-0.17266187050359713,-1.0,-0.1366906474820144,-0.8705035971223022,-0.1366906474820144,-0.6906474820143885,-0.014388489208633094,-0.6474820143884892,0.03597122302158273,-0.8705035971223022,0.03597122302158273,-0.7553956834532374,0.007194244604316547,-0.6115107913669064,0.14388489208633093,-0.5467625899280576,0.22302158273381295,-0.6546762589928058,0.18705035971223022,-0.5827338129496403,0.12949640287769784,-0.4892086330935252 -1,0.0,0.0,-0.24817518248175183,-0.06569343065693431,-0.4744525547445255,-0.24087591240875914,-0.5182481751824818,-0.43795620437956206,-0.3722627737226277,-0.5693430656934306,-0.40875912408759124,-0.6642335766423357,-0.48175182481751827,-0.9343065693430657,-0.4306569343065693,-0.8905109489051095,-0.3795620437956204,-0.7518248175182481,-0.21897810218978103,-0.6934306569343066,-0.19708029197080293,-1.0,-0.17518248175182483,-0.8978102189781022,-0.18248175182481752,-0.7226277372262774,-0.043795620437956206,-0.6423357664233577,0.014598540145985401,-0.8686131386861314,0.0,-0.7518248175182481,-0.0364963503649635,-0.6131386861313869,0.11678832116788321,-0.5401459854014599,0.1897810218978102,-0.656934306569343,0.145985401459854,-0.583941605839416,0.08759124087591241,-0.48905109489051096 -1,0.0,0.0,-0.2595419847328244,-0.04580152671755725,-0.4961832061068702,-0.21374045801526717,-0.5343511450381679,-0.42748091603053434,-0.37404580152671757,-0.5572519083969466,-0.44274809160305345,-0.648854961832061,-0.5343511450381679,-0.9389312977099237,-0.4732824427480916,-0.9007633587786259,-0.4122137404580153,-0.7709923664122137,-0.25190839694656486,-0.6870229007633588,-0.25190839694656486,-1.0,-0.21374045801526717,-0.8854961832061069,-0.20610687022900764,-0.7099236641221374,-0.06870229007633588,-0.6564885496183206,-0.030534351145038167,-0.9007633587786259,-0.030534351145038167,-0.8015267175572519,-0.04580152671755725,-0.6641221374045801,0.10687022900763359,-0.5725190839694656,0.183206106870229,-0.7175572519083969,0.13740458015267176,-0.6564885496183206,0.08396946564885496,-0.5648854961832062 -1,0.0,0.0,-0.25384615384615383,-0.03076923076923077,-0.5076923076923077,-0.18461538461538463,-0.5615384615384615,-0.3923076923076923,-0.4076923076923077,-0.5384615384615384,-0.47692307692307695,-0.6384615384615384,-0.5692307692307692,-0.9076923076923077,-0.5230769230769231,-0.8923076923076924,-0.46923076923076923,-0.7692307692307693,-0.2846153846153846,-0.6846153846153846,-0.2923076923076923,-1.0,-0.2692307692307692,-0.9230769230769231,-0.25384615384615383,-0.7615384615384615,-0.1,-0.6538461538461539,-0.05384615384615385,-0.9076923076923077,-0.06923076923076923,-0.823076923076923,-0.1,-0.6923076923076923,0.09230769230769231,-0.5692307692307692,0.16153846153846155,-0.7230769230769231,0.11538461538461539,-0.676923076923077,0.05384615384615385,-0.5846153846153846 -1,0.0,0.0,-0.256,0.0,-0.52,-0.144,-0.584,-0.344,-0.432,-0.504,-0.536,-0.616,-0.648,-0.872,-0.592,-0.88,-0.52,-0.768,-0.328,-0.688,-0.352,-1.0,-0.304,-0.92,-0.272,-0.744,-0.136,-0.672,-0.104,-0.92,-0.088,-0.808,-0.104,-0.656,0.072,-0.6,0.144,-0.76,0.112,-0.68,0.056,-0.576 -1,0.0,0.0,-0.25203252032520324,0.016260162601626018,-0.5121951219512195,-0.10569105691056911,-0.5772357723577236,-0.3089430894308943,-0.44715447154471544,-0.4796747967479675,-0.5447154471544715,-0.5934959349593496,-0.6747967479674797,-0.8617886178861789,-0.5934959349593496,-0.8211382113821138,-0.4959349593495935,-0.6910569105691057,-0.34146341463414637,-0.6747967479674797,-0.37398373983739835,-1.0,-0.3008130081300813,-0.9024390243902439,-0.2601626016260163,-0.7317073170731707,-0.14634146341463414,-0.6666666666666666,-0.11382113821138211,-0.9349593495934959,-0.08130081300813008,-0.7967479674796748,-0.08943089430894309,-0.6341463414634146,0.056910569105691054,-0.6178861788617886,0.12195121951219512,-0.7886178861788617,0.10569105691056911,-0.6991869918699187,0.06504065040650407,-0.5772357723577236 -1,0.0,0.0,-0.25,0.025,-0.525,-0.1,-0.5916666666666667,-0.2833333333333333,-0.4583333333333333,-0.4583333333333333,-0.575,-0.5833333333333334,-0.7083333333333334,-0.85,-0.6333333333333333,-0.8333333333333334,-0.5333333333333333,-0.7083333333333334,-0.36666666666666664,-0.675,-0.4166666666666667,-1.0,-0.3416666666666667,-0.9083333333333333,-0.2916666666666667,-0.725,-0.16666666666666666,-0.6833333333333333,-0.15833333333333333,-0.9333333333333333,-0.125,-0.8166666666666667,-0.125,-0.6583333333333333,0.041666666666666664,-0.6333333333333333,0.09166666666666666,-0.8,0.08333333333333333,-0.7166666666666667,0.041666666666666664,-0.5916666666666667 -1,0.0,0.0,-0.23728813559322035,0.03389830508474576,-0.5084745762711864,-0.1016949152542373,-0.5084745762711864,-0.2966101694915254,-0.3644067796610169,-0.4661016949152542,-0.576271186440678,-0.576271186440678,-0.7203389830508474,-0.8220338983050848,-0.6610169491525424,-0.847457627118644,-0.559322033898305,-0.7457627118644068,-0.3644067796610169,-0.6779661016949152,-0.423728813559322,-1.0,-0.3389830508474576,-0.9152542372881356,-0.2711864406779661,-0.7457627118644068,-0.16101694915254236,-0.6864406779661016,-0.15254237288135594,-0.9491525423728814,-0.11016949152542373,-0.8135593220338984,-0.11016949152542373,-0.635593220338983,0.0423728813559322,-0.6440677966101694,0.1016949152542373,-0.7966101694915254,0.09322033898305085,-0.7033898305084746,0.06779661016949153,-0.576271186440678 -1,0.0,0.0,-0.24324324324324326,0.07207207207207207,-0.5315315315315315,-0.036036036036036036,-0.5765765765765766,-0.22522522522522523,-0.44144144144144143,-0.44144144144144143,-0.6576576576576577,-0.5495495495495496,-0.8198198198198198,-0.7927927927927928,-0.7027027027027027,-0.7927927927927928,-0.5675675675675675,-0.6756756756756757,-0.45045045045045046,-0.6756756756756757,-0.5315315315315315,-1.0,-0.3963963963963964,-0.9099099099099099,-0.2972972972972973,-0.7297297297297297,-0.23423423423423423,-0.7027027027027027,-0.23423423423423423,-0.972972972972973,-0.14414414414414414,-0.8198198198198198,-0.10810810810810811,-0.6306306306306306,-0.009009009009009009,-0.6666666666666666,0.036036036036036036,-0.8378378378378378,0.07207207207207207,-0.7297297297297297,0.06306306306306306,-0.5765765765765766 -1,0.0,0.0,-0.2376237623762376,0.1188118811881188,-0.5445544554455446,0.0594059405940594,-0.6237623762376238,-0.12871287128712872,-0.5247524752475248,-0.36633663366336633,-0.7623762376237624,-0.5148514851485149,-0.9405940594059405,-0.7722772277227723,-0.8217821782178217,-0.8217821782178217,-0.6633663366336634,-0.7425742574257426,-0.5445544554455446,-0.6732673267326733,-0.6534653465346535,-1.0,-0.4752475247524752,-0.9504950495049505,-0.3564356435643564,-0.7821782178217822,-0.3069306930693069,-0.7227722772277227,-0.31683168316831684,-0.9900990099009901,-0.19801980198019803,-0.8613861386138614,-0.15841584158415842,-0.6732673267326733,-0.06930693069306931,-0.7227722772277227,-0.019801980198019802,-0.8910891089108911,0.0297029702970297,-0.7821782178217822,0.019801980198019802,-0.6435643564356436 -1,0.0,0.0,-0.20202020202020202,0.15151515151515152,-0.5252525252525253,0.13131313131313133,-0.5959595959595959,-0.050505050505050504,-0.5151515151515151,-0.32323232323232326,-0.8181818181818182,-0.45454545454545453,-1.0,-0.6767676767676768,-0.8787878787878788,-0.7272727272727273,-0.7171717171717171,-0.6565656565656566,-0.6060606060606061,-0.6464646464646465,-0.7171717171717171,-0.9494949494949495,-0.5454545454545454,-0.8686868686868687,-0.42424242424242425,-0.7070707070707071,-0.37373737373737376,-0.7171717171717171,-0.36363636363636365,-0.9494949494949495,-0.23232323232323232,-0.7676767676767676,-0.1919191919191919,-0.5757575757575758,-0.13131313131313133,-0.7272727272727273,-0.0707070707070707,-0.8686868686868687,-0.020202020202020204,-0.7272727272727273,-0.030303030303030304,-0.5858585858585859 -1,0.0,0.0,-0.2,0.1619047619047619,-0.4857142857142857,0.14285714285714285,-0.580952380952381,-0.02857142857142857,-0.5333333333333333,-0.29523809523809524,-0.8,-0.3523809523809524,-1.0,-0.5619047619047619,-0.8666666666666667,-0.6095238095238096,-0.6761904761904762,-0.5619047619047619,-0.6095238095238096,-0.5428571428571428,-0.7428571428571429,-0.8285714285714286,-0.5428571428571428,-0.7523809523809524,-0.4095238095238095,-0.6095238095238096,-0.4,-0.6285714285714286,-0.4,-0.8666666666666667,-0.2571428571428571,-0.7142857142857143,-0.2,-0.5333333333333333,-0.17142857142857143,-0.6476190476190476,-0.13333333333333333,-0.819047619047619,-0.06666666666666667,-0.7047619047619048,-0.06666666666666667,-0.5619047619047619 -1,0.0,0.0,-0.17272727272727273,0.15454545454545454,-0.42727272727272725,0.15454545454545454,-0.5272727272727272,0.00909090909090909,-0.5363636363636364,-0.22727272727272727,-0.8090909090909091,-0.2727272727272727,-1.0,-0.44545454545454544,-0.8727272727272727,-0.509090909090909,-0.7090909090909091,-0.5,-0.6454545454545455,-0.4727272727272727,-0.7727272727272727,-0.7181818181818181,-0.5909090909090909,-0.6636363636363637,-0.4818181818181818,-0.5636363636363636,-0.45454545454545453,-0.5818181818181818,-0.42727272727272725,-0.7818181818181819,-0.3,-0.6272727272727273,-0.2636363636363636,-0.4636363636363636,-0.24545454545454545,-0.6454545454545455,-0.19090909090909092,-0.7909090909090909,-0.13636363636363635,-0.6636363636363637,-0.14545454545454545,-0.5363636363636364 -1,0.0,0.0,-0.1565217391304348,0.16521739130434782,-0.3826086956521739,0.21739130434782608,-0.43478260869565216,0.11304347826086956,-0.4434782608695652,-0.13043478260869565,-0.782608695652174,-0.1391304347826087,-1.0,-0.2608695652173913,-0.8782608695652174,-0.3217391304347826,-0.7043478260869566,-0.3217391304347826,-0.6521739130434783,-0.34782608695652173,-0.7739130434782608,-0.6,-0.6086956521739131,-0.5652173913043478,-0.5043478260869565,-0.46956521739130436,-0.4782608695652174,-0.48695652173913045,-0.4782608695652174,-0.7217391304347827,-0.3565217391304348,-0.5826086956521739,-0.3217391304347826,-0.4260869565217391,-0.28695652173913044,-0.5565217391304348,-0.22608695652173913,-0.7130434782608696,-0.17391304347826086,-0.591304347826087,-0.2,-0.4608695652173913 -1,0.0,0.0,-0.10743801652892562,0.2066115702479339,-0.30578512396694213,0.3140495867768595,-0.4049586776859504,0.2231404958677686,-0.4462809917355372,-0.03305785123966942,-0.7520661157024794,0.008264462809917356,-1.0,-0.08264462809917356,-0.8677685950413223,-0.1652892561983471,-0.6611570247933884,-0.2066115702479339,-0.6694214876033058,-0.21487603305785125,-0.8099173553719008,-0.4380165289256198,-0.6198347107438017,-0.45454545454545453,-0.45454545454545453,-0.3884297520661157,-0.5289256198347108,-0.371900826446281,-0.49586776859504134,-0.5537190082644629,-0.32231404958677684,-0.4380165289256198,-0.2396694214876033,-0.2809917355371901,-0.371900826446281,-0.4793388429752066,-0.2975206611570248,-0.5950413223140496,-0.19834710743801653,-0.48760330578512395,-0.1652892561983471,-0.35537190082644626 -1,0.0,0.0,-0.07563025210084033,0.226890756302521,-0.23529411764705882,0.3697478991596639,-0.33613445378151263,0.2857142857142857,-0.4117647058823529,0.025210084033613446,-0.7478991596638656,0.058823529411764705,-1.0,-0.04201680672268908,-0.8319327731092437,-0.11764705882352941,-0.6218487394957983,-0.16806722689075632,-0.6638655462184874,-0.18487394957983194,-0.8151260504201681,-0.42857142857142855,-0.5882352941176471,-0.453781512605042,-0.42857142857142855,-0.42016806722689076,-0.5378151260504201,-0.36134453781512604,-0.46218487394957986,-0.5546218487394958,-0.2689075630252101,-0.4117647058823529,-0.19327731092436976,-0.2689075630252101,-0.40336134453781514,-0.48739495798319327,-0.29411764705882354,-0.6218487394957983,-0.19327731092436976,-0.48739495798319327,-0.16806722689075632,-0.3445378151260504 -1,0.0,0.0,-0.02459016393442623,0.2459016393442623,-0.18032786885245902,0.4344262295081967,-0.3114754098360656,0.39344262295081966,-0.4098360655737705,0.14754098360655737,-0.7131147540983607,0.14754098360655737,-1.0,0.09016393442622951,-0.819672131147541,0.00819672131147541,-0.6065573770491803,-0.06557377049180328,-0.6639344262295082,-0.10655737704918032,-0.8688524590163934,-0.3114754098360656,-0.6311475409836066,-0.36065573770491804,-0.4344262295081967,-0.3360655737704918,-0.5655737704918032,-0.29508196721311475,-0.5,-0.45081967213114754,-0.27049180327868855,-0.3360655737704918,-0.16393442622950818,-0.20491803278688525,-0.45081967213114754,-0.4344262295081967,-0.36885245901639346,-0.5491803278688525,-0.23770491803278687,-0.4426229508196721,-0.1885245901639344,-0.3114754098360656 -1,0.0,0.0,-0.024793388429752067,0.24793388429752067,-0.18181818181818182,0.45454545454545453,-0.2975206611570248,0.4297520661157025,-0.4049586776859504,0.2066115702479339,-0.71900826446281,0.18181818181818182,-1.0,0.1322314049586777,-0.8347107438016529,0.04132231404958678,-0.6198347107438017,-0.03305785123966942,-0.6776859504132231,-0.0743801652892562,-0.9008264462809917,-0.256198347107438,-0.6528925619834711,-0.2975206611570248,-0.4628099173553719,-0.2727272727272727,-0.5867768595041323,-0.2809917355371901,-0.5537190082644629,-0.4214876033057851,-0.3140495867768595,-0.32231404958677684,-0.21487603305785125,-0.19834710743801653,-0.4793388429752066,-0.4297520661157025,-0.3884297520661157,-0.5289256198347108,-0.24793388429752067,-0.4132231404958678,-0.21487603305785125,-0.2975206611570248 -1,0.0,0.0,-0.01652892561983471,0.2396694214876033,-0.1652892561983471,0.45454545454545453,-0.2892561983471074,0.4297520661157025,-0.4049586776859504,0.18181818181818182,-0.71900826446281,0.15702479338842976,-1.0,0.11570247933884298,-0.8264462809917356,0.008264462809917356,-0.6115702479338843,-0.06611570247933884,-0.6776859504132231,-0.09090909090909091,-0.8760330578512396,-0.2809917355371901,-0.5950413223140496,-0.3305785123966942,-0.38016528925619836,-0.2892561983471074,-0.5867768595041323,-0.2892561983471074,-0.5206611570247934,-0.4297520661157025,-0.2727272727272727,-0.33884297520661155,-0.1487603305785124,-0.21487603305785125,-0.4793388429752066,-0.4462809917355372,-0.39669421487603307,-0.5537190082644629,-0.24793388429752067,-0.4462809917355372,-0.18181818181818182,-0.3140495867768595 -1,0.0,0.0,-0.03333333333333333,0.24166666666666667,-0.19166666666666668,0.44166666666666665,-0.30833333333333335,0.425,-0.4083333333333333,0.2,-0.7083333333333334,0.15,-1.0,0.09166666666666666,-0.8416666666666667,-0.008333333333333333,-0.625,-0.075,-0.6583333333333333,-0.09166666666666666,-0.8583333333333333,-0.2916666666666667,-0.5833333333333334,-0.3416666666666667,-0.36666666666666664,-0.31666666666666665,-0.5583333333333333,-0.2916666666666667,-0.5,-0.4083333333333333,-0.25833333333333336,-0.325,-0.13333333333333333,-0.20833333333333334,-0.44166666666666665,-0.43333333333333335,-0.36666666666666664,-0.525,-0.21666666666666667,-0.425,-0.15833333333333333,-0.3 -1,0.0,0.0,-0.0743801652892562,0.2231404958677686,-0.24793388429752067,0.3884297520661157,-0.38016528925619836,0.35537190082644626,-0.47107438016528924,0.1487603305785124,-0.7272727272727273,0.0743801652892562,-1.0,0.008264462809917356,-0.8512396694214877,-0.08264462809917356,-0.6363636363636364,-0.14049586776859505,-0.6528925619834711,-0.1487603305785124,-0.859504132231405,-0.3305785123966942,-0.6198347107438017,-0.4132231404958678,-0.4049586776859504,-0.4049586776859504,-0.5454545454545454,-0.3305785123966942,-0.5619834710743802,-0.45454545454545453,-0.3305785123966942,-0.39669421487603307,-0.1652892561983471,-0.2892561983471074,-0.4049586776859504,-0.4628099173553719,-0.39669421487603307,-0.5619834710743802,-0.256198347107438,-0.49586776859504134,-0.15702479338842976,-0.39669421487603307 -1,0.0,0.0,-0.125,0.20833333333333334,-0.35,0.3,-0.43333333333333335,0.18333333333333332,-0.43333333333333335,-0.016666666666666666,-0.7166666666666667,-0.008333333333333333,-1.0,-0.10833333333333334,-0.8916666666666667,-0.18333333333333332,-0.7,-0.2,-0.625,-0.225,-0.8083333333333333,-0.43333333333333335,-0.6166666666666667,-0.49166666666666664,-0.45,-0.4583333333333333,-0.49166666666666664,-0.39166666666666666,-0.5166666666666667,-0.5333333333333333,-0.3416666666666667,-0.4583333333333333,-0.20833333333333334,-0.3416666666666667,-0.3333333333333333,-0.5,-0.3416666666666667,-0.6166666666666667,-0.225,-0.5333333333333333,-0.15833333333333333,-0.4166666666666667 -1,0.0,0.0,-0.14912280701754385,0.20175438596491227,-0.39473684210526316,0.3157894736842105,-0.5263157894736842,0.22807017543859648,-0.5175438596491229,0.017543859649122806,-0.7192982456140351,-0.10526315789473684,-1.0,-0.2807017543859649,-0.8859649122807017,-0.3333333333333333,-0.7105263157894737,-0.32456140350877194,-0.5877192982456141,-0.30701754385964913,-0.7894736842105263,-0.5526315789473685,-0.6140350877192983,-0.5350877192982456,-0.4649122807017544,-0.4473684210526316,-0.43859649122807015,-0.4473684210526316,-0.5087719298245614,-0.6403508771929824,-0.3684210526315789,-0.543859649122807,-0.2631578947368421,-0.4298245614035088,-0.2631578947368421,-0.5263157894736842,-0.30701754385964913,-0.7017543859649122,-0.21929824561403508,-0.6140350877192983,-0.16666666666666666,-0.5 -1,0.0,0.0,-0.2018348623853211,0.1926605504587156,-0.46788990825688076,0.26605504587155965,-0.5963302752293578,0.1651376146788991,-0.5596330275229358,-0.027522935779816515,-0.7431192660550459,-0.22935779816513763,-1.0,-0.46788990825688076,-0.8715596330275229,-0.5045871559633027,-0.7064220183486238,-0.46788990825688076,-0.5596330275229358,-0.4036697247706422,-0.6880733944954128,-0.6972477064220184,-0.5229357798165137,-0.6238532110091743,-0.42201834862385323,-0.5045871559633027,-0.3669724770642202,-0.5137614678899083,-0.4036697247706422,-0.7247706422018348,-0.30275229357798167,-0.5963302752293578,-0.23853211009174313,-0.45871559633027525,-0.1926605504587156,-0.5688073394495413,-0.1926605504587156,-0.7522935779816514,-0.13761467889908258,-0.6422018348623854,-0.11926605504587157,-0.5137614678899083 -1,0.0,0.0,-0.2604166666666667,0.19791666666666666,-0.5833333333333334,0.2708333333333333,-0.7395833333333334,0.15625,-0.6666666666666666,-0.010416666666666666,-0.7708333333333334,-0.375,-1.0,-0.6458333333333334,-0.8958333333333334,-0.625,-0.7604166666666666,-0.5416666666666666,-0.5625,-0.5625,-0.625,-0.84375,-0.46875,-0.7083333333333334,-0.375,-0.5729166666666666,-0.3645833333333333,-0.6666666666666666,-0.3020833333333333,-0.78125,-0.21875,-0.5833333333333334,-0.16666666666666666,-0.4479166666666667,-0.16666666666666666,-0.7083333333333334,-0.11458333333333333,-0.8020833333333334,-0.052083333333333336,-0.6354166666666666,-0.041666666666666664,-0.4895833333333333 -1,0.0,0.0,-0.3068181818181818,0.1590909090909091,-0.6818181818181818,0.17045454545454544,-0.8636363636363636,0.03409090909090909,-0.75,-0.13636363636363635,-0.75,-0.5227272727272727,-0.9090909090909091,-0.8409090909090909,-0.7954545454545454,-0.8068181818181818,-0.6590909090909091,-0.6818181818181818,-0.4772727272727273,-0.6590909090909091,-0.5113636363636364,-1.0,-0.375,-0.875,-0.26136363636363635,-0.7159090909090909,-0.22727272727272727,-0.7159090909090909,-0.18181818181818182,-0.9318181818181818,-0.10227272727272728,-0.7727272727272727,-0.03409090909090909,-0.6022727272727273,0.011363636363636364,-0.7159090909090909,0.03409090909090909,-0.8977272727272727,0.09090909090909091,-0.75,0.11363636363636363,-0.5795454545454546 -1,0.0,0.0,-0.32967032967032966,0.10989010989010989,-0.6813186813186813,0.08791208791208792,-0.8241758241758241,-0.04395604395604396,-0.6813186813186813,-0.1978021978021978,-0.6373626373626373,-0.5824175824175825,-0.7362637362637363,-0.8791208791208791,-0.5934065934065934,-0.8131868131868132,-0.45054945054945056,-0.6593406593406593,-0.38461538461538464,-0.6813186813186813,-0.3516483516483517,-1.0,-0.18681318681318682,-0.8571428571428571,-0.06593406593406594,-0.6483516483516484,-0.15384615384615385,-0.6923076923076923,-0.07692307692307693,-0.9010989010989011,0.01098901098901099,-0.7252747252747253,0.06593406593406594,-0.5164835164835165,0.03296703296703297,-0.6593406593406593,0.08791208791208792,-0.8351648351648352,0.15384615384615385,-0.7032967032967034,0.17582417582417584,-0.5384615384615384 -1,0.0,0.0,-0.34831460674157305,0.11235955056179775,-0.7078651685393258,0.056179775280898875,-0.8426966292134831,-0.0898876404494382,-0.7191011235955056,-0.24719101123595505,-0.5955056179775281,-0.6067415730337079,-0.6404494382022472,-0.9325842696629213,-0.5056179775280899,-0.8539325842696629,-0.39325842696629215,-0.6853932584269663,-0.3258426966292135,-0.6741573033707865,-0.24719101123595505,-1.0,-0.10112359550561797,-0.8202247191011236,-0.011235955056179775,-0.5955056179775281,-0.0898876404494382,-0.6629213483146067,0.033707865168539325,-0.8539325842696629,0.10112359550561797,-0.6741573033707865,0.1348314606741573,-0.4606741573033708,0.0898876404494382,-0.6067415730337079,0.1797752808988764,-0.7865168539325843,0.24719101123595505,-0.651685393258427,0.25842696629213485,-0.4943820224719101 -1,0.0,0.0,-0.3793103448275862,0.10344827586206896,-0.735632183908046,0.034482758620689655,-0.8390804597701149,-0.12643678160919541,-0.6781609195402298,-0.2988505747126437,-0.5862068965517241,-0.6666666666666666,-0.5632183908045977,-1.0,-0.40229885057471265,-0.8505747126436781,-0.28735632183908044,-0.632183908045977,-0.2988505747126437,-0.7241379310344828,-0.14942528735632185,-1.0,0.022988505747126436,-0.7471264367816092,0.09195402298850575,-0.4942528735632184,-0.06896551724137931,-0.7011494252873564,0.11494252873563218,-0.8045977011494253,0.19540229885057472,-0.5632183908045977,0.20689655172413793,-0.3333333333333333,0.11494252873563218,-0.632183908045977,0.25287356321839083,-0.7586206896551724,0.3218390804597701,-0.5862068965517241,0.3103448275862069,-0.41379310344827586 -1,0.0,0.0,-0.3020833333333333,0.0625,-0.6354166666666666,-0.041666666666666664,-0.7395833333333334,-0.19791666666666666,-0.59375,-0.3333333333333333,-0.5,-0.6979166666666666,-0.375,-1.0,-0.20833333333333334,-0.78125,-0.13541666666666666,-0.5520833333333334,-0.23958333333333334,-0.7395833333333334,-0.010416666666666666,-0.9270833333333334,0.125,-0.625,0.13541666666666666,-0.3958333333333333,-0.020833333333333332,-0.7083333333333334,0.19791666666666666,-0.7916666666666666,0.2604166666666667,-0.53125,0.23958333333333334,-0.3125,0.15625,-0.6458333333333334,0.3125,-0.75,0.34375,-0.5729166666666666,0.3020833333333333,-0.40625 -1,0.0,0.0,-0.30526315789473685,0.031578947368421054,-0.6210526315789474,-0.07368421052631578,-0.7157894736842105,-0.23157894736842105,-0.5473684210526316,-0.3473684210526316,-0.42105263157894735,-0.7789473684210526,-0.2,-1.0,-0.08421052631578947,-0.7263157894736842,-0.06315789473684211,-0.4842105263157895,-0.1368421052631579,-0.8105263157894737,0.1368421052631579,-0.9157894736842105,0.2,-0.5684210526315789,0.15789473684210525,-0.3368421052631579,0.10526315789473684,-0.7684210526315789,0.3684210526315789,-0.7578947368421053,0.35789473684210527,-0.45263157894736844,0.28421052631578947,-0.25263157894736843,0.30526315789473685,-0.6736842105263158,0.4842105263157895,-0.7263157894736842,0.4631578947368421,-0.5263157894736842,0.3684210526315789,-0.3684210526315789 -1,0.0,0.0,-0.3333333333333333,0.043010752688172046,-0.6666666666666666,-0.07526881720430108,-0.7634408602150538,-0.23655913978494625,-0.5698924731182796,-0.3548387096774194,-0.3870967741935484,-0.7634408602150538,-0.13978494623655913,-1.0,-0.07526881720430108,-0.7311827956989247,-0.0967741935483871,-0.5161290322580645,-0.07526881720430108,-0.7956989247311828,0.22580645161290322,-0.8279569892473119,0.20430107526881722,-0.4731182795698925,0.08602150537634409,-0.2903225806451613,0.17204301075268819,-0.7526881720430108,0.45161290322580644,-0.6451612903225806,0.3548387096774194,-0.3548387096774194,0.21505376344086022,-0.20430107526881722,0.3655913978494624,-0.6666666666666666,0.5806451612903226,-0.6129032258064516,0.4946236559139785,-0.3978494623655914,0.34408602150537637,-0.26881720430107525 -1,0.0,0.0,-0.32989690721649484,0.0,-0.6494845360824743,-0.14432989690721648,-0.7525773195876289,-0.29896907216494845,-0.5567010309278351,-0.4020618556701031,-0.35051546391752575,-0.8041237113402062,-0.13402061855670103,-1.0,-0.030927835051546393,-0.7010309278350515,-0.030927835051546393,-0.4742268041237113,-0.05154639175257732,-0.8247422680412371,0.21649484536082475,-0.8144329896907216,0.21649484536082475,-0.4536082474226804,0.1134020618556701,-0.27835051546391754,0.1958762886597938,-0.7628865979381443,0.44329896907216493,-0.6185567010309279,0.36082474226804123,-0.31958762886597936,0.2268041237113402,-0.18556701030927836,0.38144329896907214,-0.6701030927835051,0.5979381443298969,-0.5670103092783505,0.4948453608247423,-0.35051546391752575,0.3402061855670103,-0.25773195876288657 -1,0.0,0.0,-0.35106382978723405,-0.02127659574468085,-0.7021276595744681,-0.18085106382978725,-0.8191489361702128,-0.3404255319148936,-0.6276595744680851,-0.44680851063829785,-0.3617021276595745,-0.851063829787234,-0.1276595744680851,-1.0,-0.05319148936170213,-0.7021276595744681,-0.06382978723404255,-0.4574468085106383,-0.0425531914893617,-0.8829787234042553,0.22340425531914893,-0.776595744680851,0.19148936170212766,-0.39361702127659576,0.09574468085106383,-0.20212765957446807,0.2127659574468085,-0.8191489361702128,0.43617021276595747,-0.574468085106383,0.3404255319148936,-0.26595744680851063,0.20212765957446807,-0.11702127659574468,0.40425531914893614,-0.7127659574468085,0.5957446808510638,-0.5425531914893617,0.4787234042553192,-0.3191489361702128,0.3191489361702128,-0.2127659574468085 -1,0.0,0.0,-0.40229885057471265,-0.05747126436781609,-0.8045977011494253,-0.2413793103448276,-0.9425287356321839,-0.42528735632183906,-0.7126436781609196,-0.5287356321839081,-0.40229885057471265,-0.9540229885057471,-0.16091954022988506,-0.9655172413793104,-0.09195402298850575,-0.6436781609195402,-0.10344827586206896,-0.39080459770114945,-0.05747126436781609,-1.0,0.19540229885057472,-0.8275862068965517,0.16091954022988506,-0.42528735632183906,0.08045977011494253,-0.19540229885057472,0.21839080459770116,-0.9195402298850575,0.4367816091954023,-0.6436781609195402,0.3448275862068966,-0.2988505747126437,0.21839080459770116,-0.12643678160919541,0.4367816091954023,-0.8045977011494253,0.5977011494252874,-0.5977011494252874,0.4942528735632184,-0.3563218390804598,0.3563218390804598,-0.22988505747126436 -1,0.0,0.0,-0.3950617283950617,-0.1111111111111111,-0.8024691358024691,-0.3333333333333333,-1.0,-0.5061728395061729,-0.8148148148148148,-0.5432098765432098,-0.3950617283950617,-0.9259259259259259,-0.2716049382716049,-0.9382716049382716,-0.2716049382716049,-0.5925925925925926,-0.30864197530864196,-0.345679012345679,-0.024691358024691357,-0.9629629629629629,0.13580246913580246,-0.8888888888888888,0.07407407407407407,-0.48148148148148145,-0.012345679012345678,-0.2222222222222222,0.2839506172839506,-0.9012345679012346,0.43209876543209874,-0.7283950617283951,0.32098765432098764,-0.38271604938271603,0.20987654320987653,-0.19753086419753085,0.5061728395061729,-0.7901234567901234,0.6296296296296297,-0.654320987654321,0.5185185185185185,-0.4074074074074074,0.38271604938271603,-0.2962962962962963 -1,0.0,0.0,-0.3902439024390244,-0.18292682926829268,-0.7926829268292683,-0.4268292682926829,-0.9634146341463414,-0.5609756097560976,-0.8170731707317073,-0.4878048780487805,-0.2926829268292683,-1.0,-0.2073170731707317,-0.8048780487804879,-0.25609756097560976,-0.5121951219512195,-0.3170731707317073,-0.34146341463414637,0.0975609756097561,-1.0,0.17073170731707318,-0.7195121951219512,0.024390243902439025,-0.4024390243902439,-0.08536585365853659,-0.21951219512195122,0.3902439024390244,-0.8658536585365854,0.4268292682926829,-0.5975609756097561,0.2682926829268293,-0.35365853658536583,0.14634146341463414,-0.23170731707317074,0.5853658536585366,-0.7073170731707317,0.6097560975609756,-0.5,0.45121951219512196,-0.2926829268292683,0.32926829268292684,-0.2073170731707317 -1,0.0,0.0,-0.41025641025641024,-0.16666666666666666,-0.8076923076923077,-0.3974358974358974,-0.9615384615384616,-0.5128205128205128,-0.7307692307692307,-0.4230769230769231,-0.20512820512820512,-1.0,-0.15384615384615385,-0.7948717948717948,-0.23076923076923078,-0.46153846153846156,-0.2948717948717949,-0.2948717948717949,0.19230769230769232,-0.9871794871794872,0.19230769230769232,-0.6025641025641025,0.038461538461538464,-0.2692307692307692,-0.07692307692307693,-0.1282051282051282,0.47435897435897434,-0.8205128205128205,0.46153846153846156,-0.47435897435897434,0.3076923076923077,-0.23076923076923078,0.19230769230769232,-0.1282051282051282,0.6923076923076923,-0.6410256410256411,0.6923076923076923,-0.4358974358974359,0.5384615384615384,-0.24358974358974358,0.4358974358974359,-0.15384615384615385 -1,0.0,0.0,-0.4533333333333333,-0.12,-0.8666666666666667,-0.37333333333333335,-1.0,-0.48,-0.7866666666666666,-0.36,-0.21333333333333335,-0.9466666666666667,-0.13333333333333333,-0.7866666666666666,-0.24,-0.5066666666666667,-0.3333333333333333,-0.37333333333333335,0.21333333333333335,-0.9333333333333333,0.14666666666666667,-0.44,-0.04,-0.12,-0.13333333333333333,-0.04,0.49333333333333335,-0.7733333333333333,0.44,-0.29333333333333333,0.25333333333333335,-0.06666666666666667,0.16,-0.013333333333333334,0.7066666666666667,-0.5733333333333334,0.68,-0.28,0.52,-0.09333333333333334,0.38666666666666666,-0.04 -1,0.0,0.0,-0.44871794871794873,-0.15384615384615385,-0.8461538461538461,-0.3974358974358974,-1.0,-0.46153846153846156,-0.8076923076923077,-0.32051282051282054,-0.19230769230769232,-0.8846153846153846,-0.15384615384615385,-0.7307692307692307,-0.2564102564102564,-0.48717948717948717,-0.3076923076923077,-0.3717948717948718,0.23076923076923078,-0.8717948717948718,0.038461538461538464,-0.2948717948717949,-0.1282051282051282,-0.01282051282051282,-0.1794871794871795,0.01282051282051282,0.5,-0.6923076923076923,0.34615384615384615,-0.1794871794871795,0.1794871794871795,0.01282051282051282,0.11538461538461539,0.01282051282051282,0.6923076923076923,-0.48717948717948717,0.6153846153846154,-0.16666666666666666,0.44871794871794873,-0.01282051282051282,0.34615384615384615,0.0 -1,0.0,0.0,-0.43209876543209874,-0.14814814814814814,-0.8024691358024691,-0.3950617283950617,-1.0,-0.4567901234567901,-0.8518518518518519,-0.3333333333333333,-0.19753086419753085,-0.8148148148148148,-0.18518518518518517,-0.5679012345679012,-0.2716049382716049,-0.38271604938271603,-0.30864197530864196,-0.32098765432098764,0.20987654320987653,-0.7901234567901234,-0.04938271604938271,-0.14814814814814814,-0.20987654320987653,0.07407407407407407,-0.24691358024691357,0.04938271604938271,0.4567901234567901,-0.6049382716049383,0.24691358024691357,-0.04938271604938271,0.08641975308641975,0.08641975308641975,0.04938271604938271,0.04938271604938271,0.6296296296296297,-0.3950617283950617,0.5061728395061729,-0.04938271604938271,0.35802469135802467,0.04938271604938271,0.2839506172839506,0.037037037037037035 -1,0.0,0.0,-0.44155844155844154,-0.16883116883116883,-0.8441558441558441,-0.4675324675324675,-1.0,-0.5454545454545454,-0.8441558441558441,-0.4025974025974026,-0.18181818181818182,-0.8961038961038961,-0.16883116883116883,-0.6233766233766234,-0.2597402597402597,-0.33766233766233766,-0.2987012987012987,-0.23376623376623376,0.23376623376623376,-0.8311688311688312,0.06493506493506493,-0.2857142857142857,-0.11688311688311688,0.03896103896103896,-0.16883116883116883,0.06493506493506493,0.4935064935064935,-0.6363636363636364,0.36363636363636365,-0.18181818181818182,0.18181818181818182,0.03896103896103896,0.11688311688311688,0.05194805194805195,0.6883116883116883,-0.42857142857142855,0.6363636363636364,-0.16883116883116883,0.4805194805194805,-0.025974025974025976,0.38961038961038963,-0.012987012987012988 -1,0.0,0.0,-0.425,-0.1625,-0.8125,-0.4625,-1.0,-0.525,-0.9,-0.375,-0.2875,-0.8625,-0.3,-0.625,-0.375,-0.325,-0.45,-0.2,0.125,-0.8125,0.0125,-0.3125,-0.1375,0.025,-0.225,0.0625,0.4,-0.625,0.3125,-0.175,0.1375,0.0625,0.025,0.075,0.6125,-0.425,0.5625,-0.125,0.4,0.0375,0.3,0.0375 -1,0.0,0.0,-0.40789473684210525,-0.17105263157894737,-0.8026315789473685,-0.47368421052631576,-1.0,-0.5657894736842105,-0.9210526315789473,-0.42105263157894735,-0.3684210526315789,-0.8552631578947368,-0.40789473684210525,-0.7105263157894737,-0.4473684210526316,-0.34210526315789475,-0.5263157894736842,-0.13157894736842105,0.039473684210526314,-0.8026315789473685,0.07894736842105263,-0.5263157894736842,-0.039473684210526314,-0.10526315789473684,-0.14473684210526316,0.039473684210526314,0.3684210526315789,-0.6447368421052632,0.4342105263157895,-0.40789473684210525,0.2631578947368421,-0.06578947368421052,0.10526315789473684,0.06578947368421052,0.618421052631579,-0.4473684210526316,0.6710526315789473,-0.2894736842105263,0.5263157894736842,-0.05263157894736842,0.3815789473684211,0.02631578947368421 -1,0.0,0.0,-0.4,-0.175,-0.7625,-0.5,-1.0,-0.6625,-1.0,-0.65,-0.525,-0.9625,-0.625,-0.9,-0.65,-0.55,-0.7125,-0.2875,-0.1375,-0.9625,-0.125,-0.7875,-0.2,-0.3625,-0.3,-0.125,0.2125,-0.825,0.2625,-0.625,0.1125,-0.2625,-0.0375,-0.075,0.4875,-0.65,0.5375,-0.475,0.4,-0.2125,0.2625,-0.1125 -1,0.0,0.0,-0.3953488372093023,-0.23255813953488372,-0.7325581395348837,-0.5116279069767442,-0.9418604651162791,-0.6627906976744186,-0.9651162790697675,-0.7325581395348837,-0.5116279069767442,-0.9883720930232558,-0.7093023255813954,-0.9767441860465116,-0.7790697674418605,-0.7325581395348837,-0.813953488372093,-0.5465116279069767,-0.1511627906976744,-1.0,-0.19767441860465115,-0.7209302325581395,-0.313953488372093,-0.37209302325581395,-0.4186046511627907,-0.19767441860465115,0.16279069767441862,-0.8604651162790697,0.18604651162790697,-0.4883720930232558,-0.011627906976744186,-0.20930232558139536,-0.16279069767441862,-0.08139534883720931,0.43023255813953487,-0.6627906976744186,0.46511627906976744,-0.36046511627906974,0.27906976744186046,-0.13953488372093023,0.12790697674418605,-0.06976744186046512 -1,0.0,0.0,-0.37362637362637363,-0.12087912087912088,-0.6373626373626373,-0.25274725274725274,-0.7362637362637363,-0.2967032967032967,-0.6593406593406593,-0.34065934065934067,-0.6153846153846154,-0.8901098901098901,-0.8901098901098901,-1.0,-0.967032967032967,-0.8241758241758241,-0.989010989010989,-0.6153846153846154,-0.27472527472527475,-0.9340659340659341,-0.38461538461538464,-0.9010989010989011,-0.4725274725274725,-0.5384615384615384,-0.5384615384615384,-0.31868131868131866,0.04395604395604396,-0.8241758241758241,0.0,-0.6153846153846154,-0.17582417582417584,-0.2857142857142857,-0.31868131868131866,-0.12087912087912088,0.3076923076923077,-0.6483516483516484,0.2857142857142857,-0.42857142857142855,0.0989010989010989,-0.1978021978021978,-0.04395604395604396,-0.0989010989010989 -1,0.0,0.0,-0.34065934065934067,-0.10989010989010989,-0.5824175824175825,-0.3076923076923077,-0.6813186813186813,-0.4175824175824176,-0.6043956043956044,-0.45054945054945056,-0.5274725274725275,-0.8461538461538461,-0.7582417582417582,-1.0,-0.8351648351648352,-0.8351648351648352,-0.8461538461538461,-0.6153846153846154,-0.1978021978021978,-0.8241758241758241,-0.2967032967032967,-0.8901098901098901,-0.37362637362637363,-0.5384615384615384,-0.43956043956043955,-0.2857142857142857,0.0989010989010989,-0.6923076923076923,0.07692307692307693,-0.6483516483516484,-0.0989010989010989,-0.31868131868131866,-0.21978021978021978,-0.12087912087912088,0.3626373626373626,-0.4945054945054945,0.34065934065934067,-0.4175824175824176,0.17582417582417584,-0.1978021978021978,0.054945054945054944,-0.07692307692307693 -1,0.0,0.0,-0.4044943820224719,-0.11235955056179775,-0.651685393258427,-0.34831460674157305,-0.7528089887640449,-0.48314606741573035,-0.7303370786516854,-0.550561797752809,-0.4943820224719101,-0.8651685393258427,-0.7528089887640449,-1.0,-0.8764044943820225,-0.8314606741573034,-0.9438202247191011,-0.6179775280898876,-0.1797752808988764,-0.8202247191011236,-0.34831460674157305,-0.8539325842696629,-0.48314606741573035,-0.5280898876404494,-0.5842696629213483,-0.2808988764044944,0.11235955056179775,-0.6629213483146067,0.0,-0.5617977528089888,-0.20224719101123595,-0.2696629213483146,-0.33707865168539325,-0.07865168539325842,0.3707865168539326,-0.449438202247191,0.2808988764044944,-0.34831460674157305,0.10112359550561797,-0.15730337078651685,-0.02247191011235955,-0.02247191011235955 -1,0.0,0.0,-0.39080459770114945,-0.04597701149425287,-0.6666666666666666,-0.19540229885057472,-0.6666666666666666,-0.21839080459770116,-0.4827586206896552,-0.2413793103448276,-0.5287356321839081,-0.8390804597701149,-0.7586206896551724,-1.0,-0.9080459770114943,-0.8275862068965517,-1.0,-0.6091954022988506,-0.19540229885057472,-0.7931034482758621,-0.3563218390804598,-0.8620689655172413,-0.5287356321839081,-0.5172413793103449,-0.6551724137931034,-0.27586206896551724,0.10344827586206896,-0.6206896551724138,0.0,-0.5402298850574713,-0.21839080459770116,-0.25287356321839083,-0.3563218390804598,-0.06896551724137931,0.3448275862068966,-0.3793103448275862,0.25287356321839083,-0.28735632183908044,0.06896551724137931,-0.10344827586206896,-0.06896551724137931,0.011494252873563218 -1,0.0,0.0,-0.45454545454545453,-0.18181818181818182,-0.7159090909090909,-0.38636363636363635,-0.8409090909090909,-0.4772727272727273,-0.8522727272727273,-0.5113636363636364,-0.45454545454545453,-0.8977272727272727,-0.7272727272727273,-0.9886363636363636,-0.8977272727272727,-0.8068181818181818,-1.0,-0.5795454545454546,-0.11363636363636363,-0.7727272727272727,-0.3522727272727273,-0.75,-0.5909090909090909,-0.4659090909090909,-0.7272727272727273,-0.25,0.17045454545454544,-0.5340909090909091,-0.11363636363636363,-0.3181818181818182,-0.38636363636363635,-0.09090909090909091,-0.5454545454545454,0.056818181818181816,0.3522727272727273,-0.23863636363636365,0.10227272727272728,-0.07954545454545454,-0.14772727272727273,0.056818181818181816,-0.2840909090909091,0.14772727272727273 -1,0.0,0.0,-0.42045454545454547,-0.125,-0.6818181818181818,-0.3181818181818182,-0.8068181818181818,-0.42045454545454547,-0.7386363636363636,-0.42045454545454547,-0.36363636363636365,-0.8863636363636364,-0.6931818181818182,-0.9659090909090909,-0.8863636363636364,-0.7159090909090909,-1.0,-0.4659090909090909,-0.056818181818181816,-0.7272727272727273,-0.36363636363636365,-0.7386363636363636,-0.6136363636363636,-0.4431818181818182,-0.75,-0.25,0.18181818181818182,-0.45454545454545453,-0.10227272727272728,-0.32954545454545453,-0.36363636363636365,-0.10227272727272728,-0.5113636363636364,0.03409090909090909,0.32954545454545453,-0.14772727272727273,0.09090909090909091,-0.03409090909090909,-0.125,0.09090909090909091,-0.2727272727272727,0.18181818181818182 -1,0.0,0.0,-0.40860215053763443,-0.15053763440860216,-0.6559139784946236,-0.3333333333333333,-0.7634408602150538,-0.43010752688172044,-0.6989247311827957,-0.43010752688172044,-0.3333333333333333,-0.8709677419354839,-0.6989247311827957,-0.9139784946236559,-0.9032258064516129,-0.6774193548387096,-1.0,-0.46236559139784944,-0.053763440860215055,-0.6989247311827957,-0.40860215053763443,-0.6774193548387096,-0.6666666666666666,-0.46236559139784944,-0.7956989247311828,-0.3010752688172043,0.13978494623655913,-0.41935483870967744,-0.1827956989247312,-0.26881720430107525,-0.45161290322580644,-0.0967741935483871,-0.6021505376344086,0.021505376344086023,0.26881720430107525,-0.10752688172043011,0.0,0.0,-0.21505376344086022,0.0967741935483871,-0.3548387096774194,0.17204301075268819 -1,0.0,0.0,-0.34545454545454546,-0.13636363636363635,-0.5818181818181818,-0.24545454545454545,-0.7181818181818181,-0.2727272727272727,-0.7181818181818181,-0.20909090909090908,-0.2727272727272727,-0.7,-0.6636363636363637,-0.7181818181818181,-0.8727272727272727,-0.5181818181818182,-1.0,-0.34545454545454546,-0.06363636363636363,-0.5363636363636364,-0.44545454545454544,-0.5181818181818182,-0.6909090909090909,-0.33636363636363636,-0.8181818181818182,-0.2,0.08181818181818182,-0.2818181818181818,-0.23636363636363636,-0.17272727272727273,-0.4727272727272727,-0.01818181818181818,-0.6090909090909091,0.09090909090909091,0.16363636363636364,-0.00909090909090909,-0.06363636363636363,0.06363636363636363,-0.22727272727272727,0.15454545454545454,-0.34545454545454546,0.22727272727272727 -1,0.0,0.0,-0.35714285714285715,-0.10714285714285714,-0.6339285714285714,-0.21428571428571427,-0.7946428571428571,-0.26785714285714285,-0.7767857142857143,-0.25,-0.33035714285714285,-0.6875,-0.7053571428571429,-0.7053571428571429,-0.9017857142857143,-0.5,-1.0,-0.3482142857142857,-0.125,-0.5267857142857143,-0.48214285714285715,-0.5357142857142857,-0.7142857142857143,-0.3482142857142857,-0.8214285714285714,-0.22321428571428573,0.017857142857142856,-0.2767857142857143,-0.3125,-0.1875,-0.5446428571428571,-0.05357142857142857,-0.6607142857142857,0.044642857142857144,0.08928571428571429,-0.008928571428571428,-0.15178571428571427,0.05357142857142857,-0.32142857142857145,0.14285714285714285,-0.42857142857142855,0.20535714285714285 -1,0.0,0.0,-0.33884297520661155,-0.14049586776859505,-0.5950413223140496,-0.256198347107438,-0.768595041322314,-0.256198347107438,-0.8181818181818182,-0.2066115702479339,-0.3305785123966942,-0.6115702479338843,-0.71900826446281,-0.6611570247933884,-0.9173553719008265,-0.512396694214876,-1.0,-0.371900826446281,-0.15702479338842976,-0.45454545454545453,-0.5950413223140496,-0.38016528925619836,-0.7851239669421488,-0.2066115702479339,-0.8347107438016529,-0.11570247933884298,-0.04132231404958678,-0.21487603305785125,-0.4297520661157025,-0.10743801652892562,-0.6033057851239669,-0.01652892561983471,-0.6611570247933884,0.03305785123966942,0.01652892561983471,0.024793388429752067,-0.256198347107438,0.09090909090909091,-0.39669421487603307,0.1322314049586777,-0.4462809917355372,0.1652892561983471 -1,0.0,0.0,-0.1968503937007874,-0.31496062992125984,-0.41732283464566927,-0.4645669291338583,-0.6141732283464567,-0.49606299212598426,-0.7874015748031497,-0.48031496062992124,-0.41732283464566927,-0.5984251968503937,-0.7795275590551181,-0.7401574803149606,-0.968503937007874,-0.5984251968503937,-1.0,-0.4330708661417323,-0.2992125984251969,-0.4015748031496063,-0.8031496062992126,-0.3464566929133858,-0.9763779527559056,-0.1968503937007874,-0.952755905511811,-0.12598425196850394,-0.2204724409448819,-0.16535433070866143,-0.6771653543307087,-0.08661417322834646,-0.8346456692913385,-0.015748031496062992,-0.8188976377952756,0.0,-0.16535433070866143,0.05511811023622047,-0.49606299212598426,0.12598425196850394,-0.6062992125984252,0.11811023622047244,-0.5984251968503937,0.07874015748031496 -1,0.0,0.0,-0.1937984496124031,-0.31007751937984496,-0.43410852713178294,-0.4573643410852713,-0.6511627906976745,-0.4728682170542636,-0.8294573643410853,-0.4496124031007752,-0.4418604651162791,-0.6124031007751938,-0.813953488372093,-0.7286821705426356,-0.9922480620155039,-0.5891472868217055,-1.0,-0.43410852713178294,-0.3643410852713178,-0.3953488372093023,-0.8682170542635659,-0.3333333333333333,-0.9689922480620154,-0.17829457364341086,-0.9147286821705426,-0.12403100775193798,-0.3023255813953488,-0.15503875968992248,-0.7596899224806202,-0.06976744186046512,-0.7364341085271318,-0.031007751937984496,-0.6124031007751938,-0.06201550387596899,-0.2713178294573643,0.06201550387596899,-0.6124031007751938,0.11627906976744186,-0.6046511627906976,0.10852713178294573,-0.5193798449612403,0.06201550387596899 -1,0.0,0.0,-0.15037593984962405,-0.3233082706766917,-0.39849624060150374,-0.48120300751879697,-0.6240601503759399,-0.49624060150375937,-0.7819548872180451,-0.45112781954887216,-0.42105263157894735,-0.6240601503759399,-0.7969924812030075,-0.7443609022556391,-0.9849624060150376,-0.6165413533834586,-0.9924812030075187,-0.48120300751879697,-0.38345864661654133,-0.43609022556390975,-0.8947368421052632,-0.39097744360902253,-1.0,-0.2556390977443609,-0.9323308270676691,-0.19548872180451127,-0.3383458646616541,-0.20300751879699247,-0.8195488721804511,-0.11278195488721804,-0.7969924812030075,-0.08270676691729323,-0.6616541353383458,-0.11278195488721804,-0.3157894736842105,0.007518796992481203,-0.6766917293233082,0.07518796992481203,-0.6541353383458647,0.06015037593984962,-0.5488721804511278,0.0 -1,0.0,0.0,-0.1259259259259259,-0.32592592592592595,-0.35555555555555557,-0.4962962962962963,-0.5703703703703704,-0.5259259259259259,-0.725925925925926,-0.4962962962962963,-0.4,-0.6444444444444445,-0.7555555555555555,-0.7925925925925926,-0.9481481481481482,-0.6888888888888889,-0.9777777777777777,-0.5555555555555556,-0.37777777777777777,-0.4666666666666667,-0.8888888888888888,-0.43703703703703706,-1.0,-0.3037037037037037,-0.9259259259259259,-0.2518518518518518,-0.35555555555555557,-0.24444444444444444,-0.8296296296296296,-0.16296296296296298,-0.8148148148148148,-0.1259259259259259,-0.674074074074074,-0.15555555555555556,-0.32592592592592595,-0.037037037037037035,-0.6814814814814815,0.02962962962962963,-0.6592592592592592,0.014814814814814815,-0.5555555555555556,-0.037037037037037035 -1,0.0,0.0,-0.11678832116788321,-0.32116788321167883,-0.34306569343065696,-0.49635036496350365,-0.5547445255474452,-0.5255474452554745,-0.7153284671532847,-0.48175182481751827,-0.39416058394160586,-0.656934306569343,-0.7591240875912408,-0.7883211678832117,-0.948905109489051,-0.6861313868613139,-0.9562043795620438,-0.5547445255474452,-0.38686131386861317,-0.46715328467153283,-0.8978102189781022,-0.45985401459854014,-1.0,-0.3357664233576642,-0.927007299270073,-0.27007299270072993,-0.3795620437956204,-0.24087591240875914,-0.8394160583941606,-0.17518248175182483,-0.7956204379562044,-0.13138686131386862,-0.6496350364963503,-0.15328467153284672,-0.36496350364963503,-0.0364963503649635,-0.7153284671532847,0.014598540145985401,-0.6715328467153284,0.0072992700729927005,-0.5547445255474452,-0.0364963503649635 -1,0.0,0.0,-0.11678832116788321,-0.35036496350364965,-0.3357664233576642,-0.5328467153284672,-0.5401459854014599,-0.5620437956204379,-0.708029197080292,-0.5255474452554745,-0.38686131386861317,-0.6788321167883211,-0.7664233576642335,-0.8102189781021898,-0.948905109489051,-0.7226277372262774,-0.9562043795620438,-0.6058394160583942,-0.40145985401459855,-0.48905109489051096,-0.8978102189781022,-0.48905109489051096,-1.0,-0.3795620437956204,-0.927007299270073,-0.32116788321167883,-0.40875912408759124,-0.26277372262773724,-0.8540145985401459,-0.2116788321167883,-0.8175182481751825,-0.1678832116788321,-0.6715328467153284,-0.18248175182481752,-0.40875912408759124,-0.051094890510948905,-0.7445255474452555,-0.021897810218978103,-0.708029197080292,-0.021897810218978103,-0.5912408759124088,-0.06569343065693431 -1,0.0,0.0,-0.08029197080291971,-0.34306569343065696,-0.2846715328467153,-0.5328467153284672,-0.48905109489051096,-0.5985401459854015,-0.656934306569343,-0.5912408759124088,-0.36496350364963503,-0.6934306569343066,-0.7591240875912408,-0.8394160583941606,-0.948905109489051,-0.7664233576642335,-0.9635036496350365,-0.656934306569343,-0.40145985401459855,-0.5109489051094891,-0.9051094890510949,-0.5474452554744526,-1.0,-0.43795620437956206,-0.9197080291970803,-0.3722627737226277,-0.4306569343065693,-0.291970802919708,-0.8613138686131386,-0.24817518248175183,-0.8029197080291971,-0.19708029197080293,-0.656934306569343,-0.20437956204379562,-0.44525547445255476,-0.0948905109489051,-0.7664233576642335,-0.058394160583941604,-0.7153284671532847,-0.058394160583941604,-0.5985401459854015,-0.08759124087591241 -1,0.0,0.0,-0.058823529411764705,-0.35294117647058826,-0.23529411764705882,-0.5661764705882353,-0.4338235294117647,-0.6544117647058824,-0.5882352941176471,-0.6470588235294118,-0.34558823529411764,-0.7132352941176471,-0.7573529411764706,-0.8823529411764706,-0.9338235294117647,-0.8088235294117647,-0.9338235294117647,-0.6911764705882353,-0.40441176470588236,-0.5367647058823529,-0.9191176470588235,-0.5882352941176471,-1.0,-0.4852941176470588,-0.9044117647058824,-0.4117647058823529,-0.4411764705882353,-0.33088235294117646,-0.8676470588235294,-0.2867647058823529,-0.7941176470588235,-0.22058823529411764,-0.6397058823529411,-0.22794117647058823,-0.4632352941176471,-0.125,-0.7720588235294118,-0.08823529411764706,-0.7058823529411765,-0.08088235294117647,-0.5882352941176471,-0.10294117647058823 -1,0.0,0.0,-0.04477611940298507,-0.3582089552238806,-0.20149253731343283,-0.5895522388059702,-0.3805970149253731,-0.7014925373134329,-0.5223880597014925,-0.7014925373134329,-0.3358208955223881,-0.7388059701492538,-0.7611940298507462,-0.9253731343283582,-0.9328358208955224,-0.8582089552238806,-0.9328358208955224,-0.7388059701492538,-0.41044776119402987,-0.5671641791044776,-0.9328358208955224,-0.6417910447761194,-1.0,-0.5373134328358209,-0.9029850746268657,-0.4626865671641791,-0.4701492537313433,-0.3582089552238806,-0.8805970149253731,-0.3358208955223881,-0.8134328358208955,-0.26865671641791045,-0.664179104477612,-0.26119402985074625,-0.5074626865671642,-0.14925373134328357,-0.7910447761194029,-0.13432835820895522,-0.7238805970149254,-0.11940298507462686,-0.6044776119402985,-0.13432835820895522 -1,0.0,0.0,0.03676470588235294,-0.3602941176470588,-0.07352941176470588,-0.6102941176470589,-0.23529411764705882,-0.7426470588235294,-0.375,-0.75,-0.2647058823529412,-0.7720588235294118,-0.6470588235294118,-1.0,-0.8161764705882353,-0.9558823529411765,-0.8382352941176471,-0.8529411764705882,-0.3897058823529412,-0.6323529411764706,-0.8455882352941176,-0.7941176470588235,-0.9264705882352942,-0.7132352941176471,-0.8455882352941176,-0.625,-0.49264705882352944,-0.4411764705882353,-0.8161764705882353,-0.45588235294117646,-0.7426470588235294,-0.375,-0.6029411764705882,-0.34558823529411764,-0.5514705882352942,-0.25,-0.75,-0.23529411764705882,-0.6764705882352942,-0.19852941176470587,-0.5735294117647058,-0.19117647058823528 -1,0.0,0.0,0.056338028169014086,-0.3380281690140845,-0.014084507042253521,-0.5774647887323944,-0.14084507042253522,-0.7253521126760564,-0.2676056338028169,-0.7394366197183099,-0.21830985915492956,-0.7605633802816901,-0.5563380281690141,-1.0,-0.7253521126760564,-0.971830985915493,-0.7605633802816901,-0.8802816901408451,-0.3591549295774648,-0.6408450704225352,-0.7816901408450704,-0.795774647887324,-0.8380281690140845,-0.704225352112676,-0.7676056338028169,-0.6056338028169014,-0.45774647887323944,-0.47183098591549294,-0.7746478873239436,-0.4859154929577465,-0.7112676056338029,-0.4014084507042254,-0.5845070422535211,-0.36619718309859156,-0.528169014084507,-0.28169014084507044,-0.7112676056338029,-0.2605633802816901,-0.6408450704225352,-0.22535211267605634,-0.5422535211267606,-0.2112676056338028 -1,0.0,0.0,0.08333333333333333,-0.3333333333333333,0.020833333333333332,-0.5694444444444444,-0.10416666666666667,-0.7152777777777778,-0.2222222222222222,-0.7222222222222222,-0.2152777777777778,-0.7638888888888888,-0.5138888888888888,-1.0,-0.6388888888888888,-0.9652777777777778,-0.6388888888888888,-0.8611111111111112,-0.3611111111111111,-0.6527777777777778,-0.75,-0.8055555555555556,-0.7708333333333334,-0.7083333333333334,-0.6805555555555556,-0.6180555555555556,-0.4791666666666667,-0.4930555555555556,-0.7430555555555556,-0.5,-0.6666666666666666,-0.4097222222222222,-0.5416666666666666,-0.375,-0.5486111111111112,-0.3125,-0.7083333333333334,-0.2916666666666667,-0.625,-0.2361111111111111,-0.5208333333333334,-0.2152777777777778 -1,0.0,0.0,0.1103448275862069,-0.32413793103448274,0.06896551724137931,-0.5655172413793104,-0.05517241379310345,-0.7103448275862069,-0.1724137931034483,-0.7103448275862069,-0.1724137931034483,-0.7655172413793103,-0.47586206896551725,-1.0,-0.5724137931034483,-0.9586206896551724,-0.5448275862068965,-0.8551724137931035,-0.33793103448275863,-0.6689655172413793,-0.7034482758620689,-0.8344827586206897,-0.7241379310344828,-0.7448275862068966,-0.6344827586206897,-0.6551724137931034,-0.46206896551724136,-0.5103448275862069,-0.7103448275862069,-0.5448275862068965,-0.6413793103448275,-0.46206896551724136,-0.5241379310344828,-0.41379310344827586,-0.5448275862068965,-0.3310344827586207,-0.6896551724137931,-0.32413793103448274,-0.6137931034482759,-0.2689655172413793,-0.5172413793103449,-0.2482758620689655 -1,0.0,0.0,0.1232876712328767,-0.3219178082191781,0.08904109589041095,-0.5547945205479452,-0.02054794520547945,-0.6986301369863014,-0.14383561643835616,-0.6986301369863014,-0.1506849315068493,-0.7671232876712328,-0.4315068493150685,-1.0,-0.5136986301369864,-0.952054794520548,-0.4863013698630137,-0.8424657534246576,-0.3082191780821918,-0.6712328767123288,-0.6575342465753424,-0.8424657534246576,-0.6643835616438356,-0.7534246575342466,-0.5753424657534246,-0.6575342465753424,-0.4246575342465753,-0.5136986301369864,-0.678082191780822,-0.5616438356164384,-0.6095890410958904,-0.4726027397260274,-0.4863013698630137,-0.4246575342465753,-0.5068493150684932,-0.3356164383561644,-0.6506849315068494,-0.3356164383561644,-0.5684931506849316,-0.2808219178082192,-0.4726027397260274,-0.2534246575342466 -1,0.0,0.0,0.14383561643835616,-0.3219178082191781,0.1095890410958904,-0.5616438356164384,0.0,-0.6986301369863014,-0.13013698630136986,-0.6917808219178082,-0.136986301369863,-0.773972602739726,-0.410958904109589,-1.0,-0.4794520547945205,-0.9383561643835616,-0.4383561643835616,-0.821917808219178,-0.3082191780821918,-0.6712328767123288,-0.636986301369863,-0.8493150684931506,-0.636986301369863,-0.7671232876712328,-0.547945205479452,-0.6712328767123288,-0.4315068493150685,-0.5136986301369864,-0.6712328767123288,-0.5821917808219178,-0.6027397260273972,-0.5,-0.4931506849315068,-0.4452054794520548,-0.5136986301369864,-0.3356164383561644,-0.6506849315068494,-0.3561643835616438,-0.5684931506849316,-0.3082191780821918,-0.4726027397260274,-0.2808219178082192 -1,0.0,0.0,0.1476510067114094,-0.2953020134228188,0.14093959731543623,-0.5167785234899329,0.06040268456375839,-0.6644295302013423,-0.053691275167785234,-0.6845637583892618,-0.11409395973154363,-0.7583892617449665,-0.35570469798657717,-1.0,-0.4228187919463087,-0.9463087248322147,-0.3959731543624161,-0.8389261744966443,-0.28187919463087246,-0.6778523489932886,-0.5906040268456376,-0.8523489932885906,-0.5838926174496645,-0.7651006711409396,-0.4966442953020134,-0.6711409395973155,-0.4161073825503356,-0.5369127516778524,-0.6308724832214765,-0.5838926174496645,-0.5637583892617449,-0.4966442953020134,-0.46308724832214765,-0.4563758389261745,-0.5033557046979866,-0.3691275167785235,-0.6241610738255033,-0.3691275167785235,-0.5503355704697986,-0.3087248322147651,-0.4563758389261745,-0.28187919463087246 -1,0.0,0.0,0.15436241610738255,-0.2751677852348993,0.15436241610738255,-0.48322147651006714,0.087248322147651,-0.6308724832214765,-0.020134228187919462,-0.6510067114093959,-0.087248322147651,-0.7583892617449665,-0.3288590604026846,-1.0,-0.37583892617449666,-0.9194630872483222,-0.3422818791946309,-0.7986577181208053,-0.26174496644295303,-0.6778523489932886,-0.5704697986577181,-0.8657718120805369,-0.5570469798657718,-0.7516778523489933,-0.46308724832214765,-0.6510067114093959,-0.3959731543624161,-0.5302013422818792,-0.6241610738255033,-0.5906040268456376,-0.5503355704697986,-0.5033557046979866,-0.4429530201342282,-0.44966442953020136,-0.48322147651006714,-0.35570469798657717,-0.6241610738255033,-0.3691275167785235,-0.5369127516778524,-0.3087248322147651,-0.4429530201342282,-0.28187919463087246 -1,0.0,0.0,0.17880794701986755,-0.271523178807947,0.18543046357615894,-0.48344370860927155,0.11920529801324503,-0.6357615894039735,0.013245033112582781,-0.6622516556291391,-0.033112582781456956,-0.7549668874172185,-0.2781456953642384,-1.0,-0.32450331125827814,-0.9006622516556292,-0.2847682119205298,-0.7748344370860927,-0.2119205298013245,-0.6887417218543046,-0.5165562913907285,-0.8940397350993378,-0.5099337748344371,-0.7814569536423841,-0.423841059602649,-0.6688741721854304,-0.3576158940397351,-0.5496688741721855,-0.5827814569536424,-0.6423841059602649,-0.5231788079470199,-0.5496688741721855,-0.4304635761589404,-0.4900662251655629,-0.45695364238410596,-0.3841059602649007,-0.5827814569536424,-0.41721854304635764,-0.5165562913907285,-0.3509933774834437,-0.4304635761589404,-0.31788079470198677 -1,0.0,0.0,0.19607843137254902,-0.2549019607843137,0.23529411764705882,-0.46405228758169936,0.1895424836601307,-0.6274509803921569,0.0915032679738562,-0.6666666666666666,0.05228758169934641,-0.7581699346405228,-0.1503267973856209,-1.0,-0.1895424836601307,-0.9281045751633987,-0.16339869281045752,-0.8300653594771242,-0.13725490196078433,-0.7058823529411765,-0.39215686274509803,-0.9281045751633987,-0.39215686274509803,-0.8104575163398693,-0.3202614379084967,-0.7058823529411765,-0.29411764705882354,-0.5816993464052288,-0.49673202614379086,-0.7124183006535948,-0.4444444444444444,-0.6143790849673203,-0.3660130718954248,-0.5424836601307189,-0.4117647058823529,-0.42483660130718953,-0.5424836601307189,-0.49673202614379086,-0.47058823529411764,-0.43137254901960786,-0.39215686274509803,-0.38562091503267976 -1,0.0,0.0,0.21568627450980393,-0.22875816993464052,0.2679738562091503,-0.43137254901960786,0.22875816993464052,-0.5882352941176471,0.13071895424836602,-0.6405228758169934,0.09803921568627451,-0.738562091503268,-0.08496732026143791,-1.0,-0.13071895424836602,-0.9150326797385621,-0.1111111111111111,-0.7908496732026143,-0.08496732026143791,-0.7058823529411765,-0.3202614379084967,-0.9411764705882353,-0.3333333333333333,-0.8300653594771242,-0.2679738562091503,-0.7124183006535948,-0.24836601307189543,-0.6013071895424836,-0.43790849673202614,-0.738562091503268,-0.40522875816993464,-0.6339869281045751,-0.32679738562091504,-0.5620915032679739,-0.37254901960784315,-0.45751633986928103,-0.48366013071895425,-0.5228758169934641,-0.42483660130718953,-0.45098039215686275,-0.3464052287581699,-0.39869281045751637 -1,0.0,0.0,0.23684210526315788,-0.20394736842105263,0.29605263157894735,-0.40789473684210525,0.2631578947368421,-0.5657894736842105,0.16447368421052633,-0.618421052631579,0.13157894736842105,-0.7302631578947368,-0.02631578947368421,-1.0,-0.08552631578947369,-0.9473684210526315,-0.07894736842105263,-0.8421052631578947,-0.05921052631578947,-0.7039473684210527,-0.28289473684210525,-0.9473684210526315,-0.3026315789473684,-0.8552631578947368,-0.25,-0.7368421052631579,-0.2236842105263158,-0.6052631578947368,-0.39473684210526316,-0.7368421052631579,-0.3684210526315789,-0.6381578947368421,-0.2894736842105263,-0.5592105263157895,-0.34868421052631576,-0.47368421052631576,-0.4473684210526316,-0.5131578947368421,-0.3881578947368421,-0.4407894736842105,-0.3157894736842105,-0.3881578947368421 -1,0.0,0.0,0.22875816993464052,-0.19607843137254902,0.29411764705882354,-0.39869281045751637,0.28104575163398693,-0.5555555555555556,0.19607843137254902,-0.6209150326797386,0.12418300653594772,-0.7189542483660131,-0.013071895424836602,-1.0,-0.0784313725490196,-0.9215686274509803,-0.0718954248366013,-0.7973856209150327,-0.06535947712418301,-0.6993464052287581,-0.2679738562091503,-0.954248366013072,-0.2875816993464052,-0.8496732026143791,-0.23529411764705882,-0.738562091503268,-0.22875816993464052,-0.6013071895424836,-0.39869281045751637,-0.7450980392156863,-0.37254901960784315,-0.6470588235294118,-0.29411764705882354,-0.5751633986928104,-0.35947712418300654,-0.47058823529411764,-0.45751633986928103,-0.5294117647058824,-0.40522875816993464,-0.45751633986928103,-0.3333333333333333,-0.40522875816993464 -1,0.0,0.0,0.23178807947019867,-0.2052980132450331,0.304635761589404,-0.3973509933774834,0.2913907284768212,-0.5562913907284768,0.1986754966887417,-0.609271523178808,0.15894039735099338,-0.7086092715231788,0.026490066225165563,-1.0,-0.033112582781456956,-0.9403973509933775,-0.033112582781456956,-0.8145695364238411,-0.033112582781456956,-0.7019867549668874,-0.23841059602649006,-0.9735099337748344,-0.26490066225165565,-0.8741721854304636,-0.2119205298013245,-0.7483443708609272,-0.2052980132450331,-0.609271523178808,-0.37748344370860926,-0.7615894039735099,-0.3509933774834437,-0.6622516556291391,-0.2847682119205298,-0.5827814569536424,-0.3443708609271523,-0.48344370860927155,-0.4503311258278146,-0.543046357615894,-0.3973509933774834,-0.46357615894039733,-0.33112582781456956,-0.4105960264900662 -1,0.0,0.0,0.23648648648648649,-0.21621621621621623,0.30405405405405406,-0.4189189189189189,0.2702702702702703,-0.5743243243243243,0.16216216216216217,-0.6148648648648649,0.1891891891891892,-0.7162162162162162,0.05405405405405406,-1.0,-0.013513513513513514,-0.9594594594594594,-0.013513513513513514,-0.8445945945945946,-0.006756756756756757,-0.7094594594594594,-0.21621621621621623,-0.9864864864864865,-0.24324324324324326,-0.8851351351351351,-0.19594594594594594,-0.7635135135135135,-0.1891891891891892,-0.6283783783783784,-0.3716216216216216,-0.7837837837837838,-0.35135135135135137,-0.668918918918919,-0.27702702702702703,-0.581081081081081,-0.33783783783783783,-0.5,-0.4391891891891892,-0.5472972972972973,-0.3918918918918919,-0.4594594594594595,-0.31756756756756754,-0.39864864864864863 -1,0.0,0.0,0.24161073825503357,-0.2080536912751678,0.31543624161073824,-0.4228187919463087,0.2953020134228188,-0.5838926174496645,0.20134228187919462,-0.6375838926174496,0.21476510067114093,-0.7046979865771812,0.08053691275167785,-1.0,0.0,-0.9530201342281879,-0.006711409395973154,-0.8389261744966443,0.026845637583892617,-0.697986577181208,-0.174496644295302,-0.9798657718120806,-0.21476510067114093,-0.8859060402684564,-0.16778523489932887,-0.7651006711409396,-0.15436241610738255,-0.6174496644295302,-0.33557046979865773,-0.7919463087248322,-0.3288590604026846,-0.6845637583892618,-0.26174496644295303,-0.5906040268456376,-0.30201342281879195,-0.4966442953020134,-0.4161073825503356,-0.5771812080536913,-0.37583892617449666,-0.4966442953020134,-0.3087248322147651,-0.436241610738255 -1,0.0,0.0,0.22818791946308725,-0.2214765100671141,0.2684563758389262,-0.4429530201342282,0.19463087248322147,-0.5973154362416108,0.08053691275167785,-0.6644295302013423,0.2348993288590604,-0.7046979865771812,0.09395973154362416,-1.0,-0.006711409395973154,-0.959731543624161,-0.020134228187919462,-0.8523489932885906,0.053691275167785234,-0.697986577181208,-0.16778523489932887,-0.9865771812080537,-0.2214765100671141,-0.8791946308724832,-0.18120805369127516,-0.7651006711409396,-0.12751677852348994,-0.6241610738255033,-0.3422818791946309,-0.7919463087248322,-0.3422818791946309,-0.6711409395973155,-0.2684563758389262,-0.5771812080536913,-0.28187919463087246,-0.5100671140939598,-0.4228187919463087,-0.5704697986577181,-0.38926174496644295,-0.47651006711409394,-0.3087248322147651,-0.40939597315436244 -1,0.0,0.0,0.2,-0.22666666666666666,0.22,-0.44666666666666666,0.14,-0.6,0.02666666666666667,-0.6733333333333333,0.22666666666666666,-0.7066666666666667,0.07333333333333333,-1.0,-0.02666666666666667,-0.94,-0.04,-0.8266666666666667,0.06666666666666667,-0.6933333333333334,-0.17333333333333334,-0.9866666666666667,-0.24,-0.8733333333333333,-0.2,-0.76,-0.10666666666666667,-0.62,-0.34,-0.7933333333333333,-0.35333333333333333,-0.66,-0.2733333333333333,-0.5666666666666667,-0.26,-0.5133333333333333,-0.42,-0.5733333333333334,-0.38666666666666666,-0.47333333333333333,-0.30666666666666664,-0.41333333333333333 -1,0.0,0.0,0.1564625850340136,-0.24489795918367346,0.16326530612244897,-0.48299319727891155,0.06802721088435375,-0.6462585034013606,-0.061224489795918366,-0.7210884353741497,0.22448979591836735,-0.7210884353741497,0.027210884353741496,-1.0,-0.07482993197278912,-0.9183673469387755,-0.07482993197278912,-0.7959183673469388,0.08163265306122448,-0.6938775510204082,-0.19047619047619047,-0.9931972789115646,-0.2653061224489796,-0.8639455782312925,-0.21768707482993196,-0.7482993197278912,-0.08163265306122448,-0.6054421768707483,-0.36054421768707484,-0.7959183673469388,-0.3741496598639456,-0.6462585034013606,-0.2857142857142857,-0.5578231292517006,-0.23129251700680273,-0.4965986394557823,-0.43537414965986393,-0.5714285714285714,-0.40816326530612246,-0.4557823129251701,-0.3197278911564626,-0.3877551020408163 -1,0.0,0.0,0.1564625850340136,-0.23809523809523808,0.16326530612244897,-0.48299319727891155,0.06802721088435375,-0.6530612244897959,-0.05442176870748299,-0.7278911564625851,0.22448979591836735,-0.7142857142857143,0.02040816326530612,-1.0,-0.08163265306122448,-0.9047619047619048,-0.07482993197278912,-0.7891156462585034,0.08163265306122448,-0.6870748299319728,-0.19727891156462585,-0.9795918367346939,-0.2653061224489796,-0.8503401360544217,-0.2108843537414966,-0.7346938775510204,-0.08163265306122448,-0.5986394557823129,-0.36054421768707484,-0.7891156462585034,-0.3741496598639456,-0.6394557823129252,-0.2925170068027211,-0.5510204081632653,-0.23809523809523808,-0.48299319727891155,-0.4421768707482993,-0.564625850340136,-0.41496598639455784,-0.4557823129251701,-0.32653061224489793,-0.38095238095238093 -1,0.0,0.0,0.12413793103448276,-0.2482758620689655,0.12413793103448276,-0.4896551724137931,0.034482758620689655,-0.6620689655172414,-0.07586206896551724,-0.7517241379310344,0.20689655172413793,-0.7172413793103448,-0.013793103448275862,-1.0,-0.12413793103448276,-0.896551724137931,-0.1103448275862069,-0.7793103448275862,0.0896551724137931,-0.6827586206896552,-0.21379310344827587,-0.9862068965517241,-0.296551724137931,-0.8551724137931035,-0.2482758620689655,-0.7310344827586207,-0.05517241379310345,-0.593103448275862,-0.3724137931034483,-0.7931034482758621,-0.4068965517241379,-0.6344827586206897,-0.32413793103448274,-0.5448275862068965,-0.20689655172413793,-0.47586206896551725,-0.4413793103448276,-0.5586206896551724,-0.43448275862068964,-0.4413793103448276,-0.3448275862068966,-0.3793103448275862 -1,0.0,0.0,0.03546099290780142,-0.2624113475177305,0.02127659574468085,-0.5035460992907801,-0.05673758865248227,-0.6737588652482269,-0.14893617021276595,-0.7801418439716312,0.14893617021276595,-0.7375886524822695,-0.12056737588652482,-0.9929078014184397,-0.2553191489361702,-0.900709219858156,-0.24822695035460993,-0.7872340425531915,0.09219858156028368,-0.6950354609929078,-0.2695035460992908,-1.0,-0.3971631205673759,-0.8439716312056738,-0.3617021276595745,-0.7092198581560284,0.0,-0.6028368794326241,-0.3900709219858156,-0.8226950354609929,-0.46808510638297873,-0.6382978723404256,-0.3971631205673759,-0.524822695035461,-0.1276595744680851,-0.48936170212765956,-0.45390070921985815,-0.5886524822695035,-0.475177304964539,-0.45390070921985815,-0.3900709219858156,-0.36879432624113473 -1,0.0,0.0,-0.14492753623188406,-0.26811594202898553,-0.15217391304347827,-0.5217391304347826,-0.1956521739130435,-0.6956521739130435,-0.2536231884057971,-0.8188405797101449,0.08695652173913043,-0.7753623188405797,-0.21014492753623187,-1.0,-0.36231884057971014,-0.8840579710144928,-0.36231884057971014,-0.7753623188405797,0.10144927536231885,-0.717391304347826,-0.30434782608695654,-0.9710144927536232,-0.4492753623188406,-0.8115942028985508,-0.42028985507246375,-0.6739130434782609,0.050724637681159424,-0.6159420289855072,-0.37681159420289856,-0.8188405797101449,-0.4927536231884058,-0.6304347826086957,-0.4420289855072464,-0.5072463768115942,-0.043478260869565216,-0.4927536231884058,-0.42028985507246375,-0.5942028985507246,-0.4855072463768116,-0.463768115942029,-0.427536231884058,-0.37681159420289856 -1,0.0,0.0,-0.21212121212121213,-0.26515151515151514,-0.22727272727272727,-0.5303030303030303,-0.22727272727272727,-0.7121212121212122,-0.26515151515151514,-0.8636363636363636,0.03787878787878788,-0.7878787878787878,-0.2196969696969697,-1.0,-0.4090909090909091,-0.9015151515151515,-0.44696969696969696,-0.7651515151515151,0.09090909090909091,-0.7348484848484849,-0.2878787878787879,-0.9924242424242424,-0.48484848484848486,-0.8560606060606061,-0.5151515151515151,-0.7045454545454546,0.06818181818181818,-0.6287878787878788,-0.3409090909090909,-0.8106060606060606,-0.48484848484848486,-0.6212121212121212,-0.4772727272727273,-0.4772727272727273,0.007575757575757576,-0.5,-0.3787878787878788,-0.5681818181818182,-0.4772727272727273,-0.44696969696969696,-0.4393939393939394,-0.3484848484848485 -1,0.0,0.0,-0.27692307692307694,-0.2076923076923077,-0.3076923076923077,-0.47692307692307695,-0.2923076923076923,-0.6692307692307692,-0.27692307692307694,-0.8307692307692308,-0.023076923076923078,-0.7538461538461538,-0.26153846153846155,-0.9615384615384616,-0.4307692307692308,-0.8769230769230769,-0.47692307692307695,-0.7384615384615385,0.06153846153846154,-0.7230769230769231,-0.2923076923076923,-1.0,-0.5,-0.8692307692307693,-0.5461538461538461,-0.7153846153846154,0.06923076923076923,-0.6384615384615384,-0.3384615384615385,-0.823076923076923,-0.49230769230769234,-0.6230769230769231,-0.49230769230769234,-0.46153846153846156,0.03076923076923077,-0.5307692307692308,-0.36923076923076925,-0.5615384615384615,-0.45384615384615384,-0.4076923076923077,-0.4,-0.2846153846153846 -1,0.0,0.0,-0.31496062992125984,-0.1968503937007874,-0.3700787401574803,-0.47244094488188976,-0.3779527559055118,-0.6771653543307087,-0.3543307086614173,-0.8503937007874016,-0.07874015748031496,-0.7637795275590551,-0.2992125984251969,-0.984251968503937,-0.48031496062992124,-0.905511811023622,-0.5275590551181102,-0.7637795275590551,0.031496062992125984,-0.7401574803149606,-0.30708661417322836,-1.0,-0.5196850393700787,-0.8661417322834646,-0.5669291338582677,-0.7165354330708661,0.06299212598425197,-0.6614173228346457,-0.33070866141732286,-0.8031496062992126,-0.48031496062992124,-0.5984251968503937,-0.47244094488188976,-0.4330708661417323,0.05511811023622047,-0.5511811023622047,-0.33858267716535434,-0.5590551181102362,-0.4251968503937008,-0.3937007874015748,-0.3779527559055118,-0.28346456692913385 -1,0.0,0.0,-0.3225806451612903,-0.1774193548387097,-0.3951612903225806,-0.4596774193548387,-0.4032258064516129,-0.6774193548387096,-0.3951612903225806,-0.8548387096774194,-0.12096774193548387,-0.7741935483870968,-0.3548387096774194,-0.9919354838709677,-0.532258064516129,-0.9112903225806451,-0.5725806451612904,-0.7661290322580645,0.008064516129032258,-0.75,-0.3387096774193548,-1.0,-0.5483870967741935,-0.8467741935483871,-0.6048387096774194,-0.6774193548387096,0.07258064516129033,-0.6693548387096774,-0.33064516129032256,-0.7903225806451613,-0.47580645161290325,-0.5725806451612904,-0.47580645161290325,-0.3951612903225806,0.08064516129032258,-0.5564516129032258,-0.3064516129032258,-0.532258064516129,-0.4112903225806452,-0.3629032258064516,-0.3629032258064516,-0.25 -1,0.0,0.0,-0.3252032520325203,-0.17073170731707318,-0.4146341463414634,-0.4796747967479675,-0.43089430894308944,-0.7073170731707317,-0.42276422764227645,-0.9024390243902439,-0.14634146341463414,-0.7886178861788617,-0.4146341463414634,-0.967479674796748,-0.5772357723577236,-0.8536585365853658,-0.6097560975609756,-0.6991869918699187,-0.016260162601626018,-0.7804878048780488,-0.3902439024390244,-1.0,-0.5772357723577236,-0.8130081300813008,-0.6260162601626016,-0.6341463414634146,0.056910569105691054,-0.7073170731707317,-0.35772357723577236,-0.8048780487804879,-0.4878048780487805,-0.5609756097560976,-0.4796747967479675,-0.3821138211382114,0.08943089430894309,-0.5934959349593496,-0.3008130081300813,-0.5447154471544715,-0.3821138211382114,-0.36585365853658536,-0.3252032520325203,-0.25203252032520324 -1,0.0,0.0,-0.35,-0.125,-0.49166666666666664,-0.4583333333333333,-0.5333333333333333,-0.7,-0.5333333333333333,-0.9083333333333333,-0.21666666666666667,-0.7833333333333333,-0.45,-0.9916666666666667,-0.6166666666666667,-0.9166666666666666,-0.6916666666666667,-0.7583333333333333,-0.06666666666666667,-0.7833333333333333,-0.4083333333333333,-1.0,-0.6,-0.8333333333333334,-0.675,-0.6333333333333333,0.05,-0.7166666666666667,-0.35,-0.825,-0.475,-0.5666666666666667,-0.49166666666666664,-0.35833333333333334,0.10833333333333334,-0.6,-0.25833333333333336,-0.5583333333333333,-0.35833333333333334,-0.35833333333333334,-0.325,-0.20833333333333334 -1,0.0,0.0,-0.30578512396694213,-0.0743801652892562,-0.4793388429752066,-0.32231404958677684,-0.5785123966942148,-0.49586776859504134,-0.6446280991735537,-0.6776859504132231,-0.21487603305785125,-0.7272727272727273,-0.4297520661157025,-0.9421487603305785,-0.6115702479338843,-0.9421487603305785,-0.71900826446281,-0.8429752066115702,-0.05785123966942149,-0.7520661157024794,-0.371900826446281,-1.0,-0.5867768595041323,-0.9090909090909091,-0.6859504132231405,-0.7520661157024794,0.06611570247933884,-0.6859504132231405,-0.32231404958677684,-0.8264462809917356,-0.45454545454545453,-0.5950413223140496,-0.4793388429752066,-0.3884297520661157,0.1322314049586777,-0.5867768595041323,-0.21487603305785125,-0.5537190082644629,-0.2975206611570248,-0.36363636363636365,-0.2809917355371901,-0.2066115702479339 -1,0.0,0.0,-0.2773109243697479,-0.06722689075630252,-0.46218487394957986,-0.3277310924369748,-0.5630252100840336,-0.5126050420168067,-0.6218487394957983,-0.7058823529411765,-0.20168067226890757,-0.7647058823529411,-0.42857142857142855,-0.9915966386554622,-0.6134453781512605,-0.9663865546218487,-0.7226890756302521,-0.8403361344537815,-0.04201680672268908,-0.7815126050420168,-0.3865546218487395,-1.0,-0.5714285714285714,-0.8067226890756303,-0.6218487394957983,-0.6050420168067226,0.09243697478991597,-0.7142857142857143,-0.29411764705882354,-0.8151260504201681,-0.42857142857142855,-0.5714285714285714,-0.453781512605042,-0.37815126050420167,0.17647058823529413,-0.5966386554621849,-0.16806722689075632,-0.5882352941176471,-0.2689075630252101,-0.3949579831932773,-0.2689075630252101,-0.24369747899159663 -1,0.0,0.0,-0.3025210084033613,-0.05042016806722689,-0.4957983193277311,-0.31932773109243695,-0.6134453781512605,-0.5042016806722689,-0.680672268907563,-0.7058823529411765,-0.25210084033613445,-0.7394957983193278,-0.46218487394957986,-0.957983193277311,-0.6386554621848739,-0.9663865546218487,-0.7647058823529411,-0.8739495798319328,-0.08403361344537816,-0.773109243697479,-0.3949579831932773,-1.0,-0.5966386554621849,-0.8823529411764706,-0.6890756302521008,-0.6974789915966386,0.058823529411764705,-0.7142857142857143,-0.29411764705882354,-0.8319327731092437,-0.4369747899159664,-0.6050420168067226,-0.4789915966386555,-0.3865546218487395,0.16806722689075632,-0.5966386554621849,-0.15966386554621848,-0.5966386554621849,-0.2773109243697479,-0.4117647058823529,-0.31092436974789917,-0.25210084033613445 -1,0.0,0.0,-0.288135593220339,-0.025423728813559324,-0.5169491525423728,-0.2627118644067797,-0.635593220338983,-0.4322033898305085,-0.7288135593220338,-0.6271186440677966,-0.3220338983050847,-0.711864406779661,-0.5084745762711864,-0.9576271186440678,-0.6779661016949152,-0.9661016949152542,-0.7966101694915254,-0.8728813559322034,-0.15254237288135594,-0.7542372881355932,-0.423728813559322,-1.0,-0.6016949152542372,-0.864406779661017,-0.6779661016949152,-0.6610169491525424,0.025423728813559324,-0.711864406779661,-0.288135593220339,-0.8135593220338984,-0.3983050847457627,-0.5677966101694916,-0.423728813559322,-0.3474576271186441,0.17796610169491525,-0.6101694915254238,-0.11864406779661017,-0.6016949152542372,-0.2288135593220339,-0.4067796610169492,-0.2457627118644068,-0.2542372881355932 -1,0.0,0.0,-0.2905982905982906,-0.017094017094017096,-0.5470085470085471,-0.23076923076923078,-0.6752136752136753,-0.38461538461538464,-0.7435897435897436,-0.5811965811965812,-0.38461538461538464,-0.7008547008547008,-0.5641025641025641,-0.9487179487179487,-0.7350427350427351,-0.9487179487179487,-0.8290598290598291,-0.8376068376068376,-0.18803418803418803,-0.7521367521367521,-0.4358974358974359,-1.0,-0.5982905982905983,-0.8461538461538461,-0.6410256410256411,-0.6324786324786325,0.017094017094017096,-0.717948717948718,-0.27350427350427353,-0.8034188034188035,-0.36752136752136755,-0.5555555555555556,-0.36752136752136755,-0.3504273504273504,0.20512820512820512,-0.6239316239316239,-0.05982905982905983,-0.6153846153846154,-0.1794871794871795,-0.42735042735042733,-0.19658119658119658,-0.28205128205128205 -1,0.0,0.0,-0.2796610169491525,0.00847457627118644,-0.5423728813559322,-0.19491525423728814,-0.6864406779661016,-0.3389830508474576,-0.7627118644067796,-0.5423728813559322,-0.4067796610169492,-0.6779661016949152,-0.5847457627118644,-0.9322033898305084,-0.7542372881355932,-0.923728813559322,-0.8389830508474576,-0.7966101694915254,-0.211864406779661,-0.7457627118644068,-0.4576271186440678,-1.0,-0.6016949152542372,-0.8220338983050848,-0.635593220338983,-0.6101694915254238,0.0,-0.7203389830508474,-0.2966101694915254,-0.7966101694915254,-0.3813559322033898,-0.5254237288135594,-0.3644067796610169,-0.3305084745762712,0.19491525423728814,-0.6271186440677966,-0.059322033898305086,-0.6271186440677966,-0.16101694915254236,-0.4322033898305085,-0.1694915254237288,-0.3050847457627119 -1,0.0,0.0,-0.29310344827586204,0.017241379310344827,-0.5862068965517241,-0.16379310344827586,-0.7413793103448276,-0.3103448275862069,-0.8448275862068966,-0.5,-0.5086206896551724,-0.646551724137931,-0.6896551724137931,-0.9310344827586207,-0.8275862068965517,-0.9224137931034483,-0.9051724137931034,-0.8017241379310345,-0.3017241379310345,-0.7155172413793104,-0.5258620689655172,-1.0,-0.6551724137931034,-0.8362068965517241,-0.6896551724137931,-0.6206896551724138,-0.07758620689655173,-0.6982758620689655,-0.31896551724137934,-0.8103448275862069,-0.41379310344827586,-0.5431034482758621,-0.43103448275862066,-0.35344827586206895,0.15517241379310345,-0.6293103448275862,-0.04310344827586207,-0.6810344827586207,-0.16379310344827586,-0.49137931034482757,-0.20689655172413793,-0.33620689655172414 -1,0.0,0.0,-0.2782608695652174,0.034782608695652174,-0.5826086956521739,-0.12173913043478261,-0.7565217391304347,-0.2608695652173913,-0.8434782608695652,-0.4608695652173913,-0.5130434782608696,-0.6086956521739131,-0.6956521739130435,-0.8956521739130435,-0.8434782608695652,-0.8956521739130435,-0.9043478260869565,-0.7739130434782608,-0.30434782608695654,-0.6869565217391305,-0.5478260869565217,-1.0,-0.6869565217391305,-0.8608695652173913,-0.7043478260869566,-0.6434782608695652,-0.0782608695652174,-0.6869565217391305,-0.33043478260869563,-0.8347826086956521,-0.4260869565217391,-0.5739130434782609,-0.4260869565217391,-0.3739130434782609,0.16521739130434782,-0.6347826086956522,-0.017391304347826087,-0.7130434782608696,-0.1391304347826087,-0.5217391304347826,-0.17391304347826086,-0.3652173913043478 -1,0.0,0.0,-0.2672413793103448,0.034482758620689655,-0.5775862068965517,-0.09482758620689655,-0.7586206896551724,-0.23275862068965517,-0.8362068965517241,-0.43103448275862066,-0.5258620689655172,-0.5948275862068966,-0.7241379310344828,-0.8793103448275862,-0.853448275862069,-0.8620689655172413,-0.896551724137931,-0.7327586206896551,-0.31896551724137934,-0.6810344827586207,-0.5517241379310345,-1.0,-0.6724137931034483,-0.8620689655172413,-0.6810344827586207,-0.6637931034482759,-0.08620689655172414,-0.6896551724137931,-0.33620689655172414,-0.8189655172413793,-0.39655172413793105,-0.5689655172413793,-0.3620689655172414,-0.3793103448275862,0.16379310344827586,-0.646551724137931,-0.034482758620689655,-0.7241379310344828,-0.11206896551724138,-0.5431034482758621,-0.11206896551724138,-0.39655172413793105 -1,0.0,0.0,-0.2920353982300885,0.05309734513274336,-0.6371681415929203,-0.05309734513274336,-0.831858407079646,-0.19469026548672566,-0.8849557522123894,-0.40707964601769914,-0.6017699115044248,-0.5575221238938053,-0.8230088495575221,-0.8761061946902655,-0.9557522123893806,-0.8495575221238938,-0.9823008849557522,-0.7079646017699115,-0.3893805309734513,-0.6548672566371682,-0.6283185840707964,-1.0,-0.7345132743362832,-0.8495575221238938,-0.7256637168141593,-0.6371681415929203,-0.1415929203539823,-0.672566371681416,-0.3805309734513274,-0.831858407079646,-0.4247787610619469,-0.584070796460177,-0.3893805309734513,-0.39823008849557523,0.12389380530973451,-0.6371681415929203,-0.061946902654867256,-0.7433628318584071,-0.1415929203539823,-0.5752212389380531,-0.1415929203539823,-0.4247787610619469 -1,0.0,0.0,-0.3090909090909091,0.05454545454545454,-0.6545454545454545,-0.03636363636363636,-0.8636363636363636,-0.17272727272727273,-0.9,-0.37272727272727274,-0.6272727272727273,-0.5545454545454546,-0.8636363636363636,-0.8727272727272727,-0.9727272727272728,-0.8454545454545455,-0.9818181818181818,-0.6909090909090909,-0.41818181818181815,-0.6454545454545455,-0.6727272727272727,-1.0,-0.7363636363636363,-0.8363636363636363,-0.7,-0.6090909090909091,-0.16363636363636364,-0.6636363636363637,-0.38181818181818183,-0.8454545454545455,-0.42727272727272725,-0.6090909090909091,-0.39090909090909093,-0.4090909090909091,0.11818181818181818,-0.6454545454545455,-0.03636363636363636,-0.7818181818181819,-0.12727272727272726,-0.6181818181818182,-0.14545454545454545,-0.4636363636363636 -1,0.0,0.0,-0.3,0.05454545454545454,-0.6545454545454545,-0.03636363636363636,-0.8545454545454545,-0.15454545454545454,-0.8818181818181818,-0.34545454545454546,-0.6454545454545455,-0.5636363636363636,-0.8727272727272727,-0.8545454545454545,-0.9818181818181818,-0.8272727272727273,-0.9727272727272728,-0.6636363636363637,-0.42727272727272725,-0.6545454545454545,-0.6818181818181818,-1.0,-0.7272727272727273,-0.8181818181818182,-0.6818181818181818,-0.5909090909090909,-0.18181818181818182,-0.6818181818181818,-0.38181818181818183,-0.8636363636363636,-0.4090909090909091,-0.5909090909090909,-0.36363636363636365,-0.38181818181818183,0.1,-0.6636363636363637,-0.05454545454545454,-0.7818181818181819,-0.11818181818181818,-0.5818181818181818,-0.10909090909090909,-0.41818181818181815 -1,0.0,0.0,-0.2909090909090909,0.07272727272727272,-0.6545454545454545,-0.01818181818181818,-0.8818181818181818,-0.14545454545454545,-0.9090909090909091,-0.33636363636363636,-0.6545454545454545,-0.5636363636363636,-0.9,-0.8545454545454545,-1.0,-0.8181818181818182,-0.990909090909091,-0.6545454545454545,-0.44545454545454544,-0.6727272727272727,-0.6909090909090909,-1.0,-0.7363636363636363,-0.8181818181818182,-0.7,-0.5909090909090909,-0.19090909090909092,-0.7,-0.39090909090909093,-0.8090909090909091,-0.4,-0.5454545454545454,-0.35454545454545455,-0.37272727272727274,0.09090909090909091,-0.6818181818181818,-0.08181818181818182,-0.7454545454545455,-0.11818181818181818,-0.5545454545454546,-0.1,-0.41818181818181815 -1,0.0,0.0,-0.30357142857142855,0.07142857142857142,-0.6517857142857143,0.0,-0.8571428571428571,-0.11607142857142858,-0.8839285714285714,-0.30357142857142855,-0.6696428571428571,-0.5178571428571429,-0.9017857142857143,-0.8125,-1.0,-0.7857142857142857,-0.9821428571428571,-0.6339285714285714,-0.45535714285714285,-0.6160714285714286,-0.7142857142857143,-0.9553571428571429,-0.7321428571428571,-0.7767857142857143,-0.6785714285714286,-0.5535714285714286,-0.21428571428571427,-0.6517857142857143,-0.39285714285714285,-0.8303571428571429,-0.39285714285714285,-0.5625,-0.3482142857142857,-0.35714285714285715,0.07142857142857142,-0.6428571428571429,-0.07142857142857142,-0.7767857142857143,-0.125,-0.5892857142857143,-0.11607142857142858,-0.41964285714285715 -1,0.0,0.0,-0.288135593220339,0.0847457627118644,-0.635593220338983,0.0423728813559322,-0.847457627118644,-0.059322033898305086,-0.8813559322033898,-0.23728813559322035,-0.6949152542372882,-0.4406779661016949,-0.9322033898305084,-0.6949152542372882,-1.0,-0.7033898305084746,-0.9661016949152542,-0.576271186440678,-0.5,-0.559322033898305,-0.7372881355932204,-0.864406779661017,-0.7372881355932204,-0.7203389830508474,-0.6779661016949152,-0.5169491525423728,-0.2711864406779661,-0.6186440677966102,-0.423728813559322,-0.7457627118644068,-0.3813559322033898,-0.5,-0.3220338983050847,-0.3220338983050847,0.0,-0.6271186440677966,-0.1271186440677966,-0.7203389830508474,-0.13559322033898305,-0.5423728813559322,-0.11864406779661017,-0.3983050847457627 -1,0.0,0.0,-0.27419354838709675,0.12903225806451613,-0.6048387096774194,0.1532258064516129,-0.8306451612903226,0.0967741935483871,-0.8629032258064516,-0.06451612903225806,-0.7338709677419355,-0.3225806451612903,-0.9919354838709677,-0.5483870967741935,-1.0,-0.5564516129032258,-0.9032258064516129,-0.47580645161290325,-0.5483870967741935,-0.45161290322580644,-0.7661290322580645,-0.7419354838709677,-0.6612903225806451,-0.5725806451612904,-0.5564516129032258,-0.4032258064516129,-0.33064516129032256,-0.5241935483870968,-0.41935483870967744,-0.717741935483871,-0.31451612903225806,-0.47580645161290325,-0.25806451612903225,-0.29838709677419356,-0.10483870967741936,-0.5645161290322581,-0.1693548387096774,-0.7338709677419355,-0.12903225806451613,-0.5483870967741935,-0.0967741935483871,-0.4112903225806452 -1,0.0,0.0,-0.2903225806451613,0.10483870967741936,-0.6129032258064516,0.14516129032258066,-0.8225806451612904,0.08870967741935484,-0.8145161290322581,-0.07258064516129033,-0.7096774193548387,-0.3225806451612903,-0.9596774193548387,-0.5161290322580645,-1.0,-0.5564516129032258,-0.9435483870967742,-0.5,-0.532258064516129,-0.45161290322580644,-0.7580645161290323,-0.75,-0.6774193548387096,-0.6290322580645161,-0.5806451612903226,-0.46774193548387094,-0.33064516129032256,-0.5241935483870968,-0.41935483870967744,-0.7258064516129032,-0.3064516129032258,-0.5080645161290323,-0.24193548387096775,-0.3387096774193548,-0.11290322580645161,-0.5645161290322581,-0.1693548387096774,-0.75,-0.12096774193548387,-0.5887096774193549,-0.08870967741935484,-0.45161290322580644 -1,0.0,0.0,-0.2605042016806723,0.12605042016806722,-0.5630252100840336,0.18487394957983194,-0.773109243697479,0.12605042016806722,-0.773109243697479,-0.04201680672268908,-0.7142857142857143,-0.29411764705882354,-0.9747899159663865,-0.4957983193277311,-1.0,-0.5210084033613446,-0.907563025210084,-0.4369747899159664,-0.5462184873949579,-0.44537815126050423,-0.773109243697479,-0.7478991596638656,-0.680672268907563,-0.6302521008403361,-0.5714285714285714,-0.4789915966386555,-0.3445378151260504,-0.5462184873949579,-0.42857142857142855,-0.773109243697479,-0.31092436974789917,-0.5882352941176471,-0.24369747899159663,-0.4117647058823529,-0.12605042016806722,-0.6050420168067226,-0.17647058823529413,-0.8151260504201681,-0.12605042016806722,-0.6722689075630253,-0.09243697478991597,-0.5210084033613446 -1,0.0,0.0,-0.2702702702702703,0.13513513513513514,-0.5675675675675675,0.16216216216216217,-0.7297297297297297,0.05405405405405406,-0.6576576576576577,-0.13513513513513514,-0.7207207207207207,-0.36036036036036034,-1.0,-0.5675675675675675,-0.990990990990991,-0.5855855855855856,-0.8558558558558559,-0.5045045045045045,-0.5315315315315315,-0.5225225225225225,-0.7567567567567568,-0.8558558558558559,-0.6396396396396397,-0.7477477477477478,-0.5225225225225225,-0.5765765765765766,-0.3153153153153153,-0.6126126126126126,-0.3783783783783784,-0.8738738738738738,-0.25225225225225223,-0.6756756756756757,-0.1891891891891892,-0.4864864864864865,-0.0990990990990991,-0.6486486486486487,-0.10810810810810811,-0.8918918918918919,-0.04504504504504504,-0.7387387387387387,-0.02702702702702703,-0.5765765765765766 -1,0.0,0.0,-0.23478260869565218,0.1391304347826087,-0.5217391304347826,0.13043478260869565,-0.6869565217391305,-0.008695652173913044,-0.6434782608695652,-0.19130434782608696,-0.7217391304347827,-0.3391304347826087,-1.0,-0.5478260869565217,-0.9478260869565217,-0.6,-0.8,-0.5304347826086957,-0.5391304347826087,-0.4956521739130435,-0.7565217391304347,-0.808695652173913,-0.6347826086956522,-0.7478260869565218,-0.5130434782608696,-0.5826086956521739,-0.33043478260869563,-0.591304347826087,-0.40869565217391307,-0.8521739130434782,-0.28695652173913044,-0.6956521739130435,-0.22608695652173913,-0.4956521739130435,-0.11304347826086956,-0.6434782608695652,-0.1391304347826087,-0.8434782608695652,-0.06956521739130435,-0.7130434782608696,-0.043478260869565216,-0.5478260869565217 -1,0.0,0.0,-0.23893805309734514,0.13274336283185842,-0.5309734513274337,0.10619469026548672,-0.7079646017699115,-0.05309734513274336,-0.6548672566371682,-0.24778761061946902,-0.7345132743362832,-0.37168141592920356,-1.0,-0.584070796460177,-0.9292035398230089,-0.6637168141592921,-0.7787610619469026,-0.6194690265486725,-0.5486725663716814,-0.5309734513274337,-0.7610619469026548,-0.8495575221238938,-0.6194690265486725,-0.7964601769911505,-0.4778761061946903,-0.6283185840707964,-0.3274336283185841,-0.6283185840707964,-0.39823008849557523,-0.9026548672566371,-0.2743362831858407,-0.7345132743362832,-0.21238938053097345,-0.5309734513274337,-0.09734513274336283,-0.6637168141592921,-0.11504424778761062,-0.8849557522123894,-0.05309734513274336,-0.7610619469026548,-0.02654867256637168,-0.5929203539823009 -1,0.0,0.0,-0.24561403508771928,0.13157894736842105,-0.5526315789473685,0.12280701754385964,-0.7631578947368421,-0.017543859649122806,-0.7543859649122807,-0.21929824561403508,-0.7543859649122807,-0.34210526315789475,-1.0,-0.543859649122807,-0.9736842105263158,-0.6666666666666666,-0.8508771929824561,-0.6578947368421053,-0.5701754385964912,-0.5175438596491229,-0.7719298245614035,-0.8070175438596491,-0.7017543859649122,-0.8333333333333334,-0.5789473684210527,-0.7105263157894737,-0.35964912280701755,-0.6052631578947368,-0.43859649122807015,-0.868421052631579,-0.3333333333333333,-0.7192982456140351,-0.2719298245614035,-0.5175438596491229,-0.12280701754385964,-0.6491228070175439,-0.14035087719298245,-0.8421052631578947,-0.09649122807017543,-0.7192982456140351,-0.07894736842105263,-0.5526315789473685 -1,0.0,0.0,-0.2857142857142857,0.10714285714285714,-0.5982142857142857,0.07142857142857142,-0.8125,-0.08035714285714286,-0.8214285714285714,-0.26785714285714285,-0.7767857142857143,-0.38392857142857145,-1.0,-0.5714285714285714,-0.9910714285714286,-0.7053571428571429,-0.875,-0.7142857142857143,-0.5892857142857143,-0.5535714285714286,-0.7767857142857143,-0.8214285714285714,-0.7321428571428571,-0.8660714285714286,-0.6339285714285714,-0.7678571428571429,-0.375,-0.6428571428571429,-0.4732142857142857,-0.9017857142857143,-0.375,-0.7678571428571429,-0.30357142857142855,-0.5803571428571429,-0.14285714285714285,-0.6785714285714286,-0.17857142857142858,-0.875,-0.125,-0.75,-0.08928571428571429,-0.5892857142857143 -1,0.0,0.0,-0.2962962962962963,0.1111111111111111,-0.6388888888888888,0.037037037037037035,-0.8425925925925926,-0.14814814814814814,-0.8425925925925926,-0.35185185185185186,-0.7870370370370371,-0.4444444444444444,-0.9907407407407407,-0.6296296296296297,-1.0,-0.75,-0.8981481481481481,-0.7407407407407407,-0.5925925925925926,-0.6018518518518519,-0.75,-0.8703703703703703,-0.7407407407407407,-0.9166666666666666,-0.6574074074074074,-0.8055555555555556,-0.37037037037037035,-0.6759259259259259,-0.46296296296296297,-0.9259259259259259,-0.4074074074074074,-0.8240740740740741,-0.3425925925925926,-0.6296296296296297,-0.12037037037037036,-0.6944444444444444,-0.16666666666666666,-0.8796296296296297,-0.12962962962962962,-0.7685185185185185,-0.10185185185185185,-0.6018518518518519 -1,0.0,0.0,-0.3592233009708738,0.04854368932038835,-0.7378640776699029,-0.0970873786407767,-0.9320388349514563,-0.33980582524271846,-0.8543689320388349,-0.5533980582524272,-0.7378640776699029,-0.5436893203883495,-0.9029126213592233,-0.7766990291262136,-0.970873786407767,-0.8640776699029126,-0.941747572815534,-0.8155339805825242,-0.5436893203883495,-0.6699029126213593,-0.6601941747572816,-0.970873786407767,-0.7281553398058253,-1.0,-0.7184466019417476,-0.8543689320388349,-0.3300970873786408,-0.6990291262135923,-0.4077669902912621,-0.970873786407767,-0.4077669902912621,-0.8446601941747572,-0.36893203883495146,-0.6310679611650486,-0.08737864077669903,-0.6796116504854369,-0.11650485436893204,-0.8737864077669902,-0.13592233009708737,-0.7572815533980582,-0.14563106796116504,-0.5825242718446602 -1,0.0,0.0,-0.35714285714285715,-0.017857142857142856,-0.6785714285714286,-0.1875,-0.8303571428571429,-0.44642857142857145,-0.7410714285714286,-0.6696428571428571,-0.5982142857142857,-0.6071428571428571,-0.6785714285714286,-0.8660714285714286,-0.75,-0.9553571428571429,-0.7410714285714286,-0.8839285714285714,-0.4017857142857143,-0.6696428571428571,-0.42857142857142855,-1.0,-0.48214285714285715,-1.0,-0.49107142857142855,-0.8303571428571429,-0.21428571428571427,-0.6607142857142857,-0.21428571428571427,-0.9642857142857143,-0.26785714285714285,-0.875,-0.2857142857142857,-0.6875,-0.008928571428571428,-0.6071428571428571,0.017857142857142856,-0.8214285714285714,-0.044642857142857144,-0.7767857142857143,-0.09821428571428571,-0.6339285714285714 -1,0.0,0.0,-0.34710743801652894,-0.049586776859504134,-0.6198347107438017,-0.2396694214876033,-0.743801652892562,-0.4628099173553719,-0.6776859504132231,-0.6776859504132231,-0.5041322314049587,-0.6033057851239669,-0.5950413223140496,-0.8429752066115702,-0.6115702479338843,-0.9504132231404959,-0.5619834710743802,-0.9090909090909091,-0.3140495867768595,-0.6363636363636364,-0.36363636363636365,-0.9256198347107438,-0.36363636363636365,-1.0,-0.3140495867768595,-0.8842975206611571,-0.14049586776859505,-0.6115702479338843,-0.1487603305785124,-0.859504132231405,-0.15702479338842976,-0.8842975206611571,-0.1322314049586777,-0.768595041322314,0.04132231404958678,-0.5454545454545454,0.08264462809917356,-0.71900826446281,0.05785123966942149,-0.7520661157024794,0.04132231404958678,-0.6776859504132231 -1,0.0,0.0,-0.3333333333333333,-0.08527131782945736,-0.5813953488372093,-0.29457364341085274,-0.6744186046511628,-0.5271317829457365,-0.5891472868217055,-0.7209302325581395,-0.4263565891472868,-0.6046511627906976,-0.49612403100775193,-0.8449612403100775,-0.4806201550387597,-0.9612403100775194,-0.4186046511627907,-0.9457364341085271,-0.24806201550387597,-0.627906976744186,-0.27906976744186046,-0.8914728682170543,-0.26356589147286824,-1.0,-0.2248062015503876,-0.9302325581395349,-0.08527131782945736,-0.5891472868217055,-0.07751937984496124,-0.813953488372093,-0.08527131782945736,-0.8914728682170543,-0.06976744186046512,-0.8372093023255814,0.08527131782945736,-0.5038759689922481,0.13953488372093023,-0.6589147286821705,0.14728682170542637,-0.7441860465116279,0.13953488372093023,-0.7364341085271318 -1,0.0,0.0,-0.2653061224489796,-0.14965986394557823,-0.41496598639455784,-0.3741496598639456,-0.4489795918367347,-0.5782312925170068,-0.40816326530612246,-0.7346938775510204,-0.24489795918367346,-0.564625850340136,-0.2789115646258503,-0.7959183673469388,-0.2585034013605442,-0.9183673469387755,-0.22448979591836735,-1.0,-0.08163265306122448,-0.5578231292517006,-0.06802721088435375,-0.7891156462585034,-0.04081632653061224,-0.9115646258503401,-0.006802721088435374,-0.9795918367346939,0.06802721088435375,-0.5170068027210885,0.10884353741496598,-0.7210884353741497,0.14285714285714285,-0.8503401360544217,0.16326530612244897,-0.9387755102040817,0.2108843537414966,-0.4421768707482993,0.2653061224489796,-0.6054421768707483,0.29931972789115646,-0.7210884353741497,0.3129251700680272,-0.8299319727891157 -1,0.0,0.0,-0.24025974025974026,-0.15584415584415584,-0.35714285714285715,-0.37012987012987014,-0.38311688311688313,-0.5584415584415584,-0.35714285714285715,-0.7142857142857143,-0.19480519480519481,-0.5454545454545454,-0.21428571428571427,-0.7662337662337663,-0.2012987012987013,-0.8961038961038961,-0.16883116883116883,-1.0,-0.045454545454545456,-0.538961038961039,-0.006493506493506494,-0.7597402597402597,0.01948051948051948,-0.8831168831168831,0.05194805194805195,-0.974025974025974,0.09090909090909091,-0.4805194805194805,0.16233766233766234,-0.6818181818181818,0.2077922077922078,-0.8116883116883117,0.24025974025974026,-0.922077922077922,0.21428571428571427,-0.3961038961038961,0.2922077922077922,-0.551948051948052,0.3246753246753247,-0.6623376623376623,0.34415584415584416,-0.7727272727272727 -1,0.0,0.0,-0.25161290322580643,-0.16129032258064516,-0.3741935483870968,-0.3741935483870968,-0.4,-0.567741935483871,-0.38064516129032255,-0.7290322580645161,-0.2064516129032258,-0.5483870967741935,-0.21935483870967742,-0.7677419354838709,-0.2064516129032258,-0.896774193548387,-0.17419354838709677,-1.0,-0.05161290322580645,-0.535483870967742,-0.01935483870967742,-0.7548387096774194,0.012903225806451613,-0.8838709677419355,0.04516129032258064,-0.9806451612903225,0.08387096774193549,-0.49032258064516127,0.14838709677419354,-0.6838709677419355,0.1870967741935484,-0.8129032258064516,0.21935483870967742,-0.9225806451612903,0.2129032258064516,-0.4129032258064516,0.2838709677419355,-0.5741935483870968,0.3161290322580645,-0.6774193548387096,0.32903225806451614,-0.7870967741935484 -1,0.0,0.0,0.25,0.171875,0.5625,0.2109375,0.8203125,0.171875,1.0,0.0625,0.625,-0.015625,0.828125,-0.03125,0.65625,0.0546875,0.5625,0.0625,0.5703125,-0.1484375,0.765625,-0.1484375,0.53125,-0.0234375,0.46875,-0.046875,0.484375,-0.265625,0.65625,-0.265625,0.4453125,-0.1328125,0.3671875,-0.15625,0.375,-0.3984375,0.5546875,-0.390625,0.40625,-0.2734375,0.3125,-0.2890625 -1,0.0,0.0,0.3644859813084112,-0.018691588785046728,0.6728971962616822,-0.18691588785046728,0.897196261682243,-0.411214953271028,1.0,-0.6261682242990654,0.6261682242990654,-0.45794392523364486,0.822429906542056,-0.5607476635514018,0.8130841121495327,-0.4672897196261682,0.7570093457943925,-0.42990654205607476,0.48598130841121495,-0.5420560747663551,0.7009345794392523,-0.6728971962616822,0.5514018691588785,-0.4392523364485981,0.45794392523364486,-0.4205607476635514,0.3177570093457944,-0.6074766355140186,0.48598130841121495,-0.7009345794392523,0.35514018691588783,-0.45794392523364486,0.27102803738317754,-0.4392523364485981,0.11214953271028037,-0.6542056074766355,0.2803738317757009,-0.7476635514018691,0.21495327102803738,-0.5607476635514018,0.12149532710280374,-0.5420560747663551 -1,0.0,0.0,0.4020618556701031,-0.061855670103092786,0.7216494845360825,-0.26804123711340205,0.9278350515463918,-0.5360824742268041,1.0,-0.7835051546391752,0.6391752577319587,-0.5670103092783505,0.8041237113402062,-0.7422680412371134,0.8350515463917526,-0.6494845360824743,0.8041237113402062,-0.5979381443298969,0.4742268041237113,-0.6494845360824743,0.6907216494845361,-0.8247422680412371,0.5773195876288659,-0.5670103092783505,0.4639175257731959,-0.5051546391752577,0.27835051546391754,-0.7010309278350515,0.4639175257731959,-0.8350515463917526,0.36082474226804123,-0.5567010309278351,0.24742268041237114,-0.5051546391752577,0.05154639175257732,-0.7319587628865979,0.23711340206185566,-0.865979381443299,0.1958762886597938,-0.6597938144329897,0.09278350515463918,-0.6082474226804123 -1,0.0,0.0,0.4175824175824176,-0.13186813186813187,0.7142857142857143,-0.4065934065934066,0.8901098901098901,-0.7142857142857143,0.945054945054945,-1.0,0.5824175824175825,-0.7252747252747253,0.7362637362637363,-0.9230769230769231,0.7142857142857143,-0.7142857142857143,0.6593406593406593,-0.6153846153846154,0.3956043956043956,-0.7802197802197802,0.5824175824175825,-0.989010989010989,0.4945054945054945,-0.6593406593406593,0.4065934065934066,-0.6043956043956044,0.17582417582417584,-0.8021978021978022,0.3516483516483517,-0.967032967032967,0.27472527472527475,-0.6263736263736264,0.17582417582417584,-0.5714285714285714,-0.06593406593406594,-0.8021978021978022,0.0989010989010989,-0.967032967032967,0.08791208791208792,-0.7142857142857143,-0.01098901098901099,-0.6483516483516484 -1,0.0,0.0,0.3917525773195876,-0.1134020618556701,0.6701030927835051,-0.3917525773195876,0.8247422680412371,-0.7216494845360825,0.8556701030927835,-1.0,0.5360824742268041,-0.711340206185567,0.6597938144329897,-0.8969072164948454,0.6185567010309279,-0.6701030927835051,0.5670103092783505,-0.5670103092783505,0.35051546391752575,-0.7525773195876289,0.5051546391752577,-0.9484536082474226,0.422680412371134,-0.6082474226804123,0.35051546391752575,-0.5876288659793815,0.14432989690721648,-0.7731958762886598,0.27835051546391754,-0.9175257731958762,0.2268041237113402,-0.5773195876288659,0.14432989690721648,-0.5463917525773195,-0.08247422680412371,-0.7731958762886598,0.041237113402061855,-0.9175257731958762,0.030927835051546393,-0.6701030927835051,-0.05154639175257732,-0.6185567010309279 -1,0.0,0.0,0.3939393939393939,-0.12121212121212122,0.6666666666666666,-0.3939393939393939,0.8181818181818182,-0.7272727272727273,0.8282828282828283,-1.0,0.5454545454545454,-0.7070707070707071,0.696969696969697,-0.8888888888888888,0.6161616161616161,-0.6464646464646465,0.5454545454545454,-0.5959595959595959,0.35353535353535354,-0.7575757575757576,0.494949494949495,-0.9292929292929293,0.40404040404040403,-0.5858585858585859,0.36363636363636365,-0.6060606060606061,0.1414141414141414,-0.7676767676767676,0.25252525252525254,-0.898989898989899,0.20202020202020202,-0.5555555555555556,0.15151515151515152,-0.5656565656565656,-0.08080808080808081,-0.7474747474747475,0.020202020202020204,-0.8888888888888888,0.020202020202020204,-0.6363636363636364,-0.04040404040404041,-0.6060606060606061 -1,0.0,0.0,0.36538461538461536,-0.125,0.6057692307692307,-0.3942307692307692,0.7403846153846154,-0.7211538461538461,0.7596153846153846,-1.0,0.5,-0.7019230769230769,0.6153846153846154,-0.8846153846153846,0.5384615384615384,-0.6346153846153846,0.49038461538461536,-0.5865384615384616,0.3173076923076923,-0.75,0.4230769230769231,-0.9038461538461539,0.34615384615384615,-0.5673076923076923,0.3173076923076923,-0.5961538461538461,0.11538461538461539,-0.75,0.19230769230769232,-0.8653846153846154,0.16346153846153846,-0.5384615384615384,0.125,-0.5673076923076923,-0.09615384615384616,-0.7403846153846154,-0.009615384615384616,-0.8557692307692307,-0.009615384615384616,-0.6153846153846154,-0.0673076923076923,-0.6057692307692307 -1,0.0,0.0,0.3883495145631068,-0.13592233009708737,0.6407766990291263,-0.39805825242718446,0.7766990291262136,-0.7281553398058253,0.7378640776699029,-1.0,0.5048543689320388,-0.7087378640776699,0.6213592233009708,-0.9029126213592233,0.5631067961165048,-0.6504854368932039,0.5242718446601942,-0.5922330097087378,0.32038834951456313,-0.7378640776699029,0.4368932038834951,-0.9223300970873787,0.3786407766990291,-0.5728155339805825,0.33980582524271846,-0.5825242718446602,0.11650485436893204,-0.7378640776699029,0.20388349514563106,-0.883495145631068,0.18446601941747573,-0.5436893203883495,0.13592233009708737,-0.5533980582524272,-0.10679611650485436,-0.7184466019417476,-0.009708737864077669,-0.8737864077669902,0.0,-0.6310679611650486,-0.06796116504854369,-0.5922330097087378 -1,0.0,0.0,0.3644859813084112,-0.14018691588785046,0.5981308411214953,-0.411214953271028,0.7009345794392523,-0.7383177570093458,0.6822429906542056,-1.0,0.45794392523364486,-0.7102803738317757,0.5700934579439252,-0.8878504672897196,0.5046728971962616,-0.6448598130841121,0.45794392523364486,-0.6074766355140186,0.2803738317757009,-0.7383177570093458,0.38317757009345793,-0.9065420560747663,0.3177570093457944,-0.5700934579439252,0.2803738317757009,-0.5887850467289719,0.08411214953271028,-0.7289719626168224,0.1588785046728972,-0.8504672897196262,0.14018691588785046,-0.5327102803738317,0.09345794392523364,-0.5514018691588785,-0.1308411214953271,-0.7009345794392523,-0.04672897196261682,-0.8411214953271028,-0.028037383177570093,-0.5981308411214953,-0.09345794392523364,-0.5794392523364486 -1,0.0,0.0,0.34545454545454546,-0.14545454545454545,0.5727272727272728,-0.4090909090909091,0.6818181818181818,-0.7363636363636363,0.6454545454545455,-1.0,0.44545454545454544,-0.7090909090909091,0.5454545454545454,-0.8909090909090909,0.4818181818181818,-0.6545454545454545,0.44545454545454544,-0.6181818181818182,0.2636363636363636,-0.7363636363636363,0.36363636363636365,-0.9090909090909091,0.3090909090909091,-0.5727272727272728,0.2727272727272727,-0.6090909090909091,0.07272727272727272,-0.7272727272727273,0.13636363636363635,-0.8545454545454545,0.12727272727272726,-0.5454545454545454,0.09090909090909091,-0.5727272727272728,-0.13636363636363635,-0.7,-0.06363636363636363,-0.8363636363636363,-0.045454545454545456,-0.6090909090909091,-0.1,-0.5909090909090909 -1,0.0,0.0,0.35135135135135137,-0.16216216216216217,0.5585585585585585,-0.43243243243243246,0.6396396396396397,-0.7477477477477478,0.6036036036036037,-1.0,0.42342342342342343,-0.7027027027027027,0.5135135135135135,-0.8918918918918919,0.46846846846846846,-0.6576576576576577,0.43243243243243246,-0.5945945945945946,0.25225225225225223,-0.7207207207207207,0.34234234234234234,-0.9099099099099099,0.3063063063063063,-0.5945945945945946,0.26126126126126126,-0.5855855855855856,0.06306306306306306,-0.7117117117117117,0.12612612612612611,-0.8648648648648649,0.12612612612612611,-0.5495495495495496,0.08108108108108109,-0.5405405405405406,-0.15315315315315314,-0.6846846846846847,-0.07207207207207207,-0.8378378378378378,-0.04504504504504504,-0.6126126126126126,-0.0990990990990991,-0.5675675675675675 -1,0.0,0.0,0.3333333333333333,-0.15789473684210525,0.5263157894736842,-0.4298245614035088,0.5964912280701754,-0.7456140350877193,0.5526315789473685,-1.0,0.38596491228070173,-0.6929824561403509,0.4649122807017544,-0.8859649122807017,0.43859649122807015,-0.6666666666666666,0.40350877192982454,-0.5964912280701754,0.21929824561403508,-0.7105263157894737,0.2894736842105263,-0.8947368421052632,0.2631578947368421,-0.5789473684210527,0.22807017543859648,-0.5789473684210527,0.03508771929824561,-0.6929824561403509,0.07017543859649122,-0.8421052631578947,0.08771929824561403,-0.5350877192982456,0.05263157894736842,-0.5175438596491229,-0.16666666666666666,-0.6578947368421053,-0.12280701754385964,-0.8245614035087719,-0.08771929824561403,-0.6140350877192983,-0.12280701754385964,-0.5526315789473685 -1,0.0,0.0,0.3217391304347826,-0.19130434782608696,0.4956521739130435,-0.45217391304347826,0.5391304347826087,-0.7565217391304347,0.48695652173913045,-1.0,0.34782608695652173,-0.7130434782608696,0.43478260869565216,-0.8956521739130435,0.43478260869565216,-0.7391304347826086,0.4,-0.6782608695652174,0.1826086956521739,-0.7304347826086957,0.26956521739130435,-0.9043478260869565,0.2608695652173913,-0.6086956521739131,0.2,-0.5826086956521739,0.0,-0.7043478260869566,0.06956521739130435,-0.8434782608695652,0.08695652173913043,-0.5478260869565217,0.034782608695652174,-0.5217391304347826,-0.19130434782608696,-0.6521739130434783,-0.12173913043478261,-0.8,-0.0782608695652174,-0.5826086956521739,-0.13043478260869565,-0.5304347826086957 -1,0.0,0.0,0.3125,-0.16071428571428573,0.5,-0.42857142857142855,0.5357142857142857,-0.75,0.48214285714285715,-1.0,0.35714285714285715,-0.7321428571428571,0.44642857142857145,-0.9107142857142857,0.45535714285714285,-0.7946428571428571,0.42857142857142855,-0.75,0.17857142857142858,-0.75,0.2767857142857143,-0.9464285714285714,0.25892857142857145,-0.6339285714285714,0.19642857142857142,-0.5982142857142857,-0.008928571428571428,-0.7321428571428571,0.0625,-0.875,0.08035714285714286,-0.5535714285714286,0.026785714285714284,-0.5357142857142857,-0.21428571428571427,-0.6785714285714286,-0.13392857142857142,-0.8125,-0.09821428571428571,-0.5892857142857143,-0.16071428571428573,-0.5446428571428571 -1,0.0,0.0,0.3103448275862069,-0.1810344827586207,0.47413793103448276,-0.4396551724137931,0.49137931034482757,-0.75,0.4224137931034483,-1.0,0.31896551724137934,-0.7068965517241379,0.3706896551724138,-0.8879310344827587,0.3879310344827586,-0.7672413793103449,0.3793103448275862,-0.7241379310344828,0.14655172413793102,-0.7241379310344828,0.20689655172413793,-0.9137931034482759,0.21551724137931033,-0.6120689655172413,0.1724137931034483,-0.5775862068965517,-0.034482758620689655,-0.6982758620689655,0.008620689655172414,-0.8362068965517241,0.04310344827586207,-0.5344827586206896,0.008620689655172414,-0.5,-0.23275862068965517,-0.6379310344827587,-0.1810344827586207,-0.7758620689655172,-0.12931034482758622,-0.5689655172413793,-0.16379310344827586,-0.5086206896551724 -1,0.0,0.0,0.29914529914529914,-0.1623931623931624,0.46153846153846156,-0.4444444444444444,0.47863247863247865,-0.7606837606837606,0.39316239316239315,-1.0,0.3418803418803419,-0.6923076923076923,0.4188034188034188,-0.8717948717948718,0.41025641025641024,-0.7863247863247863,0.38461538461538464,-0.7606837606837606,0.1623931623931624,-0.7094017094017094,0.2222222222222222,-0.8974358974358975,0.21367521367521367,-0.5982905982905983,0.17094017094017094,-0.5726495726495726,-0.02564102564102564,-0.6837606837606838,0.0,-0.8290598290598291,0.03418803418803419,-0.5213675213675214,0.008547008547008548,-0.48717948717948717,-0.2222222222222222,-0.6239316239316239,-0.18803418803418803,-0.7692307692307693,-0.1452991452991453,-0.5470085470085471,-0.1794871794871795,-0.49572649572649574 -1,0.0,0.0,0.29310344827586204,-0.1810344827586207,0.45689655172413796,-0.4482758620689655,0.46551724137931033,-0.7672413793103449,0.3793103448275862,-1.0,0.3103448275862069,-0.6982758620689655,0.3706896551724138,-0.896551724137931,0.3706896551724138,-0.8017241379310345,0.3620689655172414,-0.7844827586206896,0.13793103448275862,-0.7068965517241379,0.1810344827586207,-0.9051724137931034,0.1896551724137931,-0.6120689655172413,0.16379310344827586,-0.5862068965517241,-0.04310344827586207,-0.6810344827586207,-0.034482758620689655,-0.8189655172413793,0.017241379310344827,-0.5172413793103449,0.0,-0.5,-0.2413793103448276,-0.6120689655172413,-0.21551724137931033,-0.7586206896551724,-0.15517241379310345,-0.5431034482758621,-0.1810344827586207,-0.5 -1,0.0,0.0,0.29914529914529914,-0.17094017094017094,0.452991452991453,-0.4444444444444444,0.452991452991453,-0.7692307692307693,0.358974358974359,-1.0,0.3247863247863248,-0.7008547008547008,0.36752136752136755,-0.8888888888888888,0.36752136752136755,-0.8376068376068376,0.358974358974359,-0.8547008547008547,0.1452991452991453,-0.7094017094017094,0.1623931623931624,-0.8888888888888888,0.1794871794871795,-0.5897435897435898,0.1623931623931624,-0.5811965811965812,-0.042735042735042736,-0.6752136752136753,-0.05128205128205128,-0.8034188034188035,0.0,-0.49572649572649574,0.0,-0.48717948717948717,-0.23931623931623933,-0.5982905982905983,-0.23076923076923078,-0.7350427350427351,-0.17094017094017094,-0.5128205128205128,-0.18803418803418803,-0.47863247863247865 -1,0.0,0.0,0.29310344827586204,-0.16379310344827586,0.45689655172413796,-0.43103448275862066,0.47413793103448276,-0.7586206896551724,0.3620689655172414,-1.0,0.3017241379310345,-0.6982758620689655,0.3448275862068966,-0.896551724137931,0.3448275862068966,-0.8189655172413793,0.3275862068965517,-0.8103448275862069,0.1206896551724138,-0.6982758620689655,0.15517241379310345,-0.8793103448275862,0.1724137931034483,-0.5775862068965517,0.15517241379310345,-0.5775862068965517,-0.0603448275862069,-0.6551724137931034,-0.0603448275862069,-0.7931034482758621,0.0,-0.49137931034482757,-0.008620689655172414,-0.49137931034482757,-0.25862068965517243,-0.5862068965517241,-0.2413793103448276,-0.7327586206896551,-0.1724137931034483,-0.5258620689655172,-0.19827586206896552,-0.4827586206896552 -1,0.0,0.0,0.2894736842105263,-0.16666666666666666,0.4473684210526316,-0.4298245614035088,0.45614035087719296,-0.7631578947368421,0.3333333333333333,-1.0,0.3157894736842105,-0.7192982456140351,0.35964912280701755,-0.9035087719298246,0.35964912280701755,-0.9035087719298246,0.3333333333333333,-0.9649122807017544,0.13157894736842105,-0.7280701754385965,0.14912280701754385,-0.9035087719298246,0.16666666666666666,-0.5877192982456141,0.14912280701754385,-0.5964912280701754,-0.06140350877192982,-0.6754385964912281,-0.07017543859649122,-0.8070175438596491,-0.008771929824561403,-0.4824561403508772,-0.02631578947368421,-0.5,-0.2719298245614035,-0.5964912280701754,-0.2543859649122807,-0.7368421052631579,-0.18421052631578946,-0.5087719298245614,-0.21052631578947367,-0.4824561403508772 -1,0.0,0.0,0.2831858407079646,-0.168141592920354,0.4336283185840708,-0.4424778761061947,0.415929203539823,-0.7787610619469026,0.2920353982300885,-1.0,0.30973451327433627,-0.7256637168141593,0.34513274336283184,-0.9292035398230089,0.3274336283185841,-0.911504424778761,0.3008849557522124,-0.9469026548672567,0.11504424778761062,-0.7256637168141593,0.10619469026548672,-0.911504424778761,0.13274336283185842,-0.5929203539823009,0.1415929203539823,-0.5929203539823009,-0.08849557522123894,-0.672566371681416,-0.11504424778761062,-0.8141592920353983,-0.05309734513274336,-0.48672566371681414,-0.035398230088495575,-0.48672566371681414,-0.2920353982300885,-0.584070796460177,-0.30973451327433627,-0.7433628318584071,-0.23893805309734514,-0.5309734513274337,-0.24778761061946902,-0.48672566371681414 -1,0.0,0.0,0.2711864406779661,-0.16101694915254236,0.4322033898305085,-0.4406779661016949,0.4322033898305085,-0.7711864406779662,0.2966101694915254,-1.0,0.2796610169491525,-0.7288135593220338,0.3220338983050847,-0.9067796610169492,0.3135593220338983,-0.8813559322033898,0.2796610169491525,-0.9152542372881356,0.09322033898305085,-0.7288135593220338,0.11016949152542373,-0.8983050847457628,0.1440677966101695,-0.576271186440678,0.1271186440677966,-0.559322033898305,-0.1016949152542373,-0.6779661016949152,-0.1016949152542373,-0.8050847457627118,-0.03389830508474576,-0.4830508474576271,-0.05084745762711865,-0.4661016949152542,-0.2966101694915254,-0.5847457627118644,-0.2966101694915254,-0.7372881355932204,-0.22033898305084745,-0.5254237288135594,-0.23728813559322035,-0.4745762711864407 -1,0.0,0.0,0.2711864406779661,-0.16101694915254236,0.4322033898305085,-0.4406779661016949,0.4322033898305085,-0.7796610169491526,0.288135593220339,-1.0,0.3135593220338983,-0.7203389830508474,0.3305084745762712,-0.9152542372881356,0.3135593220338983,-0.9067796610169492,0.2796610169491525,-0.9576271186440678,0.11864406779661017,-0.7203389830508474,0.11016949152542373,-0.9067796610169492,0.1440677966101695,-0.5847457627118644,0.15254237288135594,-0.576271186440678,-0.07627118644067797,-0.6694915254237288,-0.1016949152542373,-0.8050847457627118,-0.03389830508474576,-0.4830508474576271,-0.025423728813559324,-0.4745762711864407,-0.2711864406779661,-0.5847457627118644,-0.288135593220339,-0.7457627118644068,-0.22033898305084745,-0.5254237288135594,-0.2288135593220339,-0.4661016949152542 -1,0.0,0.0,0.2727272727272727,-0.1652892561983471,0.4214876033057851,-0.4380165289256198,0.4132231404958678,-0.768595041322314,0.2892561983471074,-1.0,0.2975206611570248,-0.7107438016528925,0.32231404958677684,-0.8925619834710744,0.3140495867768595,-0.8842975206611571,0.2975206611570248,-0.9338842975206612,0.11570247933884298,-0.7107438016528925,0.11570247933884298,-0.8925619834710744,0.1487603305785124,-0.5785123966942148,0.14049586776859505,-0.5619834710743802,-0.0743801652892562,-0.6528925619834711,-0.09090909090909091,-0.8016528925619835,-0.024793388429752067,-0.4793388429752066,-0.024793388429752067,-0.45454545454545453,-0.2727272727272727,-0.5702479338842975,-0.2727272727272727,-0.7272727272727273,-0.2066115702479339,-0.512396694214876,-0.2231404958677686,-0.45454545454545453 -1,0.0,0.0,0.2773109243697479,-0.15966386554621848,0.42857142857142855,-0.4369747899159664,0.42016806722689076,-0.7647058823529411,0.2773109243697479,-1.0,0.3445378151260504,-0.7058823529411765,0.3697478991596639,-0.8991596638655462,0.3445378151260504,-0.9327731092436975,0.29411764705882354,-1.0,0.15126050420168066,-0.7142857142857143,0.13445378151260504,-0.907563025210084,0.15966386554621848,-0.5966386554621849,0.16806722689075632,-0.5546218487394958,-0.05042016806722689,-0.6638655462184874,-0.08403361344537816,-0.8151260504201681,-0.01680672268907563,-0.4957983193277311,-0.008403361344537815,-0.453781512605042,-0.25210084033613445,-0.5798319327731093,-0.2689075630252101,-0.7563025210084033,-0.20168067226890757,-0.5462184873949579,-0.20168067226890757,-0.47058823529411764 -1,0.0,0.0,0.26229508196721313,-0.1557377049180328,0.4098360655737705,-0.4180327868852459,0.4098360655737705,-0.7540983606557377,0.28688524590163933,-1.0,0.3442622950819672,-0.6967213114754098,0.3524590163934426,-0.8852459016393442,0.319672131147541,-0.8852459016393442,0.28688524590163933,-0.9590163934426229,0.1557377049180328,-0.7049180327868853,0.13114754098360656,-0.8852459016393442,0.14754098360655737,-0.5655737704918032,0.1721311475409836,-0.5737704918032787,-0.040983606557377046,-0.6557377049180327,-0.08196721311475409,-0.8032786885245902,-0.03278688524590164,-0.47540983606557374,-0.00819672131147541,-0.4672131147540984,-0.23770491803278687,-0.5737704918032787,-0.26229508196721313,-0.7459016393442623,-0.19672131147540983,-0.5245901639344263,-0.19672131147540983,-0.4672131147540984 -1,0.0,0.0,0.25203252032520324,-0.14634146341463414,0.4065040650406504,-0.4146341463414634,0.3983739837398374,-0.7479674796747967,0.2764227642276423,-1.0,0.36585365853658536,-0.7073170731707317,0.37398373983739835,-0.8699186991869918,0.3333333333333333,-0.8861788617886179,0.2926829268292683,-0.983739837398374,0.17073170731707318,-0.7154471544715447,0.15447154471544716,-0.8780487804878049,0.15447154471544716,-0.5691056910569106,0.17073170731707318,-0.5853658536585366,-0.032520325203252036,-0.6747967479674797,-0.07317073170731707,-0.8130081300813008,-0.032520325203252036,-0.4796747967479675,-0.016260162601626018,-0.4796747967479675,-0.23577235772357724,-0.6016260162601627,-0.25203252032520324,-0.7642276422764228,-0.1951219512195122,-0.5284552845528455,-0.2032520325203252,-0.4796747967479675 -1,0.0,0.0,0.2601626016260163,-0.14634146341463414,0.4065040650406504,-0.4065040650406504,0.4146341463414634,-0.7398373983739838,0.3008130081300813,-0.991869918699187,0.37398373983739835,-0.7073170731707317,0.37398373983739835,-0.8780487804878049,0.34146341463414637,-0.9105691056910569,0.3089430894308943,-1.0,0.17886178861788618,-0.7154471544715447,0.15447154471544716,-0.8943089430894309,0.15447154471544716,-0.5853658536585366,0.17886178861788618,-0.5772357723577236,-0.024390243902439025,-0.6747967479674797,-0.06504065040650407,-0.8211382113821138,-0.016260162601626018,-0.4959349593495935,0.0,-0.4796747967479675,-0.21951219512195122,-0.6097560975609756,-0.23577235772357724,-0.7723577235772358,-0.18699186991869918,-0.5447154471544715,-0.18699186991869918,-0.4878048780487805 -1,0.0,0.0,0.2786885245901639,-0.1557377049180328,0.4262295081967213,-0.4262295081967213,0.4426229508196721,-0.7540983606557377,0.32786885245901637,-1.0,0.3770491803278688,-0.7049180327868853,0.3770491803278688,-0.8934426229508197,0.36065573770491804,-0.8934426229508197,0.32786885245901637,-0.9754098360655737,0.1885245901639344,-0.7213114754098361,0.18032786885245902,-0.9016393442622951,0.18032786885245902,-0.5819672131147541,0.20491803278688525,-0.5901639344262295,-0.00819672131147541,-0.6885245901639344,-0.03278688524590164,-0.8278688524590164,0.00819672131147541,-0.4918032786885246,0.00819672131147541,-0.48360655737704916,-0.21311475409836064,-0.6147540983606558,-0.20491803278688525,-0.7786885245901639,-0.1557377049180328,-0.5409836065573771,-0.1721311475409836,-0.48360655737704916 -1,0.0,0.0,0.2727272727272727,-0.15702479338842976,0.4462809917355372,-0.4297520661157025,0.4628099173553719,-0.7603305785123967,0.3140495867768595,-1.0,0.36363636363636365,-0.71900826446281,0.4049586776859504,-0.9008264462809917,0.39669421487603307,-0.8760330578512396,0.35537190082644626,-0.8925619834710744,0.17355371900826447,-0.7355371900826446,0.21487603305785125,-0.9173553719008265,0.2066115702479339,-0.5867768595041323,0.18181818181818182,-0.5619834710743802,-0.024793388429752067,-0.7107438016528925,0.008264462809917356,-0.8512396694214877,0.03305785123966942,-0.512396694214876,0.008264462809917356,-0.47107438016528924,-0.2231404958677686,-0.6446280991735537,-0.1652892561983471,-0.8016528925619835,-0.12396694214876033,-0.5702479338842975,-0.1652892561983471,-0.49586776859504134 -1,0.0,0.0,0.3076923076923077,-0.13675213675213677,0.49572649572649574,-0.4188034188034188,0.5213675213675214,-0.7692307692307693,0.36752136752136755,-1.0,0.4444444444444444,-0.717948717948718,0.5042735042735043,-0.9401709401709402,0.48717948717948717,-0.8717948717948718,0.4358974358974359,-0.8547008547008547,0.24786324786324787,-0.7435897435897436,0.29914529914529914,-0.9487179487179487,0.28205128205128205,-0.6068376068376068,0.2564102564102564,-0.5726495726495726,0.042735042735042736,-0.7264957264957265,0.08547008547008547,-0.8888888888888888,0.09401709401709402,-0.5384615384615384,0.07692307692307693,-0.48717948717948717,-0.1794871794871795,-0.6666666666666666,-0.1111111111111111,-0.8376068376068376,-0.07692307692307693,-0.5982905982905983,-0.11965811965811966,-0.5128205128205128 -1,0.0,0.0,0.33043478260869563,-0.10434782608695652,0.5652173913043478,-0.4,0.6260869565217392,-0.7565217391304347,0.48695652173913045,-1.0,0.5130434782608696,-0.7130434782608696,0.6086956521739131,-0.9739130434782609,0.5652173913043478,-0.7391304347826086,0.5130434782608696,-0.6521739130434783,0.3130434782608696,-0.7478260869565218,0.3826086956521739,-0.9652173913043478,0.34782608695652173,-0.6086956521739131,0.33043478260869563,-0.5739130434782609,0.10434782608695652,-0.7391304347826086,0.16521739130434782,-0.9130434782608695,0.1565217391304348,-0.5565217391304348,0.13043478260869565,-0.5043478260869565,-0.11304347826086956,-0.7130434782608696,-0.02608695652173913,-0.8695652173913043,-0.008695652173913044,-0.6347826086956522,-0.034782608695652174,-0.5478260869565217 -1,0.0,0.0,0.36036036036036034,-0.09009009009009009,0.6396396396396397,-0.36036036036036034,0.7567567567567568,-0.7207207207207207,0.7027027027027027,-1.0,0.6306306306306306,-0.7117117117117117,0.7747747747747747,-0.990990990990991,0.7027027027027027,-0.7747747747747747,0.6126126126126126,-0.6756756756756757,0.43243243243243246,-0.7657657657657657,0.5225225225225225,-0.9819819819819819,0.43243243243243246,-0.6216216216216216,0.40540540540540543,-0.5945945945945946,0.21621621621621623,-0.7927927927927928,0.3153153153153153,-0.954954954954955,0.26126126126126126,-0.5945945945945946,0.21621621621621623,-0.5405405405405406,-0.009009009009009009,-0.7927927927927928,0.12612612612612611,-0.9369369369369369,0.10810810810810811,-0.6846846846846847,0.05405405405405406,-0.6126126126126126 -1,0.0,0.0,0.38317757009345793,-0.09345794392523364,0.7009345794392523,-0.34579439252336447,0.8691588785046729,-0.6915887850467289,0.897196261682243,-0.9906542056074766,0.7383177570093458,-0.7009345794392523,0.8785046728971962,-1.0,0.8037383177570093,-0.8411214953271028,0.7383177570093458,-0.7663551401869159,0.5327102803738317,-0.7757009345794392,0.6261682242990654,-1.0,0.5046728971962616,-0.6448598130841121,0.48598130841121495,-0.616822429906542,0.3177570093457944,-0.8130841121495327,0.411214953271028,-0.9813084112149533,0.32710280373831774,-0.6355140186915887,0.2897196261682243,-0.5794392523364486,0.08411214953271028,-0.8317757009345794,0.205607476635514,-0.9906542056074766,0.17757009345794392,-0.7476635514018691,0.12149532710280374,-0.6635514018691588 -1,0.0,0.0,0.4036697247706422,-0.08256880733944955,0.7522935779816514,-0.3211009174311927,0.963302752293578,-0.6330275229357798,1.0,-0.8990825688073395,0.7981651376146789,-0.6605504587155964,0.944954128440367,-0.926605504587156,0.8073394495412844,-0.6788990825688074,0.7339449541284404,-0.5963302752293578,0.5963302752293578,-0.7614678899082569,0.7064220183486238,-0.963302752293578,0.5504587155963303,-0.6146788990825688,0.5321100917431193,-0.5871559633027523,0.3761467889908257,-0.8165137614678899,0.48623853211009177,-0.9541284403669725,0.3853211009174312,-0.6238532110091743,0.3394495412844037,-0.5779816513761468,0.1559633027522936,-0.8440366972477065,0.28440366972477066,-0.963302752293578,0.23853211009174313,-0.7339449541284404,0.2018348623853211,-0.6605504587155964 -1,0.0,0.0,0.38333333333333336,-0.05,0.7166666666666667,-0.225,0.9333333333333333,-0.475,1.0,-0.7,0.775,-0.55,0.9416666666666667,-0.7583333333333333,0.8,-0.5416666666666666,0.725,-0.4666666666666667,0.6,-0.65,0.7416666666666667,-0.8083333333333333,0.575,-0.5166666666666667,0.5416666666666666,-0.49166666666666664,0.4166666666666667,-0.7166666666666667,0.55,-0.8333333333333334,0.425,-0.55,0.375,-0.5166666666666667,0.20833333333333334,-0.7666666666666667,0.35,-0.85,0.3,-0.6416666666666667,0.25,-0.5916666666666667 -1,0.0,0.0,0.35877862595419846,-0.022900763358778626,0.6870229007633588,-0.1297709923664122,0.9083969465648855,-0.32061068702290074,1.0,-0.5190839694656488,0.7709923664122137,-0.42748091603053434,0.9312977099236641,-0.5877862595419847,0.7709923664122137,-0.3893129770992366,0.7099236641221374,-0.33587786259541985,0.6259541984732825,-0.5419847328244275,0.7557251908396947,-0.6717557251908397,0.5801526717557252,-0.40458015267175573,0.549618320610687,-0.40458015267175573,0.4580152671755725,-0.6183206106870229,0.5877862595419847,-0.7099236641221374,0.45038167938931295,-0.4580152671755725,0.40458015267175573,-0.45038167938931295,0.2748091603053435,-0.6793893129770993,0.4122137404580153,-0.7480916030534351,0.3435114503816794,-0.5572519083969466,0.29770992366412213,-0.5267175572519084 -1,0.0,0.0,0.3357664233576642,0.0072992700729927005,0.6496350364963503,-0.058394160583941604,0.9124087591240876,-0.20437956204379562,1.0,-0.40145985401459855,0.781021897810219,-0.31386861313868614,0.9343065693430657,-0.4744525547445255,0.7591240875912408,-0.30656934306569344,0.7372262773722628,-0.26277372262773724,0.6642335766423357,-0.43795620437956206,0.7956204379562044,-0.5766423357664233,0.5766423357664233,-0.35036496350364965,0.6058394160583942,-0.35766423357664234,0.5182481751824818,-0.5328467153284672,0.635036496350365,-0.635036496350365,0.46715328467153283,-0.41605839416058393,0.46715328467153283,-0.41605839416058393,0.35766423357664234,-0.6131386861313869,0.4744525547445255,-0.6861313868613139,0.38686131386861317,-0.5182481751824818,0.36496350364963503,-0.48905109489051096 -1,0.0,0.0,0.31690140845070425,0.04225352112676056,0.6338028169014085,0.007042253521126761,0.9014084507042254,-0.11267605633802817,1.0,-0.29577464788732394,0.7887323943661971,-0.2323943661971831,0.9436619718309859,-0.3732394366197183,0.7676056338028169,-0.2323943661971831,0.7323943661971831,-0.19014084507042253,0.676056338028169,-0.352112676056338,0.8169014084507042,-0.47183098591549294,0.5985915492957746,-0.2746478873239437,0.6197183098591549,-0.2746478873239437,0.5352112676056338,-0.4507042253521127,0.6619718309859155,-0.5422535211267606,0.4859154929577465,-0.34507042253521125,0.4788732394366197,-0.33098591549295775,0.3873239436619718,-0.5352112676056338,0.5,-0.5915492957746479,0.4014084507042254,-0.4507042253521127,0.38028169014084506,-0.4154929577464789 -1,0.0,0.0,0.30612244897959184,0.06802721088435375,0.6122448979591837,0.047619047619047616,0.8843537414965986,-0.047619047619047616,1.0,-0.21768707482993196,0.7687074829931972,-0.14965986394557823,0.9387755102040817,-0.2789115646258503,0.7551020408163265,-0.16326530612244897,0.7278911564625851,-0.12244897959183673,0.673469387755102,-0.272108843537415,0.8231292517006803,-0.3945578231292517,0.5918367346938775,-0.22448979591836735,0.6258503401360545,-0.21768707482993196,0.5510204081632653,-0.3877551020408163,0.6802721088435374,-0.47619047619047616,0.4965986394557823,-0.3129251700680272,0.4965986394557823,-0.2925170068027211,0.41496598639455784,-0.48299319727891155,0.5374149659863946,-0.5510204081632653,0.42857142857142855,-0.4217687074829932,0.40816326530612246,-0.38095238095238093 -1,0.0,0.0,0.2781456953642384,0.09271523178807947,0.5894039735099338,0.09933774834437085,0.8741721854304636,0.033112582781456956,1.0,-0.11920529801324503,0.7615894039735099,-0.0728476821192053,0.9470198675496688,-0.18543046357615894,0.7549668874172185,-0.09271523178807947,0.7218543046357616,-0.052980132450331126,0.6821192052980133,-0.2052980132450331,0.8543046357615894,-0.31125827814569534,0.609271523178808,-0.17218543046357615,0.6291390728476821,-0.1456953642384106,0.5827814569536424,-0.31788079470198677,0.7284768211920529,-0.4105960264900662,0.5298013245033113,-0.26490066225165565,0.5231788079470199,-0.23841059602649006,0.46357615894039733,-0.423841059602649,0.5894039735099338,-0.48344370860927155,0.47019867549668876,-0.3708609271523179,0.4370860927152318,-0.33112582781456956 -1,0.0,0.0,0.26666666666666666,0.11333333333333333,0.58,0.14,0.8666666666666667,0.1,1.0,-0.02666666666666667,0.7666666666666667,-0.013333333333333334,0.9533333333333334,-0.12666666666666668,0.76,-0.05333333333333334,0.7133333333333334,0.0,0.6933333333333334,-0.16,0.8666666666666667,-0.26,0.62,-0.14,0.6333333333333333,-0.09333333333333334,0.6066666666666667,-0.2866666666666667,0.7533333333333333,-0.37333333333333335,0.5466666666666666,-0.24,0.5333333333333333,-0.19333333333333333,0.49333333333333335,-0.4,0.6133333333333333,-0.4666666666666667,0.49333333333333335,-0.36,0.4533333333333333,-0.30666666666666664 -1,0.0,0.0,0.24,0.13333333333333333,0.5466666666666666,0.18666666666666668,0.8333333333333334,0.17333333333333334,1.0,0.06666666666666667,0.7666666666666667,0.05333333333333334,0.9733333333333334,-0.02666666666666667,0.7666666666666667,0.02,0.7,0.06,0.7066666666666667,-0.09333333333333334,0.9,-0.17333333333333334,0.6333333333333333,-0.08,0.6266666666666667,-0.03333333333333333,0.6333333333333333,-0.22666666666666666,0.7933333333333333,-0.30666666666666664,0.5733333333333334,-0.19333333333333333,0.5333333333333333,-0.14666666666666667,0.5266666666666666,-0.36,0.6733333333333333,-0.42,0.5333333333333333,-0.32666666666666666,0.48,-0.2733333333333333 -1,0.0,0.0,0.2236842105263158,0.15789473684210525,0.5263157894736842,0.23026315789473684,0.8223684210526315,0.23684210526315788,1.0,0.13157894736842105,0.7763157894736842,0.10526315789473684,0.9671052631578947,0.03289473684210526,0.743421052631579,0.07236842105263158,0.6907894736842105,0.11842105263157894,0.7302631578947368,-0.046052631578947366,0.9013157894736842,-0.11842105263157894,0.618421052631579,-0.03289473684210526,0.6381578947368421,0.006578947368421052,0.6578947368421053,-0.19078947368421054,0.8026315789473685,-0.25,0.5592105263157895,-0.1513157894736842,0.5460526315789473,-0.11842105263157894,0.5657894736842105,-0.3223684210526316,0.6973684210526315,-0.3684210526315789,0.5460526315789473,-0.2894736842105263,0.506578947368421,-0.25 -1,0.0,0.0,0.2214765100671141,0.16778523489932887,0.5234899328859061,0.26174496644295303,0.825503355704698,0.28859060402684567,1.0,0.20134228187919462,0.785234899328859,0.16778523489932887,0.9798657718120806,0.10067114093959731,0.7583892617449665,0.12080536912751678,0.7046979865771812,0.16778523489932887,0.7516778523489933,0.006711409395973154,0.9328859060402684,-0.06040268456375839,0.6375838926174496,0.0,0.6577181208053692,0.04697986577181208,0.6912751677852349,-0.14093959731543623,0.8389261744966443,-0.20134228187919462,0.5906040268456376,-0.12751677852348994,0.5771812080536913,-0.087248322147651,0.610738255033557,-0.28187919463087246,0.7449664429530202,-0.33557046979865773,0.5906040268456376,-0.2751677852348993,0.5503355704697986,-0.2348993288590604 -1,0.0,0.0,0.22916666666666666,0.19444444444444445,0.5416666666666666,0.3194444444444444,0.8402777777777778,0.3472222222222222,1.0,0.22916666666666666,0.7708333333333334,0.2222222222222222,0.9930555555555556,0.16666666666666666,0.7708333333333334,0.1875,0.7083333333333334,0.22916666666666666,0.75,0.05555555555555555,0.9513888888888888,0.0,0.6597222222222222,0.04861111111111111,0.6597222222222222,0.09722222222222222,0.6944444444444444,-0.10416666666666667,0.875,-0.1597222222222222,0.625,-0.09722222222222222,0.5902777777777778,-0.0625,0.625,-0.2708333333333333,0.7847222222222222,-0.3194444444444444,0.6319444444444444,-0.2638888888888889,0.5763888888888888,-0.2152777777777778 -1,0.0,0.0,0.21428571428571427,0.22142857142857142,0.5071428571428571,0.37142857142857144,0.7857142857142857,0.42857142857142855,0.9642857142857143,0.3142857142857143,0.7571428571428571,0.2714285714285714,1.0,0.25,0.7785714285714286,0.2571428571428571,0.6928571428571428,0.2714285714285714,0.75,0.1,0.9785714285714285,0.07857142857142857,0.6857142857142857,0.10714285714285714,0.6357142857142857,0.1357142857142857,0.7142857142857143,-0.06428571428571428,0.9142857142857143,-0.09285714285714286,0.6571428571428571,-0.04285714285714286,0.5857142857142857,-0.02142857142857143,0.65,-0.2357142857142857,0.85,-0.25,0.6928571428571428,-0.19285714285714287,0.5928571428571429,-0.16428571428571428 -1,0.0,0.0,0.23880597014925373,0.2537313432835821,0.5149253731343284,0.44029850746268656,0.8059701492537313,0.5298507462686567,1.0,0.417910447761194,0.7686567164179104,0.3805970149253731,1.0,0.39552238805970147,0.7686567164179104,0.3656716417910448,0.7014925373134329,0.3656716417910448,0.7761194029850746,0.20149253731343283,1.0,0.20149253731343283,0.6865671641791045,0.1865671641791045,0.6865671641791045,0.20149253731343283,0.7686567164179104,0.022388059701492536,0.9626865671641791,0.014925373134328358,0.6791044776119403,0.022388059701492536,0.6343283582089553,0.03731343283582089,0.7313432835820896,-0.16417910447761194,0.9328358208955224,-0.15671641791044777,0.746268656716418,-0.12686567164179105,0.6567164179104478,-0.1044776119402985 -1,0.0,0.0,0.20454545454545456,0.26515151515151514,0.4696969696969697,0.4772727272727273,0.7575757575757576,0.5757575757575758,0.946969696969697,0.45454545454545453,0.7575757575757576,0.4090909090909091,0.9924242424242424,0.45454545454545453,0.7575757575757576,0.42424242424242425,0.6742424242424242,0.4166666666666667,0.7727272727272727,0.22727272727272727,1.0,0.26515151515151514,0.6818181818181818,0.24242424242424243,0.6515151515151515,0.25757575757575757,0.7575757575757576,0.03787878787878788,0.9545454545454546,0.06818181818181818,0.6742424242424242,0.07575757575757576,0.6136363636363636,0.07575757575757576,0.7121212121212122,-0.16666666666666666,0.9015151515151515,-0.12878787878787878,0.7121212121212122,-0.09090909090909091,0.6212121212121212,-0.08333333333333333 -1,0.0,0.0,0.1796875,0.296875,0.4453125,0.53125,0.7265625,0.640625,0.9375,0.5625,0.75,0.4609375,0.984375,0.4921875,0.7578125,0.4453125,0.65625,0.4375,0.7734375,0.28125,1.0,0.3046875,0.6953125,0.2734375,0.640625,0.28125,0.78125,0.09375,0.9765625,0.1171875,0.703125,0.109375,0.625,0.1015625,0.75,-0.1171875,0.9375,-0.078125,0.765625,-0.0546875,0.6640625,-0.046875 -1,0.0,0.0,0.1693548387096774,0.33064516129032256,0.41935483870967744,0.5725806451612904,0.7016129032258065,0.7096774193548387,0.9274193548387096,0.6693548387096774,0.7338709677419355,0.5241935483870968,0.967741935483871,0.5645161290322581,0.7258064516129032,0.5161290322580645,0.6451612903225806,0.5080645161290323,0.7741935483870968,0.3467741935483871,1.0,0.4032258064516129,0.6854838709677419,0.3467741935483871,0.6774193548387096,0.3467741935483871,0.7903225806451613,0.1532258064516129,0.9838709677419355,0.20967741935483872,0.7016129032258065,0.18548387096774194,0.6532258064516129,0.1774193548387097,0.782258064516129,-0.06451612903225806,0.9596774193548387,0.0,0.7741935483870968,0.016129032258064516,0.6935483870967742,0.008064516129032258 -1,0.0,0.0,0.15126050420168066,0.3445378151260504,0.3865546218487395,0.6134453781512605,0.680672268907563,0.7899159663865546,0.9159663865546218,0.773109243697479,0.6974789915966386,0.6386554621848739,0.907563025210084,0.7142857142857143,0.7226890756302521,0.6638655462184874,0.680672268907563,0.680672268907563,0.7563025210084033,0.44537815126050423,0.9831932773109243,0.5378151260504201,0.6722689075630253,0.4369747899159664,0.7058823529411765,0.453781512605042,0.7983193277310925,0.226890756302521,0.9915966386554622,0.31092436974789917,0.6890756302521008,0.24369747899159663,0.6722689075630253,0.24369747899159663,0.8235294117647058,-0.01680672268907563,1.0,0.058823529411764705,0.7899159663865546,0.05042016806722689,0.7226890756302521,0.058823529411764705 -1,0.0,0.0,0.14782608695652175,0.3565217391304348,0.391304347826087,0.6521739130434783,0.6782608695652174,0.8608695652173913,0.9217391304347826,0.8434782608695652,0.6608695652173913,0.6608695652173913,0.8956521739130435,0.7478260869565218,0.7739130434782608,0.7130434782608696,0.7478260869565218,0.7130434782608696,0.7304347826086957,0.4782608695652174,0.9565217391304348,0.5826086956521739,0.6695652173913044,0.4782608695652174,0.6608695652173913,0.4782608695652174,0.782608695652174,0.2608695652173913,0.9739130434782609,0.3652173913043478,0.6956521739130435,0.28695652173913044,0.6608695652173913,0.2608695652173913,0.8173913043478261,0.017391304347826087,1.0,0.12173913043478261,0.8,0.10434782608695652,0.7217391304347827,0.0782608695652174 -1,0.0,0.0,0.10714285714285714,0.38392857142857145,0.3392857142857143,0.6875,0.625,0.9196428571428571,0.875,0.9375,0.6071428571428571,0.7321428571428571,0.8303571428571429,0.8303571428571429,0.6875,0.75,0.6607142857142857,0.7321428571428571,0.6964285714285714,0.5357142857142857,0.9285714285714286,0.6517857142857143,0.6339285714285714,0.5178571428571429,0.625,0.5267857142857143,0.7678571428571429,0.32142857142857145,0.9732142857142857,0.41964285714285715,0.6875,0.33035714285714285,0.6339285714285714,0.3125,0.8125,0.0625,1.0,0.16071428571428573,0.7946428571428571,0.13392857142857142,0.7053571428571429,0.11607142857142858 -1,0.0,0.0,0.034782608695652174,0.3652173913043478,0.24347826086956523,0.6782608695652174,0.5130434782608696,0.9391304347826087,0.7913043478260869,1.0,0.4956521739130435,0.7913043478260869,0.6782608695652174,0.8956521739130435,0.5565217391304348,0.8173913043478261,0.5565217391304348,0.8173913043478261,0.6086956521739131,0.6,0.808695652173913,0.7217391304347827,0.5217391304347826,0.5391304347826087,0.5217391304347826,0.5565217391304348,0.6956521739130435,0.3826086956521739,0.8869565217391304,0.4782608695652174,0.5826086956521739,0.3391304347826087,0.5565217391304348,0.34782608695652173,0.7565217391304347,0.13043478260869565,0.9217391304347826,0.23478260869565218,0.7043478260869566,0.16521739130434782,0.6434782608695652,0.14782608695652175 -1,0.0,0.0,0.02702702702702703,0.3963963963963964,0.23423423423423423,0.7207207207207207,0.5045045045045045,0.9459459459459459,0.7837837837837838,0.972972972972973,0.45045045045045046,0.8738738738738738,0.6306306306306306,0.963963963963964,0.6396396396396397,0.9369369369369369,0.7747747747747747,1.0,0.6036036036036037,0.6666666666666666,0.8018018018018018,0.7387387387387387,0.5045045045045045,0.5585585585585585,0.5405405405405406,0.6486486486486487,0.7207207207207207,0.42342342342342343,0.8828828828828829,0.4864864864864865,0.5495495495495496,0.34234234234234234,0.5945945945945946,0.4144144144144144,0.7837837837837838,0.15315315315315314,0.9009009009009009,0.25225225225225223,0.6396396396396397,0.18018018018018017,0.6486486486486487,0.1891891891891892 -1,0.0,0.0,0.09523809523809523,0.42857142857142855,0.3238095238095238,0.7714285714285715,0.6285714285714286,0.9619047619047619,0.9238095238095239,0.9047619047619048,0.5333333333333333,0.8095238095238095,0.7523809523809524,0.9238095238095239,0.6285714285714286,0.819047619047619,0.6190476190476191,0.780952380952381,0.6571428571428571,0.6,0.8857142857142857,0.7047619047619048,0.6095238095238096,0.5523809523809524,0.580952380952381,0.580952380952381,0.7428571428571429,0.3523809523809524,0.9809523809523809,0.42857142857142855,0.6761904761904762,0.3333333333333333,0.6190476190476191,0.3523809523809524,0.8,0.08571428571428572,1.0,0.19047619047619047,0.7714285714285715,0.1619047619047619,0.6952380952380952,0.17142857142857143 -1,0.0,0.0,0.09345794392523364,0.3925233644859813,0.3177570093457944,0.719626168224299,0.6448598130841121,0.8691588785046729,0.9439252336448598,0.822429906542056,0.5794392523364486,0.7570093457943925,0.8504672897196262,0.8411214953271028,0.7383177570093458,0.7476635514018691,0.6728971962616822,0.6728971962616822,0.6728971962616822,0.5327102803738317,0.9439252336448598,0.6074766355140186,0.6728971962616822,0.4766355140186916,0.5700934579439252,0.4766355140186916,0.7289719626168224,0.29906542056074764,1.0,0.34579439252336447,0.7009345794392523,0.27102803738317754,0.5794392523364486,0.2616822429906542,0.7663551401869159,0.037383177570093455,1.0,0.09345794392523364,0.794392523364486,0.07476635514018691,0.6728971962616822,0.07476635514018691 -1,0.0,0.0,0.10619469026548672,0.36283185840707965,0.336283185840708,0.6637168141592921,0.6460176991150443,0.7964601769911505,0.911504424778761,0.7168141592920354,0.6460176991150443,0.6637168141592921,0.9203539823008849,0.6991150442477876,0.7522123893805309,0.6283185840707964,0.672566371681416,0.5929203539823009,0.7168141592920354,0.4424778761061947,0.9823008849557522,0.49557522123893805,0.6814159292035398,0.39823008849557523,0.6017699115044248,0.4336283185840708,0.7522123893805309,0.22123893805309736,1.0,0.26548672566371684,0.6902654867256637,0.21238938053097345,0.6017699115044248,0.23008849557522124,0.7699115044247787,-0.035398230088495575,0.9734513274336283,0.02654867256637168,0.7522123893805309,0.02654867256637168,0.6637168141592921,0.05309734513274336 -1,0.0,0.0,0.15384615384615385,0.3333333333333333,0.4017094017094017,0.5726495726495726,0.6752136752136753,0.6752136752136753,0.8717948717948718,0.6068376068376068,0.6752136752136753,0.5299145299145299,0.9658119658119658,0.5897435897435898,0.7948717948717948,0.5641025641025641,0.6752136752136753,0.5641025641025641,0.717948717948718,0.3333333333333333,1.0,0.4017094017094017,0.717948717948718,0.3504273504273504,0.6410256410256411,0.38461538461538464,0.7350427350427351,0.1282051282051282,0.9743589743589743,0.17094017094017094,0.7094017094017094,0.1623931623931624,0.6324786324786325,0.18803418803418803,0.7264957264957265,-0.10256410256410256,0.9316239316239316,-0.05982905982905983,0.7435897435897436,-0.02564102564102564,0.6752136752136753,0.0 -1,0.0,0.0,0.208,0.296,0.496,0.48,0.784,0.544,1.0,0.488,0.704,0.464,0.952,0.464,0.776,0.424,0.688,0.416,0.728,0.264,0.976,0.288,0.704,0.24,0.648,0.28,0.72,0.056,0.96,0.064,0.696,0.064,0.616,0.096,0.696,-0.168,0.912,-0.16,0.728,-0.12,0.648,-0.08 -1,0.0,0.0,0.22388059701492538,0.26865671641791045,0.5074626865671642,0.417910447761194,0.7835820895522388,0.4626865671641791,1.0,0.40298507462686567,0.7014925373134329,0.34328358208955223,0.9253731343283582,0.31343283582089554,0.7313432835820896,0.30597014925373134,0.6492537313432836,0.3208955223880597,0.7089552238805971,0.17164179104477612,0.9402985074626866,0.17164179104477612,0.6716417910447762,0.17164179104477612,0.6268656716417911,0.208955223880597,0.6940298507462687,0.0,0.9029850746268657,-0.014925373134328358,0.6492537313432836,0.022388059701492536,0.5895522388059702,0.05223880597014925,0.6417910447761194,-0.19402985074626866,0.8208955223880597,-0.19402985074626866,0.6567164179104478,-0.1417910447761194,0.582089552238806,-0.09701492537313433 -1,0.0,0.0,0.22695035460992907,0.24822695035460993,0.5106382978723404,0.375886524822695,0.7872340425531915,0.40425531914893614,1.0,0.3475177304964539,0.7163120567375887,0.2553191489361702,0.9219858156028369,0.22695035460992907,0.7092198581560284,0.23404255319148937,0.6382978723404256,0.2553191489361702,0.7092198581560284,0.09929078014184398,0.9078014184397163,0.09219858156028368,0.6312056737588653,0.11347517730496454,0.6099290780141844,0.1347517730496454,0.6737588652482269,-0.06382978723404255,0.851063829787234,-0.0851063829787234,0.5957446808510638,-0.03546099290780142,0.5531914893617021,-0.014184397163120567,0.6099290780141844,-0.22695035460992907,0.75177304964539,-0.23404255319148937,0.5886524822695035,-0.1702127659574468,0.5319148936170213,-0.14184397163120568 -1,0.0,0.0,0.26174496644295303,0.21476510067114093,0.5503355704697986,0.28859060402684567,0.8053691275167785,0.2751677852348993,1.0,0.2080536912751678,0.6912751677852349,0.1476510067114094,0.8657718120805369,0.09395973154362416,0.697986577181208,0.1342281879194631,0.6375838926174496,0.16778523489932887,0.6644295302013423,0.006711409395973154,0.8590604026845637,-0.013422818791946308,0.6241610738255033,0.040268456375838924,0.5906040268456376,0.053691275167785234,0.610738255033557,-0.14093959731543623,0.7919463087248322,-0.16778523489932887,0.5771812080536913,-0.09395973154362416,0.5302013422818792,-0.0738255033557047,0.5369127516778524,-0.2953020134228188,0.6912751677852349,-0.3087248322147651,0.5503355704697986,-0.22818791946308725,0.4899328859060403,-0.19463087248322147 -1,0.0,0.0,0.28104575163398693,0.16993464052287582,0.5620915032679739,0.21568627450980393,0.8104575163398693,0.1830065359477124,1.0,0.08496732026143791,0.673202614379085,0.0784313725490196,0.8431372549019608,0.026143790849673203,0.6928104575163399,0.05228758169934641,0.6339869281045751,0.0718954248366013,0.6339869281045751,-0.05228758169934641,0.8169934640522876,-0.09803921568627451,0.6143790849673203,-0.0392156862745098,0.5751633986928104,-0.026143790849673203,0.5751633986928104,-0.1895424836601307,0.7450980392156863,-0.24836601307189543,0.5424836601307189,-0.16339869281045752,0.49019607843137253,-0.1437908496732026,0.48366013071895425,-0.3333333333333333,0.6405228758169934,-0.3660130718954248,0.5163398692810458,-0.2875816993464052,0.4444444444444444,-0.2679738562091503 -1,0.0,0.0,0.2922077922077922,0.14285714285714285,0.5714285714285714,0.16233766233766234,0.8181818181818182,0.1038961038961039,1.0,0.0,0.6753246753246753,0.01948051948051948,0.8181818181818182,-0.025974025974025976,0.6818181818181818,0.006493506493506494,0.6298701298701299,0.012987012987012988,0.6233766233766234,-0.1038961038961039,0.7987012987012987,-0.15584415584415584,0.6038961038961039,-0.08441558441558442,0.5714285714285714,-0.08441558441558442,0.551948051948052,-0.22727272727272727,0.7077922077922078,-0.2922077922077922,0.5194805194805194,-0.2012987012987013,0.4805194805194805,-0.18831168831168832,0.44805194805194803,-0.35714285714285715,0.5974025974025974,-0.38961038961038963,0.474025974025974,-0.3051948051948052,0.4155844155844156,-0.2987012987012987 -1,0.0,0.0,0.3092105263157895,0.125,0.5855263157894737,0.13157894736842105,0.8223684210526315,0.05921052631578947,1.0,-0.06578947368421052,0.6776315789473685,-0.03289473684210526,0.8223684210526315,-0.07236842105263158,0.6710526315789473,-0.02631578947368421,0.618421052631579,-0.019736842105263157,0.618421052631579,-0.1513157894736842,0.7697368421052632,-0.19736842105263158,0.5657894736842105,-0.1118421052631579,0.5328947368421053,-0.1118421052631579,0.5263157894736842,-0.26973684210526316,0.6644736842105263,-0.32894736842105265,0.47368421052631576,-0.21710526315789475,0.4407894736842105,-0.21052631578947367,0.4144736842105263,-0.3881578947368421,0.5394736842105263,-0.4144736842105263,0.42105263157894735,-0.3157894736842105,0.375,-0.3092105263157895 -1,0.0,0.0,0.3402777777777778,0.08333333333333333,0.625,0.05555555555555555,0.8541666666666666,-0.041666666666666664,1.0,-0.1875,0.6875,-0.10416666666666667,0.8194444444444444,-0.1597222222222222,0.6736111111111112,-0.09722222222222222,0.6180555555555556,-0.08333333333333333,0.6111111111111112,-0.2152777777777778,0.7708333333333334,-0.2847222222222222,0.5625,-0.1736111111111111,0.5277777777777778,-0.16666666666666666,0.5,-0.3333333333333333,0.6458333333333334,-0.4027777777777778,0.4583333333333333,-0.2638888888888889,0.4166666666666667,-0.2569444444444444,0.3611111111111111,-0.4444444444444444,0.4930555555555556,-0.4861111111111111,0.3888888888888889,-0.3680555555555556,0.3402777777777778,-0.3541666666666667 -1,0.0,0.0,0.3357664233576642,0.072992700729927,0.635036496350365,0.029197080291970802,0.8759124087591241,-0.10218978102189781,1.0,-0.2773722627737226,0.6934306569343066,-0.18248175182481752,0.8321167883211679,-0.22627737226277372,0.7007299270072993,-0.145985401459854,0.635036496350365,-0.145985401459854,0.6058394160583942,-0.291970802919708,0.7664233576642335,-0.35036496350364965,0.5620437956204379,-0.2116788321167883,0.5109489051094891,-0.22627737226277372,0.48175182481751827,-0.39416058394160586,0.6204379562043796,-0.45985401459854014,0.43795620437956206,-0.29927007299270075,0.38686131386861317,-0.29927007299270075,0.3357664233576642,-0.49635036496350365,0.4744525547445255,-0.5401459854014599,0.3722627737226277,-0.40875912408759124,0.30656934306569344,-0.40145985401459855 -1,0.0,0.0,0.3484848484848485,0.06060606060606061,0.6515151515151515,0.0,0.8787878787878788,-0.14393939393939395,1.0,-0.3484848484848485,0.6742424242424242,-0.23484848484848486,0.8409090909090909,-0.2803030303030303,0.696969696969697,-0.17424242424242425,0.6136363636363636,-0.1590909090909091,0.5757575757575758,-0.3333333333333333,0.7348484848484849,-0.3939393939393939,0.5454545454545454,-0.23484848484848486,0.48484848484848486,-0.24242424242424243,0.4393939393939394,-0.4318181818181818,0.5757575757575758,-0.5,0.4166666666666667,-0.3181818181818182,0.3484848484848485,-0.30303030303030304,0.2803030303030303,-0.5227272727272727,0.4166666666666667,-0.5757575757575758,0.32575757575757575,-0.42424242424242425,0.25757575757575757,-0.3939393939393939 -1,0.0,0.0,0.3467741935483871,0.04032258064516129,0.6612903225806451,-0.056451612903225805,0.8870967741935484,-0.23387096774193547,1.0,-0.4435483870967742,0.6774193548387096,-0.3387096774193548,0.8467741935483871,-0.4112903225806452,0.6935483870967742,-0.28225806451612906,0.6209677419354839,-0.25806451612903225,0.5645161290322581,-0.43548387096774194,0.717741935483871,-0.5161290322580645,0.532258064516129,-0.3225806451612903,0.47580645161290325,-0.33064516129032256,0.41935483870967744,-0.5161290322580645,0.5403225806451613,-0.6048387096774194,0.3870967741935484,-0.3951612903225806,0.33064516129032256,-0.3870967741935484,0.25,-0.5967741935483871,0.3870967741935484,-0.6693548387096774,0.29838709677419356,-0.5080645161290323,0.22580645161290322,-0.4838709677419355 -1,0.0,0.0,0.3697478991596639,0.025210084033613446,0.6890756302521008,-0.09243697478991597,0.907563025210084,-0.29411764705882354,1.0,-0.5294117647058824,0.680672268907563,-0.40336134453781514,0.8487394957983193,-0.4957983193277311,0.7058823529411765,-0.3277310924369748,0.6134453781512605,-0.29411764705882354,0.5462184873949579,-0.4957983193277311,0.7142857142857143,-0.5798319327731093,0.5294117647058824,-0.35294117647058826,0.453781512605042,-0.35294117647058826,0.3865546218487395,-0.5714285714285714,0.5210084033613446,-0.6470588235294118,0.3697478991596639,-0.40336134453781514,0.29411764705882354,-0.3949579831932773,0.19327731092436976,-0.6386554621848739,0.33613445378151263,-0.7058823529411765,0.2605042016806723,-0.5126050420168067,0.17647058823529413,-0.4789915966386555 -1,0.0,0.0,0.38596491228070173,-0.008771929824561403,0.7017543859649122,-0.15789473684210525,0.9210526315789473,-0.39473684210526316,1.0,-0.6403508771929824,0.6578947368421053,-0.47368421052631576,0.8421052631578947,-0.5877192982456141,0.7192982456140351,-0.40350877192982454,0.631578947368421,-0.3508771929824561,0.5175438596491229,-0.5614035087719298,0.7017543859649122,-0.6666666666666666,0.5350877192982456,-0.41228070175438597,0.4473684210526316,-0.40350877192982454,0.34210526315789475,-0.6228070175438597,0.49122807017543857,-0.7105263157894737,0.35964912280701755,-0.4473684210526316,0.2719298245614035,-0.43859649122807015,0.14035087719298245,-0.6754385964912281,0.30701754385964913,-0.7719298245614035,0.23684210526315788,-0.5614035087719298,0.14035087719298245,-0.5263157894736842 -1,0.0,0.0,0.4056603773584906,-0.03773584905660377,0.7358490566037735,-0.2358490566037736,0.9433962264150944,-0.5188679245283019,1.0,-0.7924528301886793,0.6509433962264151,-0.5754716981132075,0.8490566037735849,-0.7169811320754716,0.7264150943396226,-0.5,0.6320754716981132,-0.4339622641509434,0.5,-0.660377358490566,0.6981132075471698,-0.7924528301886793,0.5377358490566038,-0.49056603773584906,0.4339622641509434,-0.4811320754716981,0.3113207547169811,-0.7169811320754716,0.4811320754716981,-0.8301886792452831,0.3490566037735849,-0.5188679245283019,0.24528301886792453,-0.5094339622641509,0.08490566037735849,-0.7641509433962265,0.2641509433962264,-0.8679245283018868,0.20754716981132076,-0.6320754716981132,0.09433962264150944,-0.5943396226415094 -1,0.0,0.0,0.43564356435643564,-0.0594059405940594,0.7821782178217822,-0.297029702970297,0.9801980198019802,-0.594059405940594,1.0,-0.8514851485148515,0.6633663366336634,-0.6435643564356436,0.8514851485148515,-0.8118811881188119,0.7524752475247525,-0.5643564356435643,0.6633663366336634,-0.504950495049505,0.49504950495049505,-0.7128712871287128,0.693069306930693,-0.8712871287128713,0.5544554455445545,-0.5346534653465347,0.45544554455445546,-0.5247524752475248,0.2871287128712871,-0.7623762376237624,0.46534653465346537,-0.8811881188118812,0.3465346534653465,-0.5445544554455446,0.2376237623762376,-0.5445544554455446,0.04950495049504951,-0.801980198019802,0.2376237623762376,-0.9108910891089109,0.1782178217821782,-0.6633663366336634,0.06930693069306931,-0.6237623762376238 -1,0.0,0.0,0.45263157894736844,-0.12631578947368421,0.8105263157894737,-0.37894736842105264,1.0,-0.7052631578947368,0.9894736842105263,-0.9789473684210527,0.6631578947368421,-0.7157894736842105,0.8736842105263158,-0.8842105263157894,0.7894736842105263,-0.6526315789473685,0.7052631578947368,-0.5578947368421052,0.47368421052631576,-0.7894736842105263,0.7052631578947368,-0.9578947368421052,0.5684210526315789,-0.6105263157894737,0.45263157894736844,-0.5789473684210527,0.25263157894736843,-0.8315789473684211,0.45263157894736844,-0.968421052631579,0.3368421052631579,-0.6210526315789474,0.22105263157894736,-0.5894736842105263,-0.021052631578947368,-0.8526315789473684,0.18947368421052632,-1.0,0.15789473684210525,-0.7368421052631579,0.031578947368421054,-0.6736842105263158 -1,0.0,0.0,0.4536082474226804,-0.15463917525773196,0.7628865979381443,-0.44329896907216493,0.9175257731958762,-0.7525773195876289,0.8865979381443299,-1.0,0.5670103092783505,-0.7422680412371134,0.7216494845360825,-0.9278350515463918,0.7731958762886598,-0.8041237113402062,0.7525773195876289,-0.7422680412371134,0.3917525773195876,-0.7938144329896907,0.6082474226804123,-0.979381443298969,0.5257731958762887,-0.6597938144329897,0.4020618556701031,-0.6185567010309279,0.17525773195876287,-0.8247422680412371,0.38144329896907214,-0.9587628865979382,0.29896907216494845,-0.6288659793814433,0.17525773195876287,-0.5979381443298969,-0.08247422680412371,-0.8247422680412371,0.1134020618556701,-0.9690721649484536,0.10309278350515463,-0.7216494845360825,-0.010309278350515464,-0.6597938144329897 -1,0.0,0.0,0.4444444444444444,-0.16161616161616163,0.7171717171717171,-0.4444444444444444,0.8585858585858586,-0.7575757575757576,0.8080808080808081,-1.0,0.5353535353535354,-0.696969696969697,0.7272727272727273,-0.8686868686868687,0.7474747474747475,-0.7676767676767676,0.6868686868686869,-0.7171717171717171,0.35353535353535354,-0.7474747474747475,0.5858585858585859,-0.9393939393939394,0.494949494949495,-0.6363636363636364,0.36363636363636365,-0.5858585858585859,0.1414141414141414,-0.7777777777777778,0.35353535353535354,-0.9191919191919192,0.2727272727272727,-0.6060606060606061,0.15151515151515152,-0.5454545454545454,-0.10101010101010101,-0.7878787878787878,0.09090909090909091,-0.9292929292929293,0.08080808080808081,-0.696969696969697,-0.04040404040404041,-0.6262626262626263 -1,0.0,0.0,0.44329896907216493,-0.1958762886597938,0.6907216494845361,-0.4742268041237113,0.7938144329896907,-0.7731958762886598,0.7319587628865979,-1.0,0.4639175257731959,-0.7319587628865979,0.6288659793814433,-0.9072164948453608,0.711340206185567,-0.9175257731958762,0.6907216494845361,-0.8969072164948454,0.28865979381443296,-0.7731958762886598,0.5051546391752577,-0.9896907216494846,0.44329896907216493,-0.6907216494845361,0.30927835051546393,-0.5876288659793815,0.07216494845360824,-0.7835051546391752,0.27835051546391754,-0.9484536082474226,0.2268041237113402,-0.6185567010309279,0.09278350515463918,-0.5463917525773195,-0.18556701030927836,-0.7731958762886598,0.020618556701030927,-0.9381443298969072,0.020618556701030927,-0.6907216494845361,-0.1134020618556701,-0.6082474226804123 -1,0.0,0.0,0.42,-0.21,0.64,-0.49,0.71,-0.79,0.63,-1.0,0.38,-0.73,0.53,-0.92,0.62,-0.87,0.61,-0.8,0.21,-0.76,0.4,-0.97,0.38,-0.67,0.26,-0.57,0.01,-0.75,0.2,-0.91,0.18,-0.6,0.05,-0.51,-0.22,-0.72,-0.06,-0.88,-0.05,-0.66,-0.17,-0.57 -1,0.0,0.0,0.35294117647058826,-0.18627450980392157,0.5588235294117647,-0.47058823529411764,0.6176470588235294,-0.7941176470588235,0.5392156862745098,-1.0,0.3431372549019608,-0.7156862745098039,0.4803921568627451,-0.8921568627450981,0.5196078431372549,-0.8627450980392157,0.5,-0.8333333333333334,0.1568627450980392,-0.7450980392156863,0.3137254901960784,-0.9313725490196079,0.28431372549019607,-0.6274509803921569,0.19607843137254902,-0.5490196078431373,-0.0392156862745098,-0.7254901960784313,0.09803921568627451,-0.8529411764705882,0.0784313725490196,-0.5490196078431373,0.0,-0.47058823529411764,-0.2647058823529412,-0.6666666666666666,-0.1568627450980392,-0.7941176470588235,-0.14705882352941177,-0.5980392156862745,-0.24509803921568626,-0.5196078431372549 -1,0.0,0.0,0.3047619047619048,-0.20952380952380953,0.4666666666666667,-0.5142857142857142,0.49523809523809526,-0.819047619047619,0.4095238095238095,-1.0,0.2,-0.7142857142857143,0.2571428571428571,-0.8952380952380953,0.34285714285714286,-0.8857142857142857,0.3619047619047619,-0.8571428571428571,0.0380952380952381,-0.7047619047619048,0.1523809523809524,-0.9047619047619048,0.18095238095238095,-0.6285714285714286,0.10476190476190476,-0.5428571428571428,-0.13333333333333333,-0.6666666666666666,-0.02857142857142857,-0.8095238095238095,0.0,-0.5142857142857142,-0.08571428571428572,-0.44761904761904764,-0.34285714285714286,-0.5904761904761905,-0.26666666666666666,-0.7333333333333333,-0.22857142857142856,-0.5428571428571428,-0.3047619047619048,-0.4666666666666667 -1,0.0,0.0,0.24509803921568626,-0.19607843137254902,0.38235294117647056,-0.5,0.39215686274509803,-0.803921568627451,0.30392156862745096,-1.0,0.14705882352941177,-0.7058823529411765,0.19607843137254902,-0.8627450980392157,0.24509803921568626,-0.8627450980392157,0.2549019607843137,-0.8627450980392157,-0.029411764705882353,-0.696078431372549,0.049019607843137254,-0.8627450980392157,0.09803921568627451,-0.5882352941176471,0.058823529411764705,-0.5,-0.20588235294117646,-0.6372549019607843,-0.11764705882352941,-0.7647058823529411,-0.06862745098039216,-0.4803921568627451,-0.12745098039215685,-0.39215686274509803,-0.4019607843137255,-0.5392156862745098,-0.3333333333333333,-0.6470588235294118,-0.29411764705882354,-0.46078431372549017,-0.37254901960784315,-0.39215686274509803 -1,0.0,0.0,0.26,-0.16,0.41,-0.48,0.4,-0.8,0.3,-1.0,0.22,-0.69,0.27,-0.85,0.29,-0.87,0.29,-0.87,0.03,-0.69,0.09,-0.85,0.14,-0.57,0.1,-0.44,-0.17,-0.64,-0.07,-0.75,-0.03,-0.45,-0.08,-0.35,-0.36,-0.54,-0.25,-0.62,-0.22,-0.41,-0.3,-0.33 -1,0.0,0.0,0.23958333333333334,-0.17708333333333334,0.3541666666666667,-0.4895833333333333,0.3333333333333333,-0.78125,0.2708333333333333,-1.0,0.15625,-0.7083333333333334,0.16666666666666666,-0.8645833333333334,0.19791666666666666,-0.9166666666666666,0.20833333333333334,-0.90625,-0.03125,-0.6979166666666666,0.0,-0.8541666666666666,0.0625,-0.6145833333333334,0.052083333333333336,-0.4791666666666667,-0.21875,-0.625,-0.14583333333333334,-0.7395833333333334,-0.08333333333333333,-0.46875,-0.125,-0.34375,-0.40625,-0.5,-0.34375,-0.59375,-0.28125,-0.40625,-0.3333333333333333,-0.3020833333333333 -1,0.0,0.0,0.23157894736842105,-0.18947368421052632,0.3263157894736842,-0.5157894736842106,0.29473684210526313,-0.8,0.21052631578947367,-1.0,0.11578947368421053,-0.6947368421052632,0.11578947368421053,-0.8631578947368421,0.16842105263157894,-0.9157894736842105,0.2,-0.9157894736842105,-0.06315789473684211,-0.6842105263157895,-0.021052631578947368,-0.8526315789473684,0.05263157894736842,-0.631578947368421,0.05263157894736842,-0.4842105263157895,-0.24210526315789474,-0.6105263157894737,-0.14736842105263157,-0.7473684210526316,-0.08421052631578947,-0.4842105263157895,-0.12631578947368421,-0.3684210526315789,-0.42105263157894735,-0.49473684210526314,-0.3263157894736842,-0.6,-0.2631578947368421,-0.42105263157894735,-0.3157894736842105,-0.3263157894736842 -1,0.0,0.0,0.22105263157894736,-0.21052631578947367,0.3157894736842105,-0.5473684210526316,0.29473684210526313,-0.8105263157894737,0.24210526315789474,-1.0,0.15789473684210525,-0.7052631578947368,0.18947368421052632,-0.8421052631578947,0.2,-0.9263157894736842,0.21052631578947367,-0.9368421052631579,-0.010526315789473684,-0.6736842105263158,0.031578947368421054,-0.8,0.08421052631578947,-0.6,0.09473684210526316,-0.45263157894736844,-0.17894736842105263,-0.5894736842105263,-0.07368421052631578,-0.6842105263157895,-0.021052631578947368,-0.45263157894736844,-0.05263157894736842,-0.3263157894736842,-0.3263157894736842,-0.45263157894736844,-0.21052631578947367,-0.5263157894736842,-0.15789473684210525,-0.3684210526315789,-0.2,-0.2736842105263158 -1,0.0,0.0,0.21649484536082475,-0.26804123711340205,0.25773195876288657,-0.5876288659793815,0.21649484536082475,-0.8350515463917526,0.16494845360824742,-1.0,0.1134020618556701,-0.6597938144329897,0.08247422680412371,-0.8247422680412371,0.09278350515463918,-0.9278350515463918,0.10309278350515463,-0.9690721649484536,-0.020618556701030927,-0.5979381443298969,-0.05154639175257732,-0.7731958762886598,0.020618556701030927,-0.6494845360824743,0.07216494845360824,-0.4845360824742268,-0.16494845360824742,-0.4948453608247423,-0.14432989690721648,-0.6494845360824743,-0.07216494845360824,-0.4845360824742268,-0.05154639175257732,-0.32989690721649484,-0.30927835051546393,-0.3711340206185567,-0.28865979381443296,-0.5051546391752577,-0.21649484536082475,-0.3917525773195876,-0.1958762886597938,-0.26804123711340205 -1,0.0,0.0,0.17346938775510204,-0.30612244897959184,0.17346938775510204,-0.6122448979591837,0.15306122448979592,-0.826530612244898,0.09183673469387756,-1.0,0.02040816326530612,-0.673469387755102,0.01020408163265306,-0.8061224489795918,0.04081632653061224,-0.8673469387755102,0.05102040816326531,-0.8877551020408163,-0.08163265306122448,-0.5918367346938775,-0.07142857142857142,-0.7346938775510204,0.0,-0.6224489795918368,0.02040816326530612,-0.5204081632653061,-0.17346938775510204,-0.46938775510204084,-0.1326530612244898,-0.5918367346938775,-0.061224489795918366,-0.46938775510204084,-0.05102040816326531,-0.35714285714285715,-0.2653061224489796,-0.3163265306122449,-0.21428571428571427,-0.4387755102040816,-0.15306122448979592,-0.3673469387755102,-0.16326530612244897,-0.2857142857142857 -1,0.0,0.0,0.07692307692307693,-0.3942307692307692,0.125,-0.6826923076923077,0.22115384615384615,-0.8846153846153846,0.25961538461538464,-1.0,-0.40384615384615385,-0.7115384615384616,-0.009615384615384616,-0.9326923076923077,0.16346153846153846,-0.8173076923076923,0.14423076923076922,-0.7211538461538461,-0.4326923076923077,-0.5576923076923077,0.07692307692307693,-0.8269230769230769,0.23076923076923078,-0.6730769230769231,0.16346153846153846,-0.5576923076923077,-0.36538461538461536,-0.40384615384615385,0.125,-0.6826923076923077,0.23076923076923078,-0.5192307692307693,0.14423076923076922,-0.3942307692307692,-0.23076923076923078,-0.2692307692307692,0.16346153846153846,-0.49038461538461536,0.23076923076923078,-0.38461538461538464,0.17307692307692307,-0.28846153846153844 -1,0.0,0.0,0.0,-0.32075471698113206,0.009433962264150943,-0.6226415094339622,0.1320754716981132,-0.8773584905660378,0.22641509433962265,-1.0,-0.5,-0.660377358490566,-0.0660377358490566,-0.9716981132075472,0.08490566037735849,-0.8867924528301887,0.04716981132075472,-0.8207547169811321,-0.4339622641509434,-0.5188679245283019,0.08490566037735849,-0.8679245283018868,0.1792452830188679,-0.7075471698113207,0.09433962264150944,-0.5943396226415094,-0.27358490566037735,-0.39622641509433965,0.20754716981132076,-0.7264150943396226,0.25471698113207547,-0.5566037735849056,0.1509433962264151,-0.44339622641509435,-0.0660377358490566,-0.3113207547169811,0.2830188679245283,-0.5754716981132075,0.29245283018867924,-0.42452830188679247,0.19811320754716982,-0.3113207547169811 -1,0.0,0.0,-0.19327731092436976,-0.2857142857142857,-0.18487394957983194,-0.6050420168067226,-0.01680672268907563,-0.8907563025210085,0.1092436974789916,-1.0,-0.48739495798319327,-0.6050420168067226,-0.20168067226890757,-0.8823529411764706,-0.04201680672268908,-0.9159663865546218,0.0,-0.9327731092436975,-0.33613445378151263,-0.5126050420168067,0.05042016806722689,-0.8319327731092437,0.12605042016806722,-0.7058823529411765,0.05042016806722689,-0.6218487394957983,-0.10084033613445378,-0.4117647058823529,0.2689075630252101,-0.7058823529411765,0.2689075630252101,-0.5630252100840336,0.15966386554621848,-0.4957983193277311,0.12605042016806722,-0.33613445378151263,0.3865546218487395,-0.5714285714285714,0.35294117647058826,-0.4369747899159664,0.25210084033613445,-0.36134453781512604 -1,0.0,0.0,-0.2,-0.24166666666666667,-0.225,-0.5583333333333333,-0.1,-0.8583333333333333,0.016666666666666666,-1.0,-0.45,-0.625,-0.10833333333333334,-0.9583333333333334,-0.016666666666666666,-0.8583333333333333,-0.08333333333333333,-0.775,-0.2833333333333333,-0.525,0.09166666666666666,-0.875,0.15,-0.7166666666666667,0.06666666666666667,-0.6166666666666667,-0.058333333333333334,-0.43333333333333335,0.3,-0.7416666666666667,0.3,-0.575,0.20833333333333334,-0.49166666666666664,0.175,-0.35,0.425,-0.6083333333333333,0.39166666666666666,-0.4666666666666667,0.30833333333333335,-0.38333333333333336 -1,0.0,0.0,-0.232,-0.216,-0.272,-0.536,-0.152,-0.84,-0.024,-1.0,-0.376,-0.616,-0.12,-0.936,-0.088,-0.808,-0.176,-0.712,-0.16,-0.56,0.104,-0.872,0.112,-0.704,0.024,-0.592,0.072,-0.472,0.28,-0.744,0.264,-0.584,0.2,-0.496,0.288,-0.376,0.416,-0.592,0.392,-0.464,0.344,-0.384 -1,0.0,0.0,-0.24603174603174602,-0.1984126984126984,-0.29365079365079366,-0.5079365079365079,-0.19047619047619047,-0.8095238095238095,-0.10317460317460317,-1.0,-0.38095238095238093,-0.5952380952380952,-0.16666666666666666,-0.9285714285714286,-0.11904761904761904,-0.8253968253968254,-0.1746031746031746,-0.7222222222222222,-0.15873015873015872,-0.5555555555555556,0.06349206349206349,-0.8571428571428571,0.07142857142857142,-0.7063492063492064,0.0,-0.5952380952380952,0.0873015873015873,-0.47619047619047616,0.24603174603174602,-0.753968253968254,0.23809523809523808,-0.6031746031746031,0.18253968253968253,-0.5,0.30952380952380953,-0.3968253968253968,0.3968253968253968,-0.6031746031746031,0.373015873015873,-0.49206349206349204,0.3412698412698413,-0.40476190476190477 -1,0.0,0.0,-0.25984251968503935,-0.1968503937007874,-0.30708661417322836,-0.5039370078740157,-0.2047244094488189,-0.8110236220472441,-0.10236220472440945,-1.0,-0.3700787401574803,-0.5984251968503937,-0.1732283464566929,-0.937007874015748,-0.12598425196850394,-0.8267716535433071,-0.18110236220472442,-0.7086614173228346,-0.12598425196850394,-0.5748031496062992,0.07086614173228346,-0.8582677165354331,0.06299212598425197,-0.7086614173228346,-0.007874015748031496,-0.5905511811023622,0.11811023622047244,-0.49606299212598426,0.2440944881889764,-0.7480314960629921,0.2283464566929134,-0.6141732283464567,0.18110236220472442,-0.5039370078740157,0.33858267716535434,-0.4094488188976378,0.3937007874015748,-0.5984251968503937,0.3700787401574803,-0.4881889763779528,0.3464566929133858,-0.4094488188976378 -1,0.0,0.0,-0.25984251968503935,-0.1968503937007874,-0.30708661417322836,-0.5118110236220472,-0.2047244094488189,-0.8110236220472441,-0.11811023622047244,-1.0,-0.3543307086614173,-0.6220472440944882,-0.1732283464566929,-0.937007874015748,-0.12598425196850394,-0.8346456692913385,-0.18110236220472442,-0.7322834645669292,-0.11023622047244094,-0.5905511811023622,0.07086614173228346,-0.8661417322834646,0.06299212598425197,-0.7244094488188977,0.0,-0.6062992125984252,0.13385826771653545,-0.5118110236220472,0.2440944881889764,-0.7480314960629921,0.2204724409448819,-0.6062992125984252,0.18110236220472442,-0.5118110236220472,0.3464566929133858,-0.4251968503937008,0.3858267716535433,-0.5748031496062992,0.36220472440944884,-0.47244094488188976,0.3464566929133858,-0.4015748031496063 -1,0.0,0.0,-0.264,-0.2,-0.312,-0.52,-0.2,-0.816,-0.096,-1.0,-0.344,-0.656,-0.176,-0.976,-0.128,-0.872,-0.176,-0.752,-0.088,-0.64,0.096,-0.88,0.08,-0.744,0.016,-0.616,0.16,-0.56,0.256,-0.752,0.24,-0.624,0.192,-0.52,0.376,-0.464,0.408,-0.584,0.384,-0.488,0.36,-0.416 -1,0.0,0.0,-0.27419354838709675,-0.22580645161290322,-0.3064516129032258,-0.532258064516129,-0.1774193548387097,-0.8145161290322581,-0.08064516129032258,-0.9838709677419355,-0.31451612903225806,-0.6854838709677419,-0.1693548387096774,-1.0,-0.12903225806451613,-0.8951612903225806,-0.1693548387096774,-0.7661290322580645,-0.056451612903225805,-0.6612903225806451,0.10483870967741936,-0.8870967741935484,0.08870967741935484,-0.75,0.024193548387096774,-0.6290322580645161,0.18548387096774194,-0.5806451612903226,0.27419354838709675,-0.7338709677419355,0.24193548387096775,-0.6048387096774194,0.1935483870967742,-0.5161290322580645,0.3951612903225806,-0.47580645161290325,0.4112903225806452,-0.5564516129032258,0.3790322580645161,-0.4596774193548387,0.3629032258064516,-0.3951612903225806 -1,0.0,0.0,-0.25984251968503935,-0.2204724409448819,-0.2992125984251969,-0.4881889763779528,-0.1889763779527559,-0.6929133858267716,-0.07086614173228346,-0.8031496062992126,-0.2755905511811024,-0.7165354330708661,-0.14173228346456693,-1.0,-0.11023622047244094,-0.889763779527559,-0.12598425196850394,-0.7637795275590551,-0.023622047244094488,-0.6929133858267716,0.11811023622047244,-0.8818897637795275,0.11023622047244094,-0.7480314960629921,0.05511811023622047,-0.6220472440944882,0.2125984251968504,-0.5984251968503937,0.28346456692913385,-0.7086614173228346,0.25984251968503935,-0.5905511811023622,0.2204724409448819,-0.49606299212598426,0.4251968503937008,-0.4881889763779528,0.4251968503937008,-0.5118110236220472,0.3937007874015748,-0.4251968503937008,0.3700787401574803,-0.3700787401574803 -1,0.0,0.0,-0.24615384615384617,-0.2153846153846154,-0.2923076923076923,-0.47692307692307695,-0.2076923076923077,-0.6846153846153846,-0.1,-0.8,-0.2692307692307692,-0.7230769230769231,-0.14615384615384616,-1.0,-0.1,-0.9,-0.1076923076923077,-0.7846153846153846,-0.023076923076923078,-0.7076923076923077,0.1076923076923077,-0.8769230769230769,0.1,-0.7461538461538462,0.05384615384615385,-0.6307692307692307,0.2076923076923077,-0.6230769230769231,0.26153846153846155,-0.7076923076923077,0.23846153846153847,-0.5923076923076923,0.2,-0.5,0.4,-0.5153846153846153,0.3923076923076923,-0.5307692307692308,0.36153846153846153,-0.43846153846153846,0.34615384615384615,-0.3769230769230769 -1,0.0,0.0,-0.2462686567164179,-0.26119402985074625,-0.27611940298507465,-0.5223880597014925,-0.1865671641791045,-0.7089552238805971,-0.08208955223880597,-0.8059701492537313,-0.20149253731343283,-0.7835820895522388,-0.1044776119402985,-1.0,-0.09701492537313433,-0.8805970149253731,-0.11940298507462686,-0.7611940298507462,0.03731343283582089,-0.753731343283582,0.1044776119402985,-0.8656716417910447,0.07462686567164178,-0.7388059701492538,0.03731343283582089,-0.6343283582089553,0.2537313432835821,-0.6567164179104478,0.26119402985074625,-0.7089552238805971,0.22388059701492538,-0.5970149253731343,0.19402985074626866,-0.5074626865671642,0.43283582089552236,-0.5447761194029851,0.3805970149253731,-0.5447761194029851,0.34328358208955223,-0.4552238805970149,0.3283582089552239,-0.39552238805970147 -1,0.0,0.0,-0.23308270676691728,-0.2556390977443609,-0.2556390977443609,-0.5112781954887218,-0.17293233082706766,-0.6917293233082706,-0.07518796992481203,-0.7744360902255639,-0.17293233082706766,-0.8120300751879699,-0.09022556390977443,-1.0,-0.08270676691729323,-0.8721804511278195,-0.09774436090225563,-0.7518796992481203,0.06766917293233082,-0.7819548872180451,0.10526315789473684,-0.849624060150376,0.07518796992481203,-0.7218045112781954,0.045112781954887216,-0.6165413533834586,0.2706766917293233,-0.6842105263157895,0.2556390977443609,-0.6842105263157895,0.21804511278195488,-0.5789473684210527,0.18796992481203006,-0.48872180451127817,0.44360902255639095,-0.5714285714285714,0.38345864661654133,-0.5413533834586466,0.3458646616541353,-0.45112781954887216,0.3383458646616541,-0.38345864661654133 -1,0.0,0.0,-0.24242424242424243,-0.26515151515151514,-0.26515151515151514,-0.5227272727272727,-0.1893939393939394,-0.696969696969697,-0.09848484848484848,-0.7803030303030303,-0.1590909090909091,-0.8333333333333334,-0.09848484848484848,-1.0,-0.09848484848484848,-0.8787878787878788,-0.10606060606060606,-0.7651515151515151,0.07575757575757576,-0.803030303030303,0.08333333333333333,-0.8560606060606061,0.05303030303030303,-0.7348484848484849,0.022727272727272728,-0.6287878787878788,0.2727272727272727,-0.7045454545454546,0.23484848484848486,-0.7045454545454546,0.19696969696969696,-0.5909090909090909,0.16666666666666666,-0.5,0.4393939393939394,-0.5909090909090909,0.36363636363636365,-0.5681818181818182,0.32575757575757575,-0.4696969696969697,0.3181818181818182,-0.3939393939393939 -1,0.0,0.0,-0.24242424242424243,-0.26515151515151514,-0.25757575757575757,-0.5075757575757576,-0.18181818181818182,-0.6893939393939394,-0.09090909090909091,-0.7651515151515151,-0.10606060606060606,-0.8409090909090909,-0.08333333333333333,-1.0,-0.10606060606060606,-0.8863636363636364,-0.10606060606060606,-0.7651515151515151,0.12878787878787878,-0.803030303030303,0.09848484848484848,-0.8560606060606061,0.05303030303030303,-0.7348484848484849,0.03787878787878788,-0.6439393939393939,0.3106060606060606,-0.696969696969697,0.25757575757575757,-0.7121212121212122,0.20454545454545456,-0.6060606060606061,0.18181818181818182,-0.5075757575757576,0.4696969696969697,-0.5681818181818182,0.38636363636363635,-0.5757575757575758,0.3409090909090909,-0.48484848484848486,0.3333333333333333,-0.4015151515151515 -1,0.0,0.0,-0.23255813953488372,-0.29457364341085274,-0.24031007751937986,-0.5503875968992248,-0.15503875968992248,-0.7286821705426356,-0.05426356589147287,-0.7984496124031008,-0.05426356589147287,-0.875968992248062,-0.023255813953488372,-1.0,-0.05426356589147287,-0.8837209302325582,-0.07751937984496124,-0.7674418604651163,0.17829457364341086,-0.8217054263565892,0.15503875968992248,-0.8682170542635659,0.10077519379844961,-0.7441860465116279,0.06976744186046512,-0.6511627906976745,0.3643410852713178,-0.689922480620155,0.31007751937984496,-0.7054263565891473,0.24806201550387597,-0.5968992248062015,0.21705426356589147,-0.5116279069767442,0.5116279069767442,-0.5348837209302325,0.43410852713178294,-0.5503875968992248,0.37209302325581395,-0.46511627906976744,0.35658914728682173,-0.3875968992248062 -1,0.0,0.0,-0.2047244094488189,-0.2992125984251969,-0.1968503937007874,-0.5511811023622047,-0.09448818897637795,-0.7165354330708661,0.015748031496062992,-0.7716535433070866,-0.007874015748031496,-0.8661417322834646,0.031496062992125984,-1.0,0.015748031496062992,-0.8740157480314961,0.0,-0.7559055118110236,0.2283464566929134,-0.8110236220472441,0.2125984251968504,-0.8503937007874016,0.15748031496062992,-0.7322834645669292,0.11811023622047244,-0.6299212598425197,0.4094488188976378,-0.6771653543307087,0.36220472440944884,-0.6850393700787402,0.2992125984251969,-0.5826771653543307,0.25984251968503935,-0.4881889763779528,0.5511811023622047,-0.5275590551181102,0.47244094488188976,-0.5354330708661418,0.41732283464566927,-0.44881889763779526,0.3858267716535433,-0.3700787401574803 -1,0.0,0.0,-0.18181818181818182,-0.34710743801652894,-0.1487603305785124,-0.6033057851239669,-0.024793388429752067,-0.7603305785123967,0.08264462809917356,-0.8099173553719008,0.10743801652892562,-0.9256198347107438,0.11570247933884298,-1.0,0.05785123966942149,-0.8677685950413223,0.024793388429752067,-0.7520661157024794,0.33884297520661155,-0.8347107438016529,0.2892561983471074,-0.8512396694214877,0.21487603305785125,-0.7355371900826446,0.17355371900826447,-0.6363636363636364,0.512396694214876,-0.6611570247933884,0.4380165289256198,-0.6611570247933884,0.35537190082644626,-0.5619834710743802,0.30578512396694213,-0.4793388429752066,0.628099173553719,-0.4793388429752066,0.5371900826446281,-0.49586776859504134,0.4628099173553719,-0.4132231404958678,0.4214876033057851,-0.3305785123966942 -1,0.0,0.0,-0.14912280701754385,-0.38596491228070173,-0.07894736842105263,-0.631578947368421,0.06140350877192982,-0.7456140350877193,0.17543859649122806,-0.7894736842105263,0.20175438596491227,-0.9385964912280702,0.24561403508771928,-1.0,0.17543859649122806,-0.8771929824561403,0.12280701754385964,-0.7543859649122807,0.4298245614035088,-0.8070175438596491,0.41228070175438597,-0.8421052631578947,0.3157894736842105,-0.7280701754385965,0.2543859649122807,-0.6228070175438597,0.5789473684210527,-0.6052631578947368,0.543859649122807,-0.6228070175438597,0.43859649122807015,-0.5263157894736842,0.3684210526315789,-0.45614035087719296,0.6842105263157895,-0.40350877192982454,0.6228070175438597,-0.43859649122807015,0.5350877192982456,-0.3684210526315789,0.4824561403508772,-0.2894736842105263 -1,0.0,0.0,-0.12037037037037036,-0.4166666666666667,-0.037037037037037035,-0.6851851851851852,0.12962962962962962,-0.8148148148148148,0.26851851851851855,-0.8333333333333334,0.25925925925925924,-0.9351851851851852,0.3333333333333333,-1.0,0.26851851851851855,-0.8796296296296297,0.19444444444444445,-0.7685185185185185,0.48148148148148145,-0.7870370370370371,0.49074074074074076,-0.8240740740740741,0.39814814814814814,-0.7129629629629629,0.32407407407407407,-0.6111111111111112,0.6388888888888888,-0.5740740740740741,0.6203703703703703,-0.6018518518518519,0.5185185185185185,-0.5092592592592593,0.4351851851851852,-0.42592592592592593,0.7407407407407407,-0.3611111111111111,0.7129629629629629,-0.4166666666666667,0.6111111111111112,-0.3425925925925926,0.5462962962962963,-0.26851851851851855 -1,0.0,0.0,-0.11538461538461539,-0.4326923076923077,-0.009615384615384616,-0.6826923076923077,0.16346153846153846,-0.7884615384615384,0.3076923076923077,-0.8076923076923077,0.3173076923076923,-0.9519230769230769,0.41346153846153844,-1.0,0.3557692307692308,-0.875,0.27884615384615385,-0.7692307692307693,0.5384615384615384,-0.7788461538461539,0.5673076923076923,-0.7884615384615384,0.47115384615384615,-0.6730769230769231,0.375,-0.5673076923076923,0.6730769230769231,-0.5384615384615384,0.6730769230769231,-0.5288461538461539,0.5576923076923077,-0.4423076923076923,0.47115384615384615,-0.375,0.7788461538461539,-0.3076923076923077,0.7211538461538461,-0.3173076923076923,0.6153846153846154,-0.2403846153846154,0.5480769230769231,-0.17307692307692307 -1,0.0,0.0,-0.03125,-0.4791666666666667,0.125,-0.75,0.3333333333333333,-0.8333333333333334,0.4791666666666667,-0.8229166666666666,0.4791666666666667,-1.0,0.5833333333333334,-0.9791666666666666,0.5104166666666666,-0.84375,0.4166666666666667,-0.75,0.6770833333333334,-0.78125,0.6979166666666666,-0.75,0.59375,-0.625,0.4791666666666667,-0.53125,0.7916666666666666,-0.5104166666666666,0.7916666666666666,-0.46875,0.6666666666666666,-0.375,0.5625,-0.3125,0.875,-0.23958333333333334,0.8125,-0.22916666666666666,0.6979166666666666,-0.15625,0.6145833333333334,-0.09375 -1,0.0,0.0,-0.010752688172043012,-0.5053763440860215,0.17204301075268819,-0.7526881720430108,0.3870967741935484,-0.8064516129032258,0.5268817204301075,-0.7956989247311828,0.5161290322580645,-1.0,0.6559139784946236,-0.946236559139785,0.5913978494623656,-0.8172043010752689,0.4946236559139785,-0.7419354838709677,0.7096774193548387,-0.7741935483870968,0.7741935483870968,-0.6989247311827957,0.6559139784946236,-0.5698924731182796,0.5376344086021505,-0.4946236559139785,0.8172043010752689,-0.4838709677419355,0.8387096774193549,-0.3978494623655914,0.7096774193548387,-0.3118279569892473,0.6021505376344086,-0.26881720430107525,0.8924731182795699,-0.1935483870967742,0.8387096774193549,-0.12903225806451613,0.7096774193548387,-0.06451612903225806,0.6129032258064516,-0.03225806451612903 -1,0.0,0.0,0.045454545454545456,-0.5227272727272727,0.2727272727272727,-0.7840909090909091,0.5227272727272727,-0.8068181818181818,0.6704545454545454,-0.7613636363636364,0.6477272727272727,-1.0,0.7727272727272727,-0.875,0.6818181818181818,-0.7386363636363636,0.5568181818181818,-0.6818181818181818,0.8295454545454546,-0.7272727272727273,0.8522727272727273,-0.6136363636363636,0.7272727272727273,-0.48863636363636365,0.5909090909090909,-0.4318181818181818,0.8977272727272727,-0.4090909090909091,0.8977272727272727,-0.3068181818181818,0.75,-0.22727272727272727,0.625,-0.19318181818181818,0.9431818181818182,-0.10227272727272728,0.8863636363636364,-0.045454545454545456,0.7386363636363636,0.022727272727272728,0.6363636363636364,0.056818181818181816 -1,0.0,0.0,0.07228915662650602,-0.5301204819277109,0.3373493975903614,-0.7831325301204819,0.5903614457831325,-0.8072289156626506,0.7469879518072289,-0.7710843373493976,0.7228915662650602,-1.0,0.8554216867469879,-0.8674698795180723,0.7710843373493976,-0.7228915662650602,0.6506024096385542,-0.6746987951807228,0.891566265060241,-0.7228915662650602,0.927710843373494,-0.5903614457831325,0.7831325301204819,-0.46987951807228917,0.6385542168674698,-0.40963855421686746,0.963855421686747,-0.3855421686746988,0.9759036144578314,-0.27710843373493976,0.8072289156626506,-0.1927710843373494,0.6626506024096386,-0.1686746987951807,1.0,-0.04819277108433735,0.9518072289156626,0.0,0.7831325301204819,0.060240963855421686,0.6746987951807228,0.08433734939759036 -1,0.0,0.0,0.12345679012345678,-0.5308641975308642,0.3950617283950617,-0.7777777777777778,0.6666666666666666,-0.7901234567901234,0.8148148148148148,-0.7160493827160493,0.8148148148148148,-0.9259259259259259,0.9506172839506173,-0.7901234567901234,0.8395061728395061,-0.654320987654321,0.7037037037037037,-0.6172839506172839,0.9629629629629629,-0.6172839506172839,1.0,-0.5061728395061729,0.8518518518518519,-0.4074074074074074,0.7037037037037037,-0.35802469135802467,1.0,-0.2716049382716049,1.0,-0.18518518518518517,0.8395061728395061,-0.13580246913580246,0.7037037037037037,-0.1111111111111111,1.0,0.06172839506172839,0.9506172839506173,0.09876543209876543,0.7901234567901234,0.13580246913580246,0.6790123456790124,0.14814814814814814 -1,0.0,0.0,0.12048192771084337,-0.5060240963855421,0.40963855421686746,-0.6987951807228916,0.6746987951807228,-0.6746987951807228,0.8072289156626506,-0.6024096385542169,0.8313253012048193,-0.8433734939759037,0.963855421686747,-0.6746987951807228,0.8433734939759037,-0.5542168674698795,0.6987951807228916,-0.5301204819277109,0.9518072289156626,-0.5542168674698795,1.0,-0.39759036144578314,0.8433734939759037,-0.30120481927710846,0.6987951807228916,-0.27710843373493976,0.963855421686747,-0.21686746987951808,1.0,-0.08433734939759036,0.8313253012048193,-0.03614457831325301,0.6867469879518072,-0.04819277108433735,0.9518072289156626,0.10843373493975904,0.9156626506024096,0.1927710843373494,0.7349397590361446,0.21686746987951808,0.6265060240963856,0.20481927710843373 -1,0.0,0.0,0.1686746987951807,-0.4939759036144578,0.4819277108433735,-0.6746987951807228,0.7590361445783133,-0.6385542168674698,0.927710843373494,-0.5542168674698795,0.8313253012048193,-0.7469879518072289,0.9759036144578314,-0.6024096385542169,0.8674698795180723,-0.4939759036144578,0.7349397590361446,-0.46987951807228917,0.927710843373494,-0.4578313253012048,1.0,-0.3253012048192771,0.8433734939759037,-0.24096385542168675,0.6867469879518072,-0.21686746987951808,0.927710843373494,-0.13253012048192772,0.963855421686747,-0.024096385542168676,0.7951807228915663,0.0,0.6385542168674698,0.0,0.9036144578313253,0.18072289156626506,0.8795180722891566,0.24096385542168675,0.7108433734939759,0.24096385542168675,0.5783132530120482,0.2289156626506024 -1,0.0,0.0,0.16853932584269662,-0.4157303370786517,0.4606741573033708,-0.5955056179775281,0.7640449438202247,-0.5617977528089888,0.9438202247191011,-0.449438202247191,0.797752808988764,-0.5955056179775281,1.0,-0.42696629213483145,0.8876404494382022,-0.34831460674157305,0.7640449438202247,-0.34831460674157305,0.8426966292134831,-0.30337078651685395,1.0,-0.16853932584269662,0.8764044943820225,-0.12359550561797752,0.7303370786516854,-0.1348314606741573,0.8089887640449438,0.0,0.9550561797752809,0.10112359550561797,0.8202247191011236,0.10112359550561797,0.6853932584269663,0.056179775280898875,0.7415730337078652,0.30337078651685395,0.8539325842696629,0.33707865168539325,0.7191011235955056,0.3146067415730337,0.5955056179775281,0.2696629213483146 -1,0.0,0.0,0.18,-0.35,0.51,-0.47,0.82,-0.39,1.0,-0.25,0.74,-0.51,0.96,-0.26,0.85,-0.21,0.75,-0.28,0.76,-0.26,0.93,-0.05,0.8,-0.03,0.68,-0.08,0.71,0.01,0.86,0.18,0.73,0.17,0.61,0.1,0.63,0.28,0.75,0.36,0.62,0.34,0.51,0.29 -1,0.0,0.0,0.20754716981132076,-0.2830188679245283,0.5283018867924528,-0.39622641509433965,0.8490566037735849,-0.330188679245283,1.0,-0.1792452830188679,0.7169811320754716,-0.5,0.9622641509433962,-0.16981132075471697,0.839622641509434,-0.12264150943396226,0.7735849056603774,-0.2169811320754717,0.6981132075471698,-0.2830188679245283,0.8962264150943396,0.03773584905660377,0.7641509433962265,0.04716981132075472,0.6698113207547169,-0.02830188679245283,0.6226415094339622,-0.03773584905660377,0.7924528301886793,0.22641509433962265,0.6415094339622641,0.2169811320754717,0.5566037735849056,0.1320754716981132,0.5377358490566038,0.2169811320754717,0.6698113207547169,0.37735849056603776,0.5188679245283019,0.3584905660377358,0.42452830188679247,0.29245283018867924 -1,0.0,0.0,0.1896551724137931,-0.22413793103448276,0.5086206896551724,-0.3017241379310345,0.8275862068965517,-0.21551724137931033,1.0,-0.017241379310344827,0.6551724137931034,-0.39655172413793105,0.9051724137931034,-0.08620689655172414,0.7931034482758621,-0.05172413793103448,0.7155172413793104,-0.12931034482758622,0.6293103448275862,-0.21551724137931033,0.853448275862069,0.11206896551724138,0.7241379310344828,0.11206896551724138,0.6293103448275862,0.02586206896551724,0.5603448275862069,0.0,0.75,0.2672413793103448,0.603448275862069,0.25,0.5258620689655172,0.16379310344827586,0.47413793103448276,0.21551724137931033,0.6206896551724138,0.39655172413793105,0.49137931034482757,0.3620689655172414,0.41379310344827586,0.28448275862068967 -1,0.0,0.0,0.2578125,-0.1640625,0.5546875,-0.1640625,0.8203125,-0.0703125,1.0,0.0234375,0.6328125,-0.34375,0.859375,-0.0859375,0.8359375,0.0078125,0.8046875,0.015625,0.5625,-0.21875,0.8125,0.1171875,0.671875,0.1484375,0.609375,0.0703125,0.4765625,-0.03125,0.703125,0.2890625,0.5546875,0.28125,0.4921875,0.1875,0.390625,0.171875,0.578125,0.40625,0.4453125,0.375,0.375,0.296875 -1,0.0,0.0,0.2713178294573643,-0.12403100775193798,0.5736434108527132,-0.12403100775193798,0.8372093023255814,-0.023255813953488372,1.0,0.07751937984496124,0.6744186046511628,-0.34108527131782945,0.9302325581395349,0.031007751937984496,0.813953488372093,0.08527131782945736,0.751937984496124,0.007751937984496124,0.5658914728682171,-0.20930232558139536,0.8449612403100775,0.17829457364341086,0.6821705426356589,0.20155038759689922,0.6124031007751938,0.10852713178294573,0.4496124031007752,-0.03875968992248062,0.7054263565891473,0.32558139534883723,0.5426356589147286,0.31007751937984496,0.4806201550387597,0.20930232558139536,0.3488372093023256,0.16279069767441862,0.5736434108527132,0.4263565891472868,0.43410852713178294,0.3953488372093023,0.35658914728682173,0.3023255813953488 -1,0.0,0.0,0.2706766917293233,-0.10526315789473684,0.5864661654135338,-0.08270676691729323,0.849624060150376,0.06015037593984962,1.0,0.16541353383458646,0.6842105263157895,-0.3383458646616541,0.9473684210526315,0.045112781954887216,0.8120300751879699,0.10526315789473684,0.7443609022556391,0.015037593984962405,0.556390977443609,-0.22556390977443608,0.8421052631578947,0.19548872180451127,0.6691729323308271,0.21804511278195488,0.6015037593984962,0.12030075187969924,0.42857142857142855,-0.05263157894736842,0.6992481203007519,0.3233082706766917,0.5263157894736842,0.3157894736842105,0.45864661654135336,0.21804511278195488,0.3233082706766917,0.14285714285714285,0.556390977443609,0.41353383458646614,0.41353383458646614,0.38345864661654133,0.3383458646616541,0.2932330827067669 -1,0.0,0.0,0.29285714285714287,-0.08571428571428572,0.6142857142857143,-0.04285714285714286,0.8714285714285714,0.12142857142857143,1.0,0.22142857142857142,0.6928571428571428,-0.3142857142857143,0.9357142857142857,0.07857142857142857,0.8071428571428572,0.12857142857142856,0.7428571428571429,0.03571428571428571,0.5357142857142857,-0.22142857142857142,0.8142857142857143,0.22142857142857142,0.6571428571428571,0.24285714285714285,0.5928571428571429,0.14285714285714285,0.38571428571428573,-0.06428571428571428,0.65,0.35,0.4928571428571429,0.32857142857142857,0.4357142857142857,0.22142857142857142,0.2714285714285714,0.12142857142857143,0.5071428571428571,0.4142857142857143,0.37857142857142856,0.37857142857142856,0.3,0.2857142857142857 -1,0.0,0.0,0.30985915492957744,-0.07042253521126761,0.6408450704225352,-0.028169014084507043,0.8873239436619719,0.13380281690140844,1.0,0.24647887323943662,0.7112676056338029,-0.323943661971831,0.9366197183098591,0.09154929577464789,0.795774647887324,0.14084507042253522,0.7323943661971831,0.035211267605633804,0.5492957746478874,-0.24647887323943662,0.8028169014084507,0.23943661971830985,0.647887323943662,0.2535211267605634,0.5845070422535211,0.14788732394366197,0.3873239436619718,-0.09859154929577464,0.6408450704225352,0.34507042253521125,0.49295774647887325,0.33098591549295775,0.43661971830985913,0.21830985915492956,0.2676056338028169,0.07746478873239436,0.49295774647887325,0.39436619718309857,0.3732394366197183,0.36619718309859156,0.3028169014084507,0.2746478873239437 -1,0.0,0.0,0.3219178082191781,-0.0684931506849315,0.6506849315068494,-0.0273972602739726,0.8904109589041096,0.1232876712328767,1.0,0.2191780821917808,0.7123287671232876,-0.3424657534246575,0.9041095890410958,0.0821917808219178,0.773972602739726,0.136986301369863,0.726027397260274,0.03424657534246575,0.5342465753424658,-0.2808219178082192,0.773972602739726,0.22602739726027396,0.6164383561643836,0.22602739726027396,0.5547945205479452,0.1095890410958904,0.3698630136986301,-0.136986301369863,0.6027397260273972,0.3287671232876712,0.4589041095890411,0.3013698630136986,0.410958904109589,0.18493150684931506,0.23972602739726026,0.0410958904109589,0.4589041095890411,0.363013698630137,0.3356164383561644,0.3356164383561644,0.2602739726027397,0.23972602739726026 -1,0.0,0.0,0.3706293706293706,-0.04195804195804196,0.6783216783216783,0.0,0.8951048951048951,0.13986013986013987,1.0,0.25874125874125875,0.7062937062937062,-0.3916083916083916,0.8951048951048951,0.08391608391608392,0.7622377622377622,0.13286713286713286,0.7062937062937062,0.02097902097902098,0.5034965034965035,-0.34265734265734266,0.7412587412587412,0.20279720279720279,0.5874125874125874,0.1958041958041958,0.5244755244755245,0.06293706293706294,0.32167832167832167,-0.20279720279720279,0.5524475524475524,0.2867132867132867,0.4195804195804196,0.2517482517482518,0.3706293706293706,0.11888111888111888,0.16783216783216784,-0.03496503496503497,0.3916083916083916,0.2937062937062937,0.2867132867132867,0.27972027972027974,0.2097902097902098,0.17482517482517482 -1,0.0,0.0,0.3706293706293706,-0.013986013986013986,0.6713286713286714,0.02097902097902098,0.8881118881118881,0.13986013986013987,1.0,0.23776223776223776,0.6993006993006993,-0.36363636363636365,0.9090909090909091,0.08391608391608392,0.7902097902097902,0.14685314685314685,0.7272727272727273,0.04895104895104895,0.5104895104895105,-0.32867132867132864,0.7622377622377622,0.2097902097902098,0.6153846153846154,0.20279720279720279,0.5454545454545454,0.06293706293706294,0.34265734265734266,-0.20279720279720279,0.5734265734265734,0.2937062937062937,0.44755244755244755,0.2517482517482518,0.3986013986013986,0.11188811188811189,0.1958041958041958,-0.03496503496503497,0.40559440559440557,0.2937062937062937,0.3076923076923077,0.2727272727272727,0.24475524475524477,0.16783216783216784 -1,0.0,0.0,0.4166666666666667,0.0,0.696969696969697,0.045454545454545456,0.9015151515151515,0.16666666666666666,1.0,0.24242424242424243,0.7196969696969697,-0.4393939393939394,0.9393939393939394,0.030303030303030304,0.8106060606060606,0.10606060606060606,0.7272727272727273,0.007575757575757576,0.5,-0.4166666666666667,0.7575757575757576,0.15151515151515152,0.6136363636363636,0.17424242424242425,0.5378787878787878,0.022727272727272728,0.30303030303030304,-0.29545454545454547,0.5454545454545454,0.24242424242424243,0.4318181818181818,0.22727272727272727,0.3712121212121212,0.06818181818181818,0.13636363636363635,-0.12878787878787878,0.36363636363636365,0.24242424242424243,0.2727272727272727,0.25,0.20454545454545456,0.12121212121212122 -1,0.0,0.0,0.45132743362831856,0.04424778761061947,0.7522123893805309,0.07964601769911504,0.9557522123893806,0.1415929203539823,1.0,0.08849557522123894,0.8407079646017699,-0.6548672566371682,0.9911504424778761,-0.17699115044247787,0.8053097345132744,-0.017699115044247787,0.7256637168141593,-0.11504424778761062,0.5398230088495575,-0.7168141592920354,0.7345132743362832,-0.10619469026548672,0.5929203539823009,0.008849557522123894,0.5132743362831859,-0.1415929203539823,0.2743362831858407,-0.6371681415929203,0.46017699115044247,-0.035398230088495575,0.3893805309734513,0.061946902654867256,0.336283185840708,-0.09734513274336283,0.035398230088495575,-0.504424778761062,0.20353982300884957,-0.04424778761061947,0.18584070796460178,0.02654867256637168,0.12389380530973451,-0.12389380530973451 -1,0.0,0.0,0.4247787610619469,0.035398230088495575,0.7787610619469026,0.05309734513274336,1.0,0.05309734513274336,0.9026548672566371,-0.07964601769911504,0.8495575221238938,-0.6814159292035398,0.9557522123893806,-0.3274336283185841,0.8053097345132744,-0.13274336283185842,0.7345132743362832,-0.18584070796460178,0.5929203539823009,-0.8053097345132744,0.6814159292035398,-0.26548672566371684,0.5575221238938053,-0.08849557522123894,0.504424778761062,-0.22123893805309736,0.3274336283185841,-0.7787610619469026,0.415929203539823,-0.22123893805309736,0.36283185840707965,-0.061946902654867256,0.336283185840708,-0.19469026548672566,0.08849557522123894,-0.6814159292035398,0.17699115044247787,-0.23008849557522124,0.168141592920354,-0.08849557522123894,0.13274336283185842,-0.19469026548672566 -1,0.0,0.0,0.39814814814814814,0.027777777777777776,0.7685185185185185,-0.018518518518518517,1.0,-0.12037037037037036,0.8611111111111112,-0.3333333333333333,0.8796296296296297,-0.7407407407407407,0.9722222222222222,-0.5092592592592593,0.8518518518518519,-0.3425925925925926,0.7962962962962963,-0.3888888888888889,0.6388888888888888,-0.9259259259259259,0.6666666666666666,-0.46296296296296297,0.5462962962962963,-0.24074074074074073,0.5277777777777778,-0.37962962962962965,0.37962962962962965,-0.9537037037037037,0.37962962962962965,-0.4444444444444444,0.35185185185185186,-0.23148148148148148,0.37962962962962965,-0.3611111111111111,0.1388888888888889,-0.9074074074074074,0.1111111111111111,-0.4537037037037037,0.12037037037037036,-0.25925925925925924,0.12962962962962962,-0.37037037037037035 -1,0.0,0.0,0.37142857142857144,0.02857142857142857,0.7523809523809524,-0.009523809523809525,0.9904761904761905,-0.13333333333333333,0.8476190476190476,-0.3904761904761905,0.8857142857142857,-0.7714285714285715,0.9809523809523809,-0.5904761904761905,0.8571428571428571,-0.3904761904761905,0.819047619047619,-0.42857142857142855,0.6571428571428571,-0.9523809523809523,0.6761904761904762,-0.5333333333333333,0.5428571428571428,-0.2571428571428571,0.5333333333333333,-0.4,0.4,-1.0,0.38095238095238093,-0.5238095238095238,0.3333333333333333,-0.2571428571428571,0.3523809523809524,-0.3904761904761905,0.1619047619047619,-0.9619047619047619,0.12380952380952381,-0.5619047619047619,0.11428571428571428,-0.3238095238095238,0.13333333333333333,-0.42857142857142855 -1,0.0,0.0,0.34615384615384615,0.028846153846153848,0.7211538461538461,-0.019230769230769232,0.9519230769230769,-0.19230769230769232,0.8365384615384616,-0.47115384615384615,0.8942307692307693,-0.75,0.9807692307692307,-0.6153846153846154,0.8365384615384616,-0.40384615384615385,0.8076923076923077,-0.4423076923076923,0.6730769230769231,-0.9423076923076923,0.6730769230769231,-0.6057692307692307,0.5288461538461539,-0.2980769230769231,0.5576923076923077,-0.4230769230769231,0.41346153846153844,-1.0,0.38461538461538464,-0.5865384615384616,0.3269230769230769,-0.28846153846153844,0.36538461538461536,-0.40384615384615385,0.17307692307692307,-0.9711538461538461,0.11538461538461539,-0.6057692307692307,0.10576923076923077,-0.3557692307692308,0.1346153846153846,-0.4519230769230769 -1,0.0,0.0,0.3431372549019608,0.0392156862745098,0.7352941176470589,-0.029411764705882353,0.9411764705882353,-0.24509803921568626,0.8529411764705882,-0.5490196078431373,0.9607843137254902,-0.7254901960784313,0.9803921568627451,-0.6176470588235294,0.7941176470588235,-0.37254901960784315,0.7647058823529411,-0.4019607843137255,0.7254901960784313,-0.9215686274509803,0.6764705882352942,-0.6568627450980392,0.5196078431372549,-0.3235294117647059,0.5686274509803921,-0.4215686274509804,0.47058823529411764,-1.0,0.39215686274509803,-0.6764705882352942,0.3235294117647059,-0.3333333333333333,0.38235294117647056,-0.4215686274509804,0.22549019607843138,-0.9901960784313726,0.13725490196078433,-0.6862745098039216,0.10784313725490197,-0.4117647058823529,0.1568627450980392,-0.4803921568627451 -1,0.0,0.0,0.3235294117647059,0.029411764705882353,0.7156862745098039,-0.049019607843137254,0.9215686274509803,-0.2647058823529412,0.8627450980392157,-0.5784313725490197,0.9215686274509803,-0.7156862745098039,0.9215686274509803,-0.6372549019607843,0.7450980392156863,-0.4215686274509804,0.7156862745098039,-0.4215686274509804,0.7058823529411765,-0.9215686274509803,0.6372549019607843,-0.696078431372549,0.47058823529411764,-0.35294117647058826,0.5392156862745098,-0.43137254901960786,0.45098039215686275,-1.0,0.37254901960784315,-0.7254901960784313,0.29411764705882354,-0.38235294117647056,0.35294117647058826,-0.45098039215686275,0.21568627450980393,-1.0,0.11764705882352941,-0.7450980392156863,0.08823529411764706,-0.47058823529411764,0.14705882352941177,-0.5098039215686274 -1,0.0,0.0,0.3469387755102041,0.05102040816326531,0.7551020408163265,-0.04081632653061224,1.0,-0.30612244897959184,0.9795918367346939,-0.6326530612244898,0.9693877551020408,-0.6938775510204082,0.9693877551020408,-0.6530612244897959,0.7653061224489796,-0.40816326530612246,0.7551020408163265,-0.40816326530612246,0.7448979591836735,-0.8877551020408163,0.6938775510204082,-0.7244897959183674,0.5102040816326531,-0.3673469387755102,0.5816326530612245,-0.4387755102040816,0.4897959183673469,-0.9795918367346939,0.41836734693877553,-0.7653061224489796,0.3163265306122449,-0.40816326530612246,0.37755102040816324,-0.47959183673469385,0.23469387755102042,-1.0,0.15306122448979592,-0.7755102040816326,0.11224489795918367,-0.4897959183673469,0.16326530612244897,-0.5408163265306123 -1,0.0,0.0,0.3541666666666667,0.052083333333333336,0.7708333333333334,-0.0625,1.0,-0.3333333333333333,0.9791666666666666,-0.6770833333333334,0.9479166666666666,-0.7083333333333334,0.90625,-0.6458333333333334,0.71875,-0.3854166666666667,0.7395833333333334,-0.3854166666666667,0.71875,-0.90625,0.65625,-0.7291666666666666,0.4895833333333333,-0.375,0.5625,-0.4479166666666667,0.4479166666666667,-1.0,0.3854166666666667,-0.7708333333333334,0.2916666666666667,-0.4166666666666667,0.3541666666666667,-0.4895833333333333,0.19791666666666666,-1.0,0.125,-0.78125,0.10416666666666667,-0.5,0.14583333333333334,-0.5416666666666666 -1,0.0,0.0,0.3469387755102041,0.07142857142857142,0.7551020408163265,-0.04081632653061224,1.0,-0.336734693877551,0.9897959183673469,-0.6836734693877551,0.9387755102040817,-0.6326530612244898,0.9183673469387755,-0.6428571428571429,0.7142857142857143,-0.37755102040816324,0.7244897959183674,-0.3673469387755102,0.7346938775510204,-0.826530612244898,0.6836734693877551,-0.7346938775510204,0.4897959183673469,-0.37755102040816324,0.5612244897959183,-0.4489795918367347,0.47959183673469385,-0.9387755102040817,0.41836734693877553,-0.7653061224489796,0.29591836734693877,-0.41836734693877553,0.35714285714285715,-0.4897959183673469,0.22448979591836735,-0.9693877551020408,0.17346938775510204,-0.7755102040816326,0.12244897959183673,-0.5,0.17346938775510204,-0.5510204081632653 -1,0.0,0.0,0.3465346534653465,0.06930693069306931,0.7524752475247525,-0.019801980198019802,1.0,-0.2871287128712871,1.0,-0.6336633663366337,0.9603960396039604,-0.5445544554455446,0.9306930693069307,-0.5346534653465347,0.7524752475247525,-0.36633663366336633,0.7722772277227723,-0.38613861386138615,0.7524752475247525,-0.7623762376237624,0.7326732673267327,-0.6633663366336634,0.5148514851485149,-0.33663366336633666,0.5841584158415841,-0.43564356435643564,0.504950495049505,-0.8910891089108911,0.45544554455445546,-0.7227722772277227,0.31683168316831684,-0.36633663366336633,0.39603960396039606,-0.46534653465346537,0.24752475247524752,-0.9405940594059405,0.21782178217821782,-0.7425742574257426,0.1485148514851485,-0.46534653465346537,0.19801980198019803,-0.5346534653465347 -1,0.0,0.0,0.3333333333333333,0.10476190476190476,0.7238095238095238,-0.009523809523809525,0.9714285714285714,-0.2857142857142857,1.0,-0.6190476190476191,0.9142857142857143,-0.5142857142857142,0.8666666666666667,-0.5142857142857142,0.6571428571428571,-0.2857142857142857,0.6857142857142857,-0.29523809523809524,0.7047619047619048,-0.6952380952380952,0.6857142857142857,-0.6190476190476191,0.4666666666666667,-0.3047619047619048,0.5428571428571428,-0.4,0.45714285714285713,-0.819047619047619,0.41904761904761906,-0.6857142857142857,0.2761904761904762,-0.3523809523809524,0.3523809523809524,-0.44761904761904764,0.21904761904761905,-0.8571428571428571,0.2,-0.7047619047619048,0.13333333333333333,-0.44761904761904764,0.17142857142857143,-0.5047619047619047 -1,0.0,0.0,0.3394495412844037,0.10091743119266056,0.7064220183486238,-0.01834862385321101,0.963302752293578,-0.29357798165137616,1.0,-0.5871559633027523,0.8623853211009175,-0.42201834862385323,0.8715596330275229,-0.4954128440366973,0.6605504587155964,-0.28440366972477066,0.6880733944954128,-0.27522935779816515,0.6697247706422018,-0.5779816513761468,0.7155963302752294,-0.6146788990825688,0.47706422018348627,-0.30275229357798167,0.5412844036697247,-0.3669724770642202,0.44954128440366975,-0.6972477064220184,0.48623853211009177,-0.7064220183486238,0.30275229357798167,-0.3669724770642202,0.3577981651376147,-0.42201834862385323,0.22935779816513763,-0.7614678899082569,0.28440366972477066,-0.7431192660550459,0.1834862385321101,-0.48623853211009177,0.1926605504587156,-0.5045871559633027 -1,0.0,0.0,0.3333333333333333,0.10185185185185185,0.6944444444444444,-0.009259259259259259,0.9629629629629629,-0.25925925925925924,1.0,-0.5277777777777778,0.8148148148148148,-0.42592592592592593,0.8981481481481481,-0.5185185185185185,0.6851851851851852,-0.2962962962962963,0.6851851851851852,-0.2777777777777778,0.6388888888888888,-0.5648148148148148,0.7407407407407407,-0.6388888888888888,0.5,-0.3148148148148148,0.5370370370370371,-0.37037037037037035,0.42592592592592593,-0.6759259259259259,0.5185185185185185,-0.7037037037037037,0.32407407407407407,-0.3888888888888889,0.3333333333333333,-0.4444444444444444,0.2037037037037037,-0.75,0.2962962962962963,-0.7592592592592593,0.18518518518518517,-0.5092592592592593,0.16666666666666666,-0.5370370370370371 -1,0.0,0.0,0.32142857142857145,0.09821428571428571,0.6696428571428571,0.026785714285714284,0.9285714285714286,-0.17857142857142858,1.0,-0.4107142857142857,0.7857142857142857,-0.4017857142857143,0.8839285714285714,-0.5,0.7142857142857143,-0.29464285714285715,0.6607142857142857,-0.24107142857142858,0.6071428571428571,-0.5357142857142857,0.7410714285714286,-0.6160714285714286,0.5178571428571429,-0.30357142857142855,0.5178571428571429,-0.3392857142857143,0.39285714285714285,-0.6339285714285714,0.5,-0.6696428571428571,0.3125,-0.3482142857142857,0.30357142857142855,-0.38392857142857145,0.16071428571428573,-0.6964285714285714,0.26785714285714285,-0.7142857142857143,0.15178571428571427,-0.4732142857142857,0.09821428571428571,-0.48214285714285715 -1,0.0,0.0,0.3063063063063063,0.0990990990990991,0.6666666666666666,0.04504504504504504,0.9279279279279279,-0.14414414414414414,1.0,-0.40540540540540543,0.8108108108108109,-0.4144144144144144,0.9279279279279279,-0.5045045045045045,0.7657657657657657,-0.3153153153153153,0.6846846846846847,-0.24324324324324326,0.6306306306306306,-0.5585585585585585,0.7657657657657657,-0.6396396396396397,0.5315315315315315,-0.3063063063063063,0.5045045045045045,-0.3153153153153153,0.40540540540540543,-0.6486486486486487,0.5135135135135135,-0.7027027027027027,0.32432432432432434,-0.35135135135135137,0.2972972972972973,-0.36036036036036034,0.16216216216216217,-0.7117117117117117,0.2702702702702703,-0.7297297297297297,0.15315315315315314,-0.4774774774774775,0.0990990990990991,-0.4774774774774775 -1,0.0,0.0,0.3125,0.08928571428571429,0.6785714285714286,0.017857142857142856,0.9285714285714286,-0.17857142857142858,1.0,-0.41964285714285715,0.7767857142857143,-0.41964285714285715,0.9285714285714286,-0.5357142857142857,0.75,-0.3125,0.6517857142857143,-0.23214285714285715,0.5982142857142857,-0.5446428571428571,0.75,-0.6517857142857143,0.5267857142857143,-0.30357142857142855,0.48214285714285715,-0.30357142857142855,0.38392857142857145,-0.6339285714285714,0.5178571428571429,-0.7142857142857143,0.33035714285714285,-0.35714285714285715,0.2857142857142857,-0.3482142857142857,0.13392857142857142,-0.6875,0.2767857142857143,-0.7410714285714286,0.16964285714285715,-0.48214285714285715,0.10714285714285714,-0.4642857142857143 -1,0.0,0.0,0.3063063063063063,0.09009009009009009,0.6756756756756757,0.018018018018018018,0.9369369369369369,-0.18018018018018017,1.0,-0.44144144144144143,0.7837837837837838,-0.45045045045045046,0.972972972972973,-0.5585585585585585,0.7837837837837838,-0.3333333333333333,0.6756756756756757,-0.26126126126126126,0.5945945945945946,-0.5675675675675675,0.7747747747747747,-0.6576576576576577,0.5315315315315315,-0.3063063063063063,0.4774774774774775,-0.2972972972972973,0.36936936936936937,-0.6486486486486487,0.5225225225225225,-0.7207207207207207,0.3333333333333333,-0.35135135135135137,0.27927927927927926,-0.34234234234234234,0.12612612612612611,-0.6936936936936937,0.2882882882882883,-0.7387387387387387,0.1891891891891892,-0.4774774774774775,0.10810810810810811,-0.45045045045045046 -1,0.0,0.0,0.3274336283185841,0.07964601769911504,0.6991150442477876,0.0,0.9646017699115044,-0.22123893805309736,1.0,-0.48672566371681414,0.7787610619469026,-0.4424778761061947,0.9823008849557522,-0.5752212389380531,0.8053097345132744,-0.34513274336283184,0.6902654867256637,-0.26548672566371684,0.6017699115044248,-0.5575221238938053,0.7876106194690266,-0.672566371681416,0.5663716814159292,-0.3185840707964602,0.48672566371681414,-0.3008849557522124,0.3893805309734513,-0.6283185840707964,0.5575221238938053,-0.7256637168141593,0.3805309734513274,-0.36283185840707965,0.3008849557522124,-0.3274336283185841,0.1504424778761062,-0.6814159292035398,0.3274336283185841,-0.7345132743362832,0.23008849557522124,-0.4778761061946903,0.1415929203539823,-0.4336283185840708 -1,0.0,0.0,0.32456140350877194,0.07894736842105263,0.7017543859649122,0.0,0.9736842105263158,-0.21929824561403508,1.0,-0.49122807017543857,0.7894736842105263,-0.43859649122807015,0.9912280701754386,-0.5877192982456141,0.8070175438596491,-0.35964912280701755,0.7017543859649122,-0.2807017543859649,0.6140350877192983,-0.5614035087719298,0.7982456140350878,-0.6754385964912281,0.5701754385964912,-0.3333333333333333,0.49122807017543857,-0.30701754385964913,0.40350877192982454,-0.6403508771929824,0.5701754385964912,-0.7280701754385965,0.38596491228070173,-0.3684210526315789,0.30701754385964913,-0.3333333333333333,0.16666666666666666,-0.6842105263157895,0.34210526315789475,-0.7456140350877193,0.23684210526315788,-0.4824561403508772,0.14912280701754385,-0.43859649122807015 -1,0.0,0.0,0.325,0.05,0.675,-0.041666666666666664,0.9333333333333333,-0.25,1.0,-0.5083333333333333,0.7583333333333333,-0.45,0.9416666666666667,-0.6,0.7833333333333333,-0.4,0.675,-0.31666666666666665,0.5833333333333334,-0.55,0.7583333333333333,-0.675,0.55,-0.35,0.475,-0.31666666666666665,0.38333333333333336,-0.6166666666666667,0.5416666666666666,-0.7083333333333334,0.36666666666666664,-0.375,0.3,-0.3333333333333333,0.15833333333333333,-0.6666666666666666,0.325,-0.7333333333333333,0.23333333333333334,-0.48333333333333334,0.14166666666666666,-0.43333333333333335 -1,0.0,0.0,0.33064516129032256,0.056451612903225805,0.6693548387096774,-0.04032258064516129,0.9193548387096774,-0.24193548387096775,1.0,-0.5,0.7580645161290323,-0.43548387096774194,0.9274193548387096,-0.5725806451612904,0.7661290322580645,-0.3790322580645161,0.6612903225806451,-0.29838709677419356,0.5887096774193549,-0.5403225806451613,0.75,-0.6532258064516129,0.5483870967741935,-0.3387096774193548,0.4838709677419355,-0.3064516129032258,0.3951612903225806,-0.6048387096774194,0.5403225806451613,-0.6935483870967742,0.3790322580645161,-0.3548387096774194,0.3064516129032258,-0.31451612903225806,0.1774193548387097,-0.6370967741935484,0.33064516129032256,-0.6935483870967742,0.24193548387096775,-0.45161290322580644,0.16129032258064516,-0.4032258064516129 -1,0.0,0.0,0.3333333333333333,0.04878048780487805,0.6829268292682927,-0.06504065040650407,0.926829268292683,-0.2601626016260163,1.0,-0.5040650406504065,0.7479674796747967,-0.44715447154471544,0.9186991869918699,-0.6178861788617886,0.7642276422764228,-0.4065040650406504,0.6504065040650406,-0.2926829268292683,0.5772357723577236,-0.5447154471544715,0.7317073170731707,-0.6910569105691057,0.5447154471544715,-0.37398373983739835,0.4634146341463415,-0.2926829268292683,0.3821138211382114,-0.6016260162601627,0.5203252032520326,-0.7235772357723578,0.37398373983739835,-0.4065040650406504,0.2845528455284553,-0.3089430894308943,0.15447154471544716,-0.6422764227642277,0.3008130081300813,-0.7479674796747967,0.22764227642276422,-0.5203252032520326,0.14634146341463414,-0.42276422764227645 -1,0.0,0.0,0.3170731707317073,0.06504065040650407,0.6747967479674797,-0.016260162601626018,0.9105691056910569,-0.18699186991869918,1.0,-0.3821138211382114,0.7723577235772358,-0.4065040650406504,0.975609756097561,-0.5853658536585366,0.8211382113821138,-0.3983739837398374,0.6829268292682927,-0.2764227642276423,0.5853658536585366,-0.5121951219512195,0.7560975609756098,-0.6910569105691057,0.5772357723577236,-0.3983739837398374,0.4796747967479675,-0.2926829268292683,0.3821138211382114,-0.5934959349593496,0.5284552845528455,-0.7317073170731707,0.3821138211382114,-0.42276422764227645,0.2926829268292683,-0.3089430894308943,0.13821138211382114,-0.6422764227642277,0.2764227642276423,-0.7479674796747967,0.1951219512195122,-0.5203252032520326,0.13008130081300814,-0.3983739837398374 -1,0.0,0.0,0.2932330827067669,0.07518796992481203,0.6541353383458647,0.007518796992481203,0.8947368421052632,-0.11278195488721804,1.0,-0.2932330827067669,0.706766917293233,-0.37593984962406013,0.8947368421052632,-0.5714285714285714,0.7819548872180451,-0.42105263157894735,0.6541353383458647,-0.2857142857142857,0.5413533834586466,-0.47368421052631576,0.6992481203007519,-0.6691729323308271,0.5714285714285714,-0.44360902255639095,0.47368421052631576,-0.3082706766917293,0.3458646616541353,-0.5413533834586466,0.47368421052631576,-0.6992481203007519,0.3684210526315789,-0.44360902255639095,0.2857142857142857,-0.3007518796992481,0.13533834586466165,-0.5939849624060151,0.24812030075187969,-0.7218045112781954,0.18796992481203006,-0.5338345864661654,0.13533834586466165,-0.41353383458646614 -1,0.0,0.0,0.29411764705882354,0.08823529411764706,0.6397058823529411,0.0661764705882353,0.8897058823529411,-0.022058823529411766,1.0,-0.17647058823529413,0.6764705882352942,-0.36764705882352944,0.8676470588235294,-0.5735294117647058,0.8161764705882353,-0.47794117647058826,0.7132352941176471,-0.3602941176470588,0.5147058823529411,-0.47058823529411764,0.6911764705882353,-0.7132352941176471,0.6102941176470589,-0.5441176470588235,0.5147058823529411,-0.40441176470588236,0.33088235294117646,-0.5441176470588235,0.45588235294117646,-0.7132352941176471,0.36764705882352944,-0.5073529411764706,0.29411764705882354,-0.35294117647058826,0.11764705882352941,-0.5882352941176471,0.22058823529411764,-0.7279411764705882,0.18382352941176472,-0.5735294117647058,0.1323529411764706,-0.45588235294117646 -1,0.0,0.0,0.29411764705882354,0.10294117647058823,0.6397058823529411,0.08823529411764706,0.8897058823529411,0.007352941176470588,1.0,-0.13970588235294118,0.6544117647058824,-0.35294117647058826,0.8455882352941176,-0.5588235294117647,0.8676470588235294,-0.5220588235294118,0.8014705882352942,-0.4264705882352941,0.5,-0.45588235294117646,0.6838235294117647,-0.7279411764705882,0.6838235294117647,-0.6176470588235294,0.6029411764705882,-0.4632352941176471,0.3161764705882353,-0.5294117647058824,0.4411764705882353,-0.7279411764705882,0.40441176470588236,-0.5367647058823529,0.34558823529411764,-0.36764705882352944,0.10294117647058823,-0.5735294117647058,0.18382352941176472,-0.7279411764705882,0.17647058823529413,-0.5882352941176471,0.13970588235294118,-0.4485294117647059 -1,0.0,0.0,0.2949640287769784,0.1079136690647482,0.6330935251798561,0.09352517985611511,0.8776978417266187,0.014388489208633094,1.0,-0.10071942446043165,0.6546762589928058,-0.3381294964028777,0.8345323741007195,-0.5107913669064749,0.9064748201438849,-0.5539568345323741,0.8992805755395683,-0.5035971223021583,0.5035971223021583,-0.45323741007194246,0.6834532374100719,-0.7266187050359713,0.7266187050359713,-0.6690647482014388,0.6762589928057554,-0.5323741007194245,0.33093525179856115,-0.5179856115107914,0.460431654676259,-0.7338129496402878,0.43884892086330934,-0.5611510791366906,0.381294964028777,-0.38848920863309355,0.1223021582733813,-0.5611510791366906,0.20863309352517986,-0.7266187050359713,0.2014388489208633,-0.60431654676259,0.17266187050359713,-0.4748201438848921 -1,0.0,0.0,0.291970802919708,0.10948905109489052,0.635036496350365,0.10218978102189781,0.8832116788321168,0.021897810218978103,1.0,-0.10948905109489052,0.6642335766423357,-0.34306569343065696,0.8540145985401459,-0.5255474452554745,0.9343065693430657,-0.5620437956204379,0.927007299270073,-0.5109489051094891,0.5109489051094891,-0.45985401459854014,0.6934306569343066,-0.7445255474452555,0.7372262773722628,-0.6934306569343066,0.6861313868613139,-0.5474452554744526,0.3284671532846715,-0.5255474452554745,0.45985401459854014,-0.7445255474452555,0.43795620437956206,-0.5620437956204379,0.3795620437956204,-0.3795620437956204,0.11678832116788321,-0.5620437956204379,0.19708029197080293,-0.7372262773722628,0.1897810218978102,-0.6058394160583942,0.16058394160583941,-0.46715328467153283 -1,0.0,0.0,0.29285714285714287,0.11428571428571428,0.6357142857142857,0.11428571428571428,0.8785714285714286,0.03571428571428571,1.0,-0.08571428571428572,0.6642857142857143,-0.3142857142857143,0.8571428571428571,-0.4714285714285714,0.9428571428571428,-0.5357142857142857,0.9642857142857143,-0.5142857142857142,0.5142857142857142,-0.4357142857142857,0.7,-0.7,0.7357142857142858,-0.6571428571428571,0.7,-0.5357142857142857,0.34285714285714286,-0.5,0.4714285714285714,-0.7,0.44285714285714284,-0.5285714285714286,0.38571428571428573,-0.35714285714285715,0.1357142857142857,-0.5428571428571428,0.21428571428571427,-0.7071428571428572,0.20714285714285716,-0.5928571428571429,0.17142857142857143,-0.4642857142857143 -1,0.0,0.0,0.28776978417266186,0.1223021582733813,0.6258992805755396,0.1223021582733813,0.8705035971223022,0.04316546762589928,1.0,-0.09352517985611511,0.6618705035971223,-0.31654676258992803,0.8489208633093526,-0.48201438848920863,0.9496402877697842,-0.539568345323741,0.9712230215827338,-0.5035971223021583,0.5107913669064749,-0.43884892086330934,0.697841726618705,-0.7122302158273381,0.7482014388489209,-0.6618705035971223,0.7050359712230215,-0.5251798561151079,0.33093525179856115,-0.5035971223021583,0.4676258992805755,-0.7050359712230215,0.4460431654676259,-0.5179856115107914,0.381294964028777,-0.34532374100719426,0.1223021582733813,-0.5539568345323741,0.2158273381294964,-0.7050359712230215,0.20863309352517986,-0.5827338129496403,0.17266187050359713,-0.4460431654676259 -1,0.0,0.0,0.2898550724637681,0.12318840579710146,0.6304347826086957,0.12318840579710146,0.8768115942028986,0.043478260869565216,1.0,-0.09420289855072464,0.6594202898550725,-0.3188405797101449,0.855072463768116,-0.4855072463768116,0.9565217391304348,-0.5434782608695652,0.9927536231884058,-0.5072463768115942,0.5072463768115942,-0.43478260869565216,0.6956521739130435,-0.7101449275362319,0.7536231884057971,-0.6666666666666666,0.717391304347826,-0.5217391304347826,0.3333333333333333,-0.5072463768115942,0.463768115942029,-0.6956521739130435,0.4420289855072464,-0.5144927536231884,0.38405797101449274,-0.3333333333333333,0.12318840579710146,-0.5507246376811594,0.21014492753623187,-0.7028985507246377,0.2028985507246377,-0.5797101449275363,0.17391304347826086,-0.4492753623188406 -1,0.0,0.0,0.2949640287769784,0.1223021582733813,0.6258992805755396,0.1223021582733813,0.8705035971223022,0.04316546762589928,1.0,-0.07913669064748201,0.6546762589928058,-0.30935251798561153,0.841726618705036,-0.4676258992805755,0.9424460431654677,-0.5251798561151079,0.9856115107913669,-0.5107913669064749,0.5107913669064749,-0.4316546762589928,0.6906474820143885,-0.6834532374100719,0.7482014388489209,-0.6474820143884892,0.7194244604316546,-0.5251798561151079,0.33093525179856115,-0.49640287769784175,0.4676258992805755,-0.6834532374100719,0.4460431654676259,-0.5035971223021583,0.381294964028777,-0.33093525179856115,0.1223021582733813,-0.539568345323741,0.20863309352517986,-0.6906474820143885,0.2014388489208633,-0.5683453237410072,0.16546762589928057,-0.43884892086330934 -1,0.0,0.0,0.2898550724637681,0.13043478260869565,0.6304347826086957,0.11594202898550725,0.8695652173913043,0.036231884057971016,1.0,-0.08695652173913043,0.6666666666666666,-0.3115942028985507,0.8478260869565217,-0.47101449275362317,0.9565217391304348,-0.5289855072463768,1.0,-0.5217391304347826,0.5144927536231884,-0.43478260869565216,0.7028985507246377,-0.6884057971014492,0.7608695652173914,-0.6521739130434783,0.7318840579710145,-0.5289855072463768,0.3333333333333333,-0.5072463768115942,0.4782608695652174,-0.6884057971014492,0.45652173913043476,-0.5,0.391304347826087,-0.3188405797101449,0.11594202898550725,-0.5507246376811594,0.21014492753623187,-0.6884057971014492,0.21014492753623187,-0.5579710144927537,0.17391304347826086,-0.42028985507246375 -1,0.0,0.0,0.28888888888888886,0.1259259259259259,0.6296296296296297,0.1111111111111111,0.8814814814814815,0.022222222222222223,1.0,-0.11851851851851852,0.6666666666666666,-0.3111111111111111,0.8518518518518519,-0.4740740740740741,0.9555555555555556,-0.5407407407407407,1.0,-0.5259259259259259,0.5111111111111111,-0.4444444444444444,0.6962962962962963,-0.6962962962962963,0.7555555555555555,-0.6592592592592592,0.7333333333333333,-0.5333333333333333,0.32592592592592595,-0.5185185185185185,0.4740740740740741,-0.6888888888888889,0.4444444444444444,-0.4962962962962963,0.3851851851851852,-0.3111111111111111,0.1111111111111111,-0.562962962962963,0.2,-0.6888888888888889,0.2,-0.5555555555555556,0.17037037037037037,-0.4222222222222222 -1,0.0,0.0,0.291044776119403,0.12686567164179105,0.6343283582089553,0.1044776119402985,0.8731343283582089,0.007462686567164179,1.0,-0.13432835820895522,0.6567164179104478,-0.3283582089552239,0.835820895522388,-0.4925373134328358,0.9477611940298507,-0.5522388059701493,1.0,-0.5223880597014925,0.5,-0.44776119402985076,0.6791044776119403,-0.7164179104477612,0.7388059701492538,-0.6567164179104478,0.7014925373134329,-0.5074626865671642,0.31343283582089554,-0.5223880597014925,0.4552238805970149,-0.6940298507462687,0.4253731343283582,-0.4925373134328358,0.3656716417910448,-0.29850746268656714,0.08955223880597014,-0.5522388059701493,0.1791044776119403,-0.6940298507462687,0.1791044776119403,-0.5597014925373134,0.1417910447761194,-0.417910447761194 -1,0.0,0.0,0.30303030303030304,0.12121212121212122,0.6439393939393939,0.09848484848484848,0.8939393939393939,0.0,1.0,-0.15151515151515152,0.6515151515151515,-0.3333333333333333,0.8333333333333334,-0.5151515151515151,0.946969696969697,-0.5757575757575758,1.0,-0.5454545454545454,0.48484848484848486,-0.4621212121212121,0.6666666666666666,-0.7272727272727273,0.7424242424242424,-0.6742424242424242,0.7196969696969697,-0.5303030303030303,0.29545454545454547,-0.5303030303030303,0.44696969696969696,-0.696969696969697,0.4318181818181818,-0.48484848484848486,0.3712121212121212,-0.29545454545454547,0.07575757575757576,-0.5681818181818182,0.18181818181818182,-0.6818181818181818,0.18181818181818182,-0.5378787878787878,0.15151515151515152,-0.4015151515151515 -1,0.0,0.0,0.3007518796992481,0.10526315789473684,0.6466165413533834,0.07518796992481203,0.8872180451127819,-0.03007518796992481,0.9924812030075187,-0.19548872180451127,0.6240601503759399,-0.3458646616541353,0.7969924812030075,-0.518796992481203,0.924812030075188,-0.5789473684210527,1.0,-0.556390977443609,0.46616541353383456,-0.46616541353383456,0.6466165413533834,-0.7218045112781954,0.7368421052631579,-0.6691729323308271,0.7293233082706767,-0.5338345864661654,0.2857142857142857,-0.5413533834586466,0.46616541353383456,-0.6842105263157895,0.44360902255639095,-0.47368421052631576,0.38345864661654133,-0.2932330827067669,0.07518796992481203,-0.5864661654135338,0.21052631578947367,-0.6691729323308271,0.21052631578947367,-0.518796992481203,0.16541353383458646,-0.39097744360902253 -1,0.0,0.0,0.2923076923076923,0.1,0.6538461538461539,0.05384615384615385,0.8923076923076924,-0.05384615384615385,0.9923076923076923,-0.2230769230769231,0.6076923076923076,-0.38461538461538464,0.7769230769230769,-0.5846153846153846,0.9153846153846154,-0.6307692307692307,1.0,-0.5846153846153846,0.4461538461538462,-0.5,0.6384615384615384,-0.7615384615384615,0.7230769230769231,-0.6615384615384615,0.7230769230769231,-0.49230769230769234,0.26153846153846155,-0.5615384615384615,0.4461538461538462,-0.7,0.43846153846153846,-0.46923076923076923,0.38461538461538464,-0.27692307692307694,0.046153846153846156,-0.5923076923076923,0.18461538461538463,-0.676923076923077,0.19230769230769232,-0.5153846153846153,0.15384615384615385,-0.38461538461538464 -1,0.0,0.0,0.2890625,0.09375,0.6484375,0.03125,0.890625,-0.078125,1.0,-0.25,0.59375,-0.4296875,0.7578125,-0.6171875,0.8984375,-0.6640625,0.9921875,-0.6171875,0.4375,-0.5390625,0.6328125,-0.78125,0.7109375,-0.6640625,0.703125,-0.484375,0.2421875,-0.6015625,0.4375,-0.6875,0.4140625,-0.4375,0.3515625,-0.2421875,0.015625,-0.625,0.171875,-0.65625,0.1796875,-0.4765625,0.1328125,-0.34375 -1,0.0,0.0,0.30158730158730157,0.07142857142857142,0.6587301587301587,-0.007936507936507936,0.8888888888888888,-0.12698412698412698,1.0,-0.2857142857142857,0.5793650793650794,-0.48412698412698413,0.7301587301587301,-0.6904761904761905,0.873015873015873,-0.7222222222222222,0.9682539682539683,-0.6666666666666666,0.40476190476190477,-0.5793650793650794,0.5952380952380952,-0.8412698412698413,0.6666666666666666,-0.6825396825396826,0.6587301587301587,-0.46825396825396826,0.1984126984126984,-0.626984126984127,0.3888888888888889,-0.7142857142857143,0.3888888888888889,-0.4523809523809524,0.3492063492063492,-0.23809523809523808,-0.031746031746031744,-0.6349206349206349,0.11904761904761904,-0.6984126984126984,0.15079365079365079,-0.5238095238095238,0.12698412698412698,-0.36507936507936506 -1,0.0,0.0,0.3064516129032258,0.056451612903225805,0.6693548387096774,-0.03225806451612903,0.9032258064516129,-0.1532258064516129,1.0,-0.3225806451612903,0.5725806451612904,-0.5080645161290323,0.7338709677419355,-0.7338709677419355,0.8709677419354839,-0.7580645161290323,0.9758064516129032,-0.6935483870967742,0.3870967741935484,-0.5967741935483871,0.5725806451612904,-0.8548387096774194,0.6532258064516129,-0.6854838709677419,0.6612903225806451,-0.47580645161290325,0.1774193548387097,-0.6370967741935484,0.3629032258064516,-0.6935483870967742,0.3790322580645161,-0.43548387096774194,0.3548387096774194,-0.22580645161290322,-0.056451612903225805,-0.6290322580645161,0.0967741935483871,-0.7016129032258065,0.13709677419354838,-0.5241935483870968,0.13709677419354838,-0.3629032258064516 -1,0.0,0.0,0.3170731707317073,0.032520325203252036,0.6747967479674797,-0.056910569105691054,0.9024390243902439,-0.17886178861788618,1.0,-0.34146341463414637,0.5528455284552846,-0.5447154471544715,0.6991869918699187,-0.7723577235772358,0.8455284552845529,-0.7886178861788617,0.967479674796748,-0.7154471544715447,0.35772357723577236,-0.6341463414634146,0.5447154471544715,-0.8861788617886179,0.6422764227642277,-0.6991869918699187,0.6666666666666666,-0.4634146341463415,0.14634146341463414,-0.6585365853658537,0.34146341463414637,-0.7317073170731707,0.37398373983739835,-0.4634146341463415,0.36585365853658536,-0.24390243902439024,-0.08943089430894309,-0.6504065040650406,0.08130081300813008,-0.7073170731707317,0.13821138211382114,-0.5203252032520326,0.13821138211382114,-0.34959349593495936 -1,0.0,0.0,0.3203125,0.015625,0.6640625,-0.1015625,0.890625,-0.234375,1.0,-0.3828125,0.53125,-0.59375,0.6640625,-0.8125,0.8125,-0.828125,0.9375,-0.7578125,0.34375,-0.6640625,0.53125,-0.875,0.6171875,-0.640625,0.6171875,-0.4140625,0.140625,-0.6796875,0.328125,-0.734375,0.375,-0.4609375,0.359375,-0.2578125,-0.1015625,-0.6484375,0.078125,-0.71875,0.15625,-0.53125,0.1640625,-0.375 -1,0.0,0.0,0.33064516129032256,-0.016129032258064516,0.6693548387096774,-0.16129032258064516,0.8870967741935484,-0.2903225806451613,1.0,-0.4435483870967742,0.5080645161290323,-0.6532258064516129,0.6290322580645161,-0.8870967741935484,0.7903225806451613,-0.9032258064516129,0.9354838709677419,-0.8225806451612904,0.3064516129032258,-0.7096774193548387,0.5,-0.9274193548387096,0.6209677419354839,-0.717741935483871,0.6612903225806451,-0.49193548387096775,0.08870967741935484,-0.7096774193548387,0.3064516129032258,-0.7419354838709677,0.3709677419354839,-0.47580645161290325,0.3709677419354839,-0.2661290322580645,-0.14516129032258066,-0.6612903225806451,0.06451612903225806,-0.717741935483871,0.1532258064516129,-0.5241935483870968,0.1693548387096774,-0.3629032258064516 -1,0.0,0.0,0.32786885245901637,-0.01639344262295082,0.680327868852459,-0.1885245901639344,0.9016393442622951,-0.32786885245901637,1.0,-0.48360655737704916,0.4918032786885246,-0.6721311475409836,0.6147540983606558,-0.9262295081967213,0.7868852459016393,-0.9344262295081968,0.9262295081967213,-0.8524590163934426,0.28688524590163933,-0.7213114754098361,0.4918032786885246,-0.9344262295081968,0.6065573770491803,-0.7049180327868853,0.6311475409836066,-0.47540983606557374,0.07377049180327869,-0.7131147540983607,0.29508196721311475,-0.7786885245901639,0.36885245901639346,-0.5,0.3770491803278688,-0.2786885245901639,-0.1721311475409836,-0.6557377049180327,0.040983606557377046,-0.7377049180327869,0.1557377049180328,-0.5491803278688525,0.1885245901639344,-0.36885245901639346 -1,0.0,0.0,0.3228346456692913,-0.007874015748031496,0.6692913385826772,-0.18110236220472442,0.889763779527559,-0.31496062992125984,1.0,-0.47244094488188976,0.4881889763779528,-0.6456692913385826,0.6220472440944882,-0.889763779527559,0.7795275590551181,-0.905511811023622,0.9133858267716536,-0.8346456692913385,0.2992125984251969,-0.7007874015748031,0.5118110236220472,-0.8976377952755905,0.6220472440944882,-0.6692913385826772,0.6456692913385826,-0.4409448818897638,0.09448818897637795,-0.7007874015748031,0.33070866141732286,-0.7480314960629921,0.4015748031496063,-0.4645669291338583,0.4094488188976378,-0.25196850393700787,-0.13385826771653545,-0.6535433070866141,0.07874015748031496,-0.7086614173228346,0.18110236220472442,-0.5196850393700787,0.2125984251968504,-0.3464566929133858 -1,0.0,0.0,0.328,-0.016,0.664,-0.184,0.888,-0.32,1.0,-0.472,0.488,-0.656,0.616,-0.904,0.776,-0.912,0.912,-0.832,0.288,-0.712,0.512,-0.896,0.616,-0.672,0.64,-0.44,0.072,-0.712,0.312,-0.736,0.384,-0.464,0.392,-0.256,-0.16,-0.656,0.072,-0.688,0.168,-0.488,0.192,-0.328 -1,0.0,0.0,0.328,-0.016,0.664,-0.2,0.88,-0.344,1.0,-0.512,0.472,-0.68,0.6,-0.928,0.768,-0.936,0.904,-0.856,0.264,-0.736,0.504,-0.896,0.608,-0.664,0.64,-0.448,0.056,-0.72,0.312,-0.744,0.392,-0.48,0.416,-0.272,-0.176,-0.656,0.072,-0.672,0.184,-0.48,0.232,-0.32 -1,0.0,0.0,0.31746031746031744,-0.015873015873015872,0.6666666666666666,-0.1984126984126984,0.8888888888888888,-0.3412698412698413,1.0,-0.5238095238095238,0.4603174603174603,-0.6507936507936508,0.6031746031746031,-0.9126984126984127,0.7698412698412699,-0.9126984126984127,0.9047619047619048,-0.8095238095238095,0.2619047619047619,-0.7063492063492064,0.49206349206349204,-0.9047619047619048,0.6190476190476191,-0.7301587301587301,0.6746031746031746,-0.5317460317460317,0.05555555555555555,-0.6984126984126984,0.30158730158730157,-0.7380952380952381,0.38095238095238093,-0.46825396825396826,0.40476190476190477,-0.2619047619047619,-0.16666666666666666,-0.6428571428571429,0.07936507936507936,-0.6746031746031746,0.18253968253968253,-0.47619047619047616,0.2222222222222222,-0.31746031746031744 -1,0.0,0.0,0.312,-0.016,0.656,-0.192,0.872,-0.336,1.0,-0.512,0.464,-0.648,0.632,-0.92,0.784,-0.88,0.88,-0.744,0.272,-0.704,0.496,-0.912,0.608,-0.704,0.632,-0.488,0.056,-0.696,0.288,-0.752,0.368,-0.488,0.392,-0.272,-0.176,-0.64,0.056,-0.688,0.168,-0.496,0.208,-0.32 -1,0.0,0.0,0.32231404958677684,-0.024793388429752067,0.6776859504132231,-0.21487603305785125,0.9008264462809917,-0.35537190082644626,1.0,-0.5289256198347108,0.47107438016528924,-0.6859504132231405,0.6446280991735537,-0.9669421487603306,0.7933884297520661,-0.8925619834710744,0.8842975206611571,-0.7355371900826446,0.256198347107438,-0.7355371900826446,0.49586776859504134,-0.9338842975206612,0.5950413223140496,-0.6859504132231405,0.6198347107438017,-0.4462809917355372,0.024793388429752067,-0.7272727272727273,0.2644628099173554,-0.768595041322314,0.33884297520661155,-0.4793388429752066,0.35537190082644626,-0.256198347107438,-0.23140495867768596,-0.6694214876033058,0.008264462809917356,-0.7355371900826446,0.12396694214876033,-0.5289256198347108,0.15702479338842976,-0.34710743801652894 -1,0.0,0.0,0.3333333333333333,-0.04878048780487805,0.6991869918699187,-0.22764227642276422,0.9186991869918699,-0.37398373983739835,0.991869918699187,-0.5609756097560976,0.4878048780487805,-0.7073170731707317,0.6747967479674797,-1.0,0.7967479674796748,-0.8699186991869918,0.8536585365853658,-0.6829268292682927,0.2682926829268293,-0.7560975609756098,0.5040650406504065,-0.8943089430894309,0.5772357723577236,-0.6178861788617886,0.5691056910569106,-0.3902439024390244,0.032520325203252036,-0.7398373983739838,0.2764227642276423,-0.7642276422764228,0.34146341463414637,-0.4878048780487805,0.34959349593495936,-0.2764227642276423,-0.2032520325203252,-0.6829268292682927,0.024390243902439025,-0.7398373983739838,0.14634146341463414,-0.5447154471544715,0.1951219512195122,-0.36585365853658536 -1,0.0,0.0,0.3253968253968254,-0.06349206349206349,0.6825396825396826,-0.24603174603174602,0.9047619047619048,-0.38095238095238093,1.0,-0.5714285714285714,0.49206349206349204,-0.7301587301587301,0.6746031746031746,-1.0,0.7857142857142857,-0.8650793650793651,0.8333333333333334,-0.6746031746031746,0.2777777777777778,-0.7777777777777778,0.5079365079365079,-0.8809523809523809,0.5634920634920635,-0.5952380952380952,0.5555555555555556,-0.3888888888888889,0.047619047619047616,-0.753968253968254,0.2857142857142857,-0.7619047619047619,0.3412698412698413,-0.49206349206349204,0.3412698412698413,-0.30952380952380953,-0.18253968253968253,-0.6904761904761905,0.03968253968253968,-0.7301587301587301,0.14285714285714285,-0.5317460317460317,0.1746031746031746,-0.373015873015873 -1,0.0,0.0,0.3333333333333333,-0.06976744186046512,0.6744186046511628,-0.24031007751937986,0.8992248062015504,-0.3798449612403101,1.0,-0.5581395348837209,0.5038759689922481,-0.7131782945736435,0.6976744186046512,-0.9612403100775194,0.7906976744186046,-0.8217054263565892,0.8217054263565892,-0.6434108527131783,0.3023255813953488,-0.7441860465116279,0.5271317829457365,-0.9069767441860465,0.5891472868217055,-0.6511627906976745,0.5813953488372093,-0.4418604651162791,0.08527131782945736,-0.7286821705426356,0.31007751937984496,-0.7906976744186046,0.3643410852713178,-0.5193798449612403,0.3643410852713178,-0.3178294573643411,-0.14728682170542637,-0.6666666666666666,0.06976744186046512,-0.7441860465116279,0.17829457364341086,-0.5426356589147286,0.21705426356589147,-0.3798449612403101 -1,0.0,0.0,0.3409090909090909,-0.06818181818181818,0.6742424242424242,-0.23484848484848486,0.8939393939393939,-0.3560606060606061,1.0,-0.5227272727272727,0.5,-0.7121212121212122,0.696969696969697,-0.9393939393939394,0.7954545454545454,-0.7954545454545454,0.8257575757575758,-0.6060606060606061,0.29545454545454547,-0.7575757575757576,0.5227272727272727,-0.8257575757575758,0.5757575757575758,-0.5454545454545454,0.5606060606060606,-0.3484848484848485,0.08333333333333333,-0.7424242424242424,0.3181818181818182,-0.7348484848484849,0.36363636363636365,-0.4696969696969697,0.36363636363636365,-0.2803030303030303,-0.13636363636363635,-0.6818181818181818,0.08333333333333333,-0.7121212121212122,0.1893939393939394,-0.5227272727272727,0.22727272727272727,-0.36363636363636365 -1,0.0,0.0,0.3484848484848485,-0.07575757575757576,0.6818181818181818,-0.24242424242424243,0.9015151515151515,-0.36363636363636365,1.0,-0.5303030303030303,0.5075757575757576,-0.7272727272727273,0.7045454545454546,-0.9545454545454546,0.7954545454545454,-0.803030303030303,0.8257575757575758,-0.6060606060606061,0.3106060606060606,-0.7651515151515151,0.5303030303030303,-0.8484848484848485,0.5833333333333334,-0.5681818181818182,0.5681818181818182,-0.36363636363636365,0.09090909090909091,-0.7424242424242424,0.3181818181818182,-0.75,0.3712121212121212,-0.48484848484848486,0.3787878787878788,-0.2878787878787879,-0.12878787878787878,-0.6818181818181818,0.08333333333333333,-0.7272727272727273,0.1893939393939394,-0.5378787878787878,0.23484848484848486,-0.3712121212121212 -1,0.0,0.0,0.3484848484848485,-0.07575757575757576,0.6818181818181818,-0.24242424242424243,0.9090909090909091,-0.3560606060606061,1.0,-0.5227272727272727,0.5151515151515151,-0.7272727272727273,0.7196969696969697,-0.9393939393939394,0.7878787878787878,-0.7727272727272727,0.803030303030303,-0.5757575757575758,0.3181818181818182,-0.7575757575757576,0.5303030303030303,-0.8333333333333334,0.5681818181818182,-0.5454545454545454,0.553030303030303,-0.3409090909090909,0.09848484848484848,-0.7348484848484849,0.3106060606060606,-0.7575757575757576,0.3712121212121212,-0.48484848484848486,0.3712121212121212,-0.2878787878787879,-0.12878787878787878,-0.6818181818181818,0.06818181818181818,-0.7424242424242424,0.1893939393939394,-0.553030303030303,0.24242424242424243,-0.3787878787878788 -1,0.0,0.0,0.3533834586466165,-0.07518796992481203,0.6917293233082706,-0.24812030075187969,0.9097744360902256,-0.3684210526315789,1.0,-0.5338345864661654,0.5112781954887218,-0.7368421052631579,0.7142857142857143,-0.9398496240601504,0.7894736842105263,-0.7744360902255639,0.8045112781954887,-0.5714285714285714,0.3082706766917293,-0.7669172932330827,0.5338345864661654,-0.8120300751879699,0.5789473684210527,-0.5338345864661654,0.5639097744360902,-0.3308270676691729,0.09774436090225563,-0.7518796992481203,0.3157894736842105,-0.7368421052631579,0.3684210526315789,-0.47368421052631576,0.37593984962406013,-0.2781954887218045,-0.12781954887218044,-0.6917293233082706,0.07518796992481203,-0.7293233082706767,0.19548872180451127,-0.5338345864661654,0.24812030075187969,-0.3684210526315789 -1,0.0,0.0,0.3609022556390977,-0.08270676691729323,0.6917293233082706,-0.2556390977443609,0.9097744360902256,-0.38345864661654133,1.0,-0.5488721804511278,0.5112781954887218,-0.7368421052631579,0.706766917293233,-0.9548872180451128,0.7819548872180451,-0.7894736842105263,0.8045112781954887,-0.5864661654135338,0.3082706766917293,-0.7669172932330827,0.5263157894736842,-0.8270676691729323,0.5714285714285714,-0.5488721804511278,0.556390977443609,-0.3458646616541353,0.09774436090225563,-0.7443609022556391,0.3157894736842105,-0.7593984962406015,0.3684210526315789,-0.49624060150375937,0.37593984962406013,-0.2932330827067669,-0.12030075187969924,-0.6842105263157895,0.07518796992481203,-0.7443609022556391,0.18796992481203006,-0.556390977443609,0.24060150375939848,-0.38345864661654133 -1,0.0,0.0,0.366412213740458,-0.0916030534351145,0.6946564885496184,-0.2748091603053435,0.916030534351145,-0.3893129770992366,1.0,-0.549618320610687,0.5038167938931297,-0.7633587786259542,0.7022900763358778,-0.9694656488549618,0.7862595419847328,-0.7862595419847328,0.8015267175572519,-0.5877862595419847,0.29770992366412213,-0.7938931297709924,0.5190839694656488,-0.8244274809160306,0.5648854961832062,-0.5419847328244275,0.549618320610687,-0.3511450381679389,0.08396946564885496,-0.7633587786259542,0.3053435114503817,-0.7480916030534351,0.35877862595419846,-0.48091603053435117,0.35877862595419846,-0.2824427480916031,-0.13740458015267176,-0.7022900763358778,0.06870229007633588,-0.732824427480916,0.183206106870229,-0.5419847328244275,0.24427480916030533,-0.37404580152671757 -1,0.0,0.0,0.3515625,-0.09375,0.671875,-0.296875,0.8828125,-0.421875,0.9765625,-0.5859375,0.453125,-0.8359375,0.6875,-1.0,0.78125,-0.8046875,0.8046875,-0.59375,0.2421875,-0.8671875,0.5234375,-0.8671875,0.5703125,-0.546875,0.546875,-0.3359375,0.03125,-0.828125,0.3203125,-0.7734375,0.3671875,-0.4765625,0.359375,-0.2890625,-0.1875,-0.734375,0.0703125,-0.734375,0.1953125,-0.53125,0.25,-0.3671875 -1,0.0,0.0,0.36220472440944884,-0.11811023622047244,0.6535433070866141,-0.3228346456692913,0.8582677165354331,-0.44881889763779526,1.0,-0.6062992125984252,0.4251968503937008,-0.84251968503937,0.6929133858267716,-1.0,0.8188976377952756,-0.8110236220472441,0.8582677165354331,-0.6062992125984252,0.2204724409448819,-0.8661417322834646,0.5275590551181102,-0.889763779527559,0.6141732283464567,-0.5905511811023622,0.5984251968503937,-0.3858267716535433,0.015748031496062992,-0.8188976377952756,0.3228346456692913,-0.7874015748031497,0.4015748031496063,-0.5039370078740157,0.4015748031496063,-0.31496062992125984,-0.1889763779527559,-0.7165354330708661,0.08661417322834646,-0.7244094488188977,0.2283464566929134,-0.5354330708661418,0.28346456692913385,-0.3779527559055118 -1,0.0,0.0,0.35658914728682173,-0.12403100775193798,0.6434108527131783,-0.3488372093023256,0.8449612403100775,-0.4883720930232558,0.9922480620155039,-0.6356589147286822,0.3643410852713178,-0.8914728682170543,0.6666666666666666,-1.0,0.813953488372093,-0.813953488372093,0.875968992248062,-0.6356589147286822,0.16279069767441862,-0.8992248062015504,0.5271317829457365,-0.8527131782945736,0.6356589147286822,-0.5503875968992248,0.6434108527131783,-0.34108527131782945,-0.031007751937984496,-0.8217054263565892,0.34108527131782945,-0.7441860465116279,0.4418604651162791,-0.4573643410852713,0.4496124031007752,-0.26356589147286824,-0.20930232558139536,-0.6821705426356589,0.10077519379844961,-0.6744186046511628,0.2558139534883721,-0.49612403100775193,0.3178294573643411,-0.3333333333333333 -1,0.0,0.0,0.3700787401574803,-0.14960629921259844,0.6456692913385826,-0.3858267716535433,0.84251968503937,-0.5275590551181102,0.9921259842519685,-0.6771653543307087,0.3543307086614173,-0.9212598425196851,0.6929133858267716,-1.0,0.84251968503937,-0.8031496062992126,0.8976377952755905,-0.6220472440944882,0.14960629921259844,-0.9212598425196851,0.5669291338582677,-0.84251968503937,0.6850393700787402,-0.5433070866141733,0.6929133858267716,-0.31496062992125984,-0.023622047244094488,-0.8267716535433071,0.4015748031496063,-0.7165354330708661,0.5039370078740157,-0.4251968503937008,0.5275590551181102,-0.2125984251968504,-0.1732283464566929,-0.6692913385826772,0.1732283464566929,-0.6377952755905512,0.33858267716535434,-0.44881889763779526,0.4094488188976378,-0.29133858267716534 -1,0.0,0.0,0.3779527559055118,-0.1732283464566929,0.6299212598425197,-0.4251968503937008,0.8267716535433071,-0.5905511811023622,0.9606299212598425,-0.7401574803149606,0.3543307086614173,-0.9212598425196851,0.7086614173228346,-1.0,0.8818897637795275,-0.8267716535433071,0.952755905511811,-0.6535433070866141,0.15748031496062992,-0.9133858267716536,0.6062992125984252,-0.8346456692913385,0.7637795275590551,-0.5354330708661418,0.8031496062992126,-0.30708661417322836,0.0,-0.8031496062992126,0.47244094488188976,-0.6929133858267716,0.6062992125984252,-0.4094488188976378,0.6377952755905512,-0.2047244094488189,-0.11811023622047244,-0.6299212598425197,0.2440944881889764,-0.5669291338582677,0.4094488188976378,-0.3858267716535433,0.47244094488188976,-0.23622047244094488 -1,0.0,0.0,0.3984375,-0.2265625,0.59375,-0.5,0.7421875,-0.6875,0.8203125,-0.859375,0.3046875,-0.9375,0.6875,-1.0,0.8984375,-0.8203125,0.984375,-0.640625,0.1171875,-0.8984375,0.6015625,-0.796875,0.78125,-0.515625,0.8515625,-0.28125,-0.0078125,-0.7578125,0.484375,-0.6328125,0.6484375,-0.3828125,0.703125,-0.1875,-0.078125,-0.5703125,0.2890625,-0.515625,0.453125,-0.359375,0.53125,-0.2109375 + 1,0.0,0.0,0.36923076923076925,-0.2,0.5307692307692308,-0.47692307692307695,0.6538461538461539,-0.6615384615384615,0.7076923076923077,-0.8538461538461538,0.24615384615384617,-0.9,0.6384615384615384,-1.0,0.8384615384615385,-0.8307692307692308,0.9,-0.6461538461538462,0.08461538461538462,-0.8615384615384616,0.5846153846153846,-0.7923076923076923,0.7615384615384615,-0.5230769230769231,0.8076923076923077,-0.3,-0.015384615384615385,-0.7230769230769231,0.5,-0.6076923076923076,0.6615384615384615,-0.3769230769230769,0.7,-0.2076923076923077,-0.038461538461538464,-0.5307692307692308,0.35384615384615387,-0.47692307692307695,0.5076923076923077,-0.3230769230769231,0.5615384615384615,-0.2076923076923077 1,0.0,0.0,0.33587786259541985,-0.2366412213740458,0.48854961832061067,-0.5190839694656488,0.6030534351145038,-0.7251908396946565,0.6641221374045801,-0.9007633587786259,0.1984732824427481,-0.9007633587786259,0.6106870229007634,-1.0,0.816793893129771,-0.8396946564885496,0.8854961832061069,-0.6717557251908397,0.06870229007633588,-0.8244274809160306,0.6030534351145038,-0.7786259541984732,0.7709923664122137,-0.5267175572519084,0.8091603053435115,-0.32061068702290074,0.015267175572519083,-0.6717557251908397,0.5419847328244275,-0.5954198473282443,0.6793893129770993,-0.366412213740458,0.6946564885496184,-0.20610687022900764,0.030534351145038167,-0.48854961832061067,0.4351145038167939,-0.45038167938931295,0.5648854961832062,-0.29770992366412213,0.5954198473282443,-0.19083969465648856 1,0.0,0.0,0.26865671641791045,-0.27611940298507465,0.40298507462686567,-0.5597014925373134,0.5373134328358209,-0.746268656716418,0.6343283582089553,-0.8731343283582089,0.1791044776119403,-0.8955223880597015,0.6119402985074627,-1.0,0.8134328358208955,-0.8283582089552238,0.8805970149253731,-0.6791044776119403,0.08955223880597014,-0.7835820895522388,0.6492537313432836,-0.7611940298507462,0.7835820895522388,-0.5298507462686567,0.7835820895522388,-0.373134328358209,0.08208955223880597,-0.6044776119402985,0.6194029850746269,-0.5597014925373134,0.7164179104477612,-0.3582089552238806,0.6865671641791045,-0.23134328358208955,0.12686567164179105,-0.41044776119402987,0.5597014925373134,-0.39552238805970147,0.6417910447761194,-0.26119402985074625,0.6194029850746269,-0.1791044776119403 @@ -4785,3 +4197,451 @@ 3,0.0,0.0,-0.27111111111111114,-0.008888888888888889,-0.48444444444444446,-0.12,-0.6311111111111111,-0.27555555555555555,-0.6222222222222222,-0.4444444444444444,-0.36444444444444446,-0.37777777777777777,-0.5066666666666667,-0.5288888888888889,-0.5777777777777777,-0.5111111111111111,-0.6,-0.4488888888888889,-0.2577777777777778,-0.48444444444444446,-0.39555555555555555,-0.6755555555555556,-0.5066666666666667,-0.8,-0.6,-0.8977777777777778,-0.1288888888888889,-0.5422222222222223,-0.21777777777777776,-0.7555555555555555,-0.29333333333333333,-0.8844444444444445,-0.37333333333333335,-0.9822222222222222,0.008888888888888889,-0.5688888888888889,-0.03111111111111111,-0.7688888888888888,-0.07111111111111111,-0.8933333333333333,-0.12444444444444444,-1.0 3,0.0,0.0,-0.26548672566371684,-0.004424778761061947,-0.4778761061946903,-0.11061946902654868,-0.6327433628318584,-0.26548672566371684,-0.6238938053097345,-0.42920353982300885,-0.37168141592920356,-0.3672566371681416,-0.5132743362831859,-0.5132743362831859,-0.5707964601769911,-0.49557522123893805,-0.5929203539823009,-0.4424778761061947,-0.26548672566371684,-0.47345132743362833,-0.41150442477876104,-0.6592920353982301,-0.5176991150442478,-0.7831858407079646,-0.6150442477876106,-0.8805309734513275,-0.1415929203539823,-0.5309734513274337,-0.23893805309734514,-0.7433628318584071,-0.3230088495575221,-0.8761061946902655,-0.40707964601769914,-0.9690265486725663,0.0,-0.5575221238938053,-0.03982300884955752,-0.7566371681415929,-0.084070796460177,-0.8938053097345132,-0.13716814159292035,-1.0 3,0.0,0.0,-0.2565217391304348,0.008695652173913044,-0.46956521739130436,-0.09565217391304348,-0.6217391304347826,-0.25217391304347825,-0.6217391304347826,-0.41739130434782606,-0.3565217391304348,-0.3652173913043478,-0.5,-0.5173913043478261,-0.5652173913043478,-0.49130434782608695,-0.5869565217391305,-0.41739130434782606,-0.25217391304347825,-0.47391304347826085,-0.391304347826087,-0.6608695652173913,-0.5043478260869565,-0.7869565217391304,-0.6043478260869565,-0.8826086956521739,-0.12608695652173912,-0.5391304347826087,-0.21304347826086956,-0.7434782608695653,-0.29130434782608694,-0.8826086956521739,-0.3739130434782609,-0.9869565217391304,0.013043478260869565,-0.5565217391304348,-0.017391304347826087,-0.7478260869565218,-0.06086956521739131,-0.8869565217391304,-0.11739130434782609,-1.0 +4,0.0,0.0,0.12091503267973856,-0.13725490196078433,0.20588235294117646,-0.29411764705882354,0.24183006535947713,-0.4150326797385621,0.16993464052287582,-0.4542483660130719,-0.0032679738562091504,-0.5196078431372549,0.03594771241830065,-0.7124183006535948,0.042483660130718956,-0.8431372549019608,0.032679738562091505,-0.9575163398692811,-0.10130718954248366,-0.4934640522875817,-0.049019607843137254,-0.7189542483660131,-0.013071895424836602,-0.8725490196078431,0.0032679738562091504,-1.0,-0.17647058823529413,-0.42810457516339867,0.006535947712418301,-0.545751633986928,0.1111111111111111,-0.4150326797385621,0.15359477124183007,-0.3104575163398693,-0.20261437908496732,-0.33986928104575165,-0.026143790849673203,-0.42810457516339867,0.0718954248366013,-0.3431372549019608,0.10457516339869281,-0.26143790849673204 +4,0.0,0.0,0.11688311688311688,-0.14285714285714285,0.19480519480519481,-0.29545454545454547,0.24025974025974026,-0.41233766233766234,0.18831168831168832,-0.461038961038961,-0.00974025974025974,-0.5194805194805194,0.03571428571428571,-0.7175324675324676,0.04220779220779221,-0.8506493506493507,0.03571428571428571,-0.9642857142857143,-0.10714285714285714,-0.487012987012987,-0.048701298701298704,-0.7175324675324676,-0.012987012987012988,-0.8733766233766234,0.0,-1.0,-0.17532467532467533,-0.42207792207792205,0.012987012987012988,-0.5487012987012987,0.12337662337662338,-0.42207792207792205,0.16233766233766234,-0.3181818181818182,-0.19480519480519481,-0.33116883116883117,-0.006493506493506494,-0.42857142857142855,0.08766233766233766,-0.35064935064935066,0.12012987012987013,-0.2694805194805195 +4,0.0,0.0,0.12101910828025478,-0.14331210191082802,0.1910828025477707,-0.28662420382165604,0.2484076433121019,-0.39490445859872614,0.2197452229299363,-0.4585987261146497,-0.009554140127388535,-0.5,0.03821656050955414,-0.7038216560509554,0.050955414012738856,-0.8375796178343949,0.041401273885350316,-0.9522292993630573,-0.09554140127388536,-0.4713375796178344,-0.03184713375796178,-0.7197452229299363,0.009554140127388535,-0.8726114649681529,0.025477707006369428,-1.0,-0.15286624203821655,-0.410828025477707,0.04777070063694268,-0.5382165605095541,0.15286624203821655,-0.42038216560509556,0.18471337579617833,-0.3184713375796178,-0.15605095541401273,-0.32802547770700635,0.03503184713375796,-0.4267515923566879,0.1305732484076433,-0.35668789808917195,0.1624203821656051,-0.2802547770700637 +4,0.0,0.0,0.1375,-0.15625,0.203125,-0.3,0.25625,-0.409375,0.2375,-0.459375,-0.003125,-0.50625,0.04375,-0.709375,0.053125,-0.84375,0.046875,-0.959375,-0.084375,-0.48125,-0.015625,-0.71875,0.025,-0.875,0.040625,-1.0,-0.13125,-0.421875,0.0625,-0.546875,0.171875,-0.4375,0.215625,-0.334375,-0.125,-0.340625,0.065625,-0.43125,0.16875,-0.371875,0.215625,-0.3 +4,0.0,0.0,0.14634146341463414,-0.16463414634146342,0.20426829268292682,-0.29878048780487804,0.25609756097560976,-0.4054878048780488,0.25609756097560976,-0.4725609756097561,-0.018292682926829267,-0.49085365853658536,0.039634146341463415,-0.6859756097560976,0.06097560975609756,-0.8292682926829268,0.057926829268292686,-0.9420731707317073,-0.08841463414634146,-0.4695121951219512,-0.003048780487804878,-0.7103658536585366,0.036585365853658534,-0.8689024390243902,0.04878048780487805,-1.0,-0.125,-0.4146341463414634,0.09146341463414634,-0.5426829268292683,0.19207317073170732,-0.43597560975609756,0.22560975609756098,-0.3384146341463415,-0.10670731707317073,-0.3353658536585366,0.0701219512195122,-0.4420731707317073,0.17682926829268292,-0.3902439024390244,0.23170731707317074,-0.3201219512195122 +4,0.0,0.0,0.1588235294117647,-0.17647058823529413,0.22058823529411764,-0.3029411764705882,0.27941176470588236,-0.40294117647058825,0.29705882352941176,-0.4852941176470588,0.0,-0.49117647058823527,0.07352941176470588,-0.6823529411764706,0.10588235294117647,-0.8205882352941176,0.11470588235294117,-0.9352941176470588,-0.058823529411764705,-0.47352941176470587,0.03529411764705882,-0.7088235294117647,0.07647058823529412,-0.8647058823529412,0.09705882352941177,-1.0,-0.07941176470588235,-0.42058823529411765,0.14411764705882352,-0.5558823529411765,0.24705882352941178,-0.43823529411764706,0.27941176470588236,-0.3352941176470588,-0.052941176470588235,-0.34411764705882353,0.1323529411764706,-0.4470588235294118,0.2323529411764706,-0.39705882352941174,0.2823529411764706,-0.3264705882352941 +4,0.0,0.0,0.17210682492581603,-0.17507418397626112,0.228486646884273,-0.3056379821958457,0.27299703264094954,-0.4065281899109792,0.2878338278931751,-0.47477744807121663,-0.008902077151335312,-0.5044510385756676,0.05934718100890208,-0.6973293768545994,0.09495548961424333,-0.8397626112759644,0.10682492581602374,-0.9525222551928784,-0.05934718100890208,-0.4807121661721068,0.04451038575667656,-0.7091988130563798,0.09198813056379822,-0.8694362017804155,0.11572700296735905,-1.0,-0.0771513353115727,-0.42433234421364985,0.14836795252225518,-0.5519287833827893,0.2522255192878338,-0.4362017804154303,0.2878338278931751,-0.3293768545994065,-0.04747774480712166,-0.34124629080118696,0.1513353115727003,-0.4332344213649852,0.2522255192878338,-0.3827893175074184,0.3026706231454006,-0.3115727002967359 +4,0.0,0.0,0.1804733727810651,-0.17159763313609466,0.23964497041420119,-0.3076923076923077,0.29289940828402367,-0.40828402366863903,0.28994082840236685,-0.47928994082840237,0.023668639053254437,-0.5059171597633136,0.08875739644970414,-0.7071005917159763,0.11242603550295859,-0.849112426035503,0.12130177514792899,-0.9644970414201184,-0.03254437869822485,-0.48520710059171596,0.0650887573964497,-0.7011834319526628,0.11242603550295859,-0.8668639053254438,0.14497041420118342,-1.0,-0.05029585798816568,-0.4260355029585799,0.1834319526627219,-0.5414201183431953,0.2692307692307692,-0.41420118343195267,0.2869822485207101,-0.3076923076923077,-0.014792899408284023,-0.3431952662721893,0.1804733727810651,-0.4408284023668639,0.2781065088757396,-0.38461538461538464,0.3224852071005917,-0.3106508875739645 +4,0.0,0.0,0.18484848484848485,-0.17272727272727273,0.24545454545454545,-0.3151515151515151,0.29393939393939394,-0.42424242424242425,0.2727272727272727,-0.49393939393939396,0.015151515151515152,-0.5060606060606061,0.07575757575757576,-0.7090909090909091,0.1,-0.8545454545454545,0.11212121212121212,-0.9666666666666667,-0.03333333333333333,-0.4818181818181818,0.0696969696969697,-0.706060606060606,0.12727272727272726,-0.8727272727272727,0.16363636363636364,-1.0,-0.048484848484848485,-0.42424242424242425,0.18181818181818182,-0.5484848484848485,0.2727272727272727,-0.4303030303030303,0.3,-0.3242424242424242,-0.00909090909090909,-0.3424242424242424,0.19090909090909092,-0.44242424242424244,0.28484848484848485,-0.3878787878787879,0.32727272727272727,-0.3151515151515151 +4,0.0,0.0,0.18633540372670807,-0.17701863354037267,0.2453416149068323,-0.3136645962732919,0.2888198757763975,-0.4192546583850932,0.2826086956521739,-0.48757763975155277,0.006211180124223602,-0.5093167701863354,0.08074534161490683,-0.7142857142857143,0.11490683229813664,-0.860248447204969,0.13043478260869565,-0.9751552795031055,-0.040372670807453416,-0.484472049689441,0.07453416149068323,-0.7111801242236024,0.12732919254658384,-0.8726708074534162,0.15838509316770186,-1.0,-0.049689440993788817,-0.4254658385093168,0.18633540372670807,-0.5372670807453416,0.2732919254658385,-0.4192546583850932,0.2950310559006211,-0.3105590062111801,-0.006211180124223602,-0.3416149068322981,0.18322981366459629,-0.4440993788819876,0.2732919254658385,-0.391304347826087,0.3198757763975155,-0.3167701863354037 +4,0.0,0.0,0.18495297805642633,-0.1786833855799373,0.2413793103448276,-0.31347962382445144,0.2852664576802508,-0.4169278996865204,0.3103448275862069,-0.49216300940438873,0.006269592476489028,-0.5047021943573667,0.08463949843260188,-0.7021943573667712,0.12539184952978055,-0.8463949843260188,0.14733542319749215,-0.9623824451410659,-0.0438871473354232,-0.4827586206896552,0.06269592476489028,-0.7115987460815048,0.11598746081504702,-0.8714733542319749,0.15047021943573669,-1.0,-0.05329153605015674,-0.4263322884012539,0.16614420062695925,-0.5611285266457681,0.2601880877742947,-0.45141065830721006,0.2884012539184953,-0.34796238244514105,-0.012539184952978056,-0.34796238244514105,0.18181818181818182,-0.445141065830721,0.27586206896551724,-0.39184952978056425,0.3166144200626959,-0.3166144200626959 +4,0.0,0.0,0.1853035143769968,-0.16932907348242812,0.24281150159744408,-0.30670926517571884,0.2939297124600639,-0.40894568690095845,0.28434504792332266,-0.4792332268370607,0.01597444089456869,-0.4984025559105431,0.08945686900958466,-0.6869009584664537,0.12140575079872204,-0.8274760383386581,0.134185303514377,-0.9361022364217252,-0.04792332268370607,-0.476038338658147,0.04792332268370607,-0.7092651757188498,0.09904153354632587,-0.8690095846645367,0.12779552715654952,-1.0,-0.07028753993610223,-0.4185303514376997,0.1501597444089457,-0.5463258785942492,0.23961661341853036,-0.43450479233226835,0.26517571884984026,-0.33226837060702874,-0.04153354632587859,-0.3354632587859425,0.1501597444089457,-0.4440894568690096,0.24281150159744408,-0.3865814696485623,0.28753993610223644,-0.31629392971246006 +4,0.0,0.0,0.17834394904458598,-0.16878980891719744,0.23885350318471338,-0.31210191082802546,0.2929936305732484,-0.4171974522292994,0.267515923566879,-0.4840764331210191,0.006369426751592357,-0.5,0.07961783439490445,-0.6910828025477707,0.11146496815286625,-0.8312101910828026,0.12420382165605096,-0.9426751592356688,-0.05732484076433121,-0.47770700636942676,0.044585987261146494,-0.7070063694267515,0.09235668789808917,-0.8662420382165605,0.11464968152866242,-1.0,-0.07961783439490445,-0.42038216560509556,0.15286624203821655,-0.5414012738853503,0.2484076433121019,-0.4267515923566879,0.27388535031847133,-0.32802547770700635,-0.054140127388535034,-0.3375796178343949,0.1337579617834395,-0.44904458598726116,0.23248407643312102,-0.39490445859872614,0.2802547770700637,-0.321656050955414 +4,0.0,0.0,0.17307692307692307,-0.16025641025641027,0.23717948717948717,-0.30448717948717946,0.27884615384615385,-0.40705128205128205,0.2532051282051282,-0.48717948717948717,0.003205128205128205,-0.5,0.0673076923076923,-0.6923076923076923,0.09294871794871795,-0.8301282051282052,0.09615384615384616,-0.9423076923076923,-0.0641025641025641,-0.4775641025641026,0.035256410256410256,-0.7147435897435898,0.08333333333333333,-0.8717948717948718,0.09935897435897435,-1.0,-0.09935897435897435,-0.4230769230769231,0.13141025641025642,-0.5480769230769231,0.22756410256410256,-0.42948717948717946,0.2532051282051282,-0.3301282051282051,-0.08333333333333333,-0.34294871794871795,0.10256410256410256,-0.44871794871794873,0.20512820512820512,-0.38782051282051283,0.2532051282051282,-0.3141025641025641 +4,0.0,0.0,0.1461038961038961,-0.16233766233766234,0.21103896103896103,-0.3181818181818182,0.25,-0.42857142857142855,0.2532467532467532,-0.5,-0.01948051948051948,-0.5064935064935064,0.03896103896103896,-0.7077922077922078,0.06493506493506493,-0.8474025974025974,0.06818181818181818,-0.9642857142857143,-0.08766233766233766,-0.4837662337662338,0.006493506493506494,-0.724025974025974,0.05519480519480519,-0.8766233766233766,0.06818181818181818,-1.0,-0.1266233766233766,-0.4318181818181818,0.10064935064935066,-0.5746753246753247,0.21428571428571427,-0.4512987012987013,0.2532467532467532,-0.35064935064935066,-0.11363636363636363,-0.3538961038961039,0.08116883116883117,-0.4675324675324675,0.16883116883116883,-0.38961038961038963,0.19805194805194806,-0.30194805194805197 +4,0.0,0.0,0.1423948220064725,-0.1553398058252427,0.22330097087378642,-0.31715210355987056,0.2750809061488673,-0.44336569579288027,0.22330097087378642,-0.48220064724919093,-0.012944983818770227,-0.5080906148867314,0.042071197411003236,-0.7152103559870551,0.061488673139158574,-0.8543689320388349,0.05825242718446602,-0.970873786407767,-0.08737864077669903,-0.48220064724919093,-0.009708737864077669,-0.7281553398058253,0.042071197411003236,-0.8802588996763754,0.05501618122977346,-1.0,-0.13268608414239483,-0.42394822006472493,0.08090614886731391,-0.5728155339805825,0.18770226537216828,-0.45307443365695793,0.20711974110032363,-0.3559870550161812,-0.12297734627831715,-0.343042071197411,0.061488673139158574,-0.47249190938511326,0.15857605177993528,-0.4045307443365696,0.18770226537216828,-0.32362459546925565 +4,0.0,0.0,0.13157894736842105,-0.15460526315789475,0.20394736842105263,-0.3157894736842105,0.2565789473684211,-0.4342105263157895,0.24013157894736842,-0.47368421052631576,-0.006578947368421052,-0.5263157894736842,0.03289473684210526,-0.7269736842105263,0.049342105263157895,-0.8585526315789473,0.04276315789473684,-0.9703947368421053,-0.09210526315789473,-0.4967105263157895,-0.03289473684210526,-0.7335526315789473,0.009868421052631578,-0.881578947368421,0.02631578947368421,-1.0,-0.14802631578947367,-0.4309210526315789,0.05921052631578947,-0.5625,0.16776315789473684,-0.4407894736842105,0.20394736842105263,-0.34210526315789475,-0.15460526315789475,-0.33881578947368424,0.03618421052631579,-0.45394736842105265,0.13486842105263158,-0.3815789473684211,0.17105263157894737,-0.3026315789473684 +4,0.0,0.0,0.12292358803986711,-0.15614617940199335,0.19933554817275748,-0.31561461794019935,0.24584717607973422,-0.43853820598006643,0.2059800664451827,-0.48172757475083056,-0.023255813953488372,-0.521594684385382,0.013289036544850499,-0.7275747508305648,0.026578073089700997,-0.8637873754152824,0.019933554817275746,-0.9833887043189369,-0.10963455149501661,-0.49169435215946844,-0.053156146179401995,-0.7275747508305648,-0.009966777408637873,-0.8770764119601329,0.0033222591362126247,-1.0,-0.16943521594684385,-0.42857142857142855,0.023255813953488372,-0.5647840531561462,0.13953488372093023,-0.44518272425249167,0.18272425249169436,-0.34551495016611294,-0.17940199335548174,-0.34551495016611294,0.0033222591362126247,-0.46179401993355484,0.10631229235880399,-0.38870431893687707,0.14285714285714285,-0.3089700996677741 +4,0.0,0.0,0.11447811447811448,-0.1447811447811448,0.1919191919191919,-0.3063973063973064,0.23905723905723905,-0.43097643097643096,0.18181818181818182,-0.46464646464646464,-0.020202020202020204,-0.5185185185185185,0.006734006734006734,-0.7239057239057239,0.013468013468013467,-0.8585858585858586,0.003367003367003367,-0.9730639730639731,-0.11447811447811448,-0.48148148148148145,-0.0707070707070707,-0.7239057239057239,-0.03367003367003367,-0.8787878787878788,-0.016835016835016835,-1.0,-0.18181818181818182,-0.41414141414141414,0.003367003367003367,-0.5488215488215489,0.12121212121212122,-0.42424242424242425,0.16161616161616163,-0.32323232323232326,-0.19528619528619529,-0.3265993265993266,-0.010101010101010102,-0.4377104377104377,0.09090909090909091,-0.3569023569023569,0.12794612794612795,-0.2760942760942761 +4,0.0,0.0,0.11036789297658862,-0.14715719063545152,0.18394648829431437,-0.3110367892976589,0.22073578595317725,-0.4414715719063545,0.16722408026755853,-0.46153846153846156,-0.033444816053511704,-0.5217391304347826,-0.013377926421404682,-0.7224080267558528,-0.010033444816053512,-0.8561872909698997,-0.020066889632107024,-0.9665551839464883,-0.12374581939799331,-0.4816053511705686,-0.0903010033444816,-0.7190635451505016,-0.06020066889632107,-0.8762541806020067,-0.043478260869565216,-1.0,-0.19063545150501673,-0.411371237458194,-0.016722408026755852,-0.5518394648829431,0.09698996655518395,-0.4280936454849498,0.14046822742474915,-0.3277591973244147,-0.20735785953177258,-0.3277591973244147,-0.020066889632107024,-0.431438127090301,0.07692307692307693,-0.3511705685618729,0.10367892976588629,-0.26755852842809363 +4,0.0,0.0,0.1040268456375839,-0.13758389261744966,0.18120805369127516,-0.2986577181208054,0.2181208053691275,-0.4261744966442953,0.1476510067114094,-0.45302013422818793,-0.03691275167785235,-0.5134228187919463,-0.010067114093959731,-0.714765100671141,-0.010067114093959731,-0.8489932885906041,-0.02348993288590604,-0.9630872483221476,-0.1342281879194631,-0.47651006711409394,-0.09395973154362416,-0.714765100671141,-0.06040268456375839,-0.8758389261744967,-0.04697986577181208,-1.0,-0.20469798657718122,-0.40604026845637586,-0.02348993288590604,-0.5369127516778524,0.087248322147651,-0.40604026845637586,0.12751677852348994,-0.2986577181208054,-0.2214765100671141,-0.3221476510067114,-0.03355704697986577,-0.41946308724832215,0.06040268456375839,-0.33557046979865773,0.09060402684563758,-0.2483221476510067 +4,0.0,0.0,0.11036789297658862,-0.14046822742474915,0.19063545150501673,-0.2976588628762542,0.23076923076923078,-0.4214046822742475,0.16722408026755853,-0.45484949832775917,-0.033444816053511704,-0.5117056856187291,0.0033444816053511705,-0.7123745819397993,0.013377926421404682,-0.8461538461538461,0.0033444816053511705,-0.959866220735786,-0.12709030100334448,-0.4782608695652174,-0.07357859531772576,-0.7123745819397993,-0.03678929765886288,-0.8729096989966555,-0.020066889632107024,-1.0,-0.19063545150501673,-0.41471571906354515,-0.006688963210702341,-0.5451505016722408,0.10367892976588629,-0.41471571906354515,0.13712374581939799,-0.3110367892976589,-0.20066889632107024,-0.3311036789297659,-0.006688963210702341,-0.42474916387959866,0.08361204013377926,-0.3377926421404682,0.11036789297658862,-0.25418060200668896 +4,0.0,0.0,0.11186440677966102,-0.13898305084745763,0.1864406779661017,-0.29491525423728815,0.2271186440677966,-0.41694915254237286,0.17627118644067796,-0.4576271186440678,-0.02711864406779661,-0.5152542372881356,0.003389830508474576,-0.7186440677966102,0.010169491525423728,-0.8508474576271187,0.0,-0.9627118644067797,-0.12203389830508475,-0.48135593220338985,-0.07796610169491526,-0.7186440677966102,-0.04067796610169491,-0.8779661016949153,-0.02711864406779661,-1.0,-0.1864406779661017,-0.4135593220338983,0.0,-0.5389830508474577,0.11186440677966102,-0.41694915254237286,0.14915254237288136,-0.31864406779661014,-0.19661016949152543,-0.3254237288135593,-0.003389830508474576,-0.42033898305084744,0.08813559322033898,-0.33559322033898303,0.11186440677966102,-0.25084745762711863 +4,0.0,0.0,0.10774410774410774,-0.14814814814814814,0.17845117845117844,-0.2996632996632997,0.2255892255892256,-0.4175084175084175,0.17845117845117844,-0.468013468013468,-0.04040404040404041,-0.5117845117845118,-0.003367003367003367,-0.7205387205387206,0.003367003367003367,-0.8552188552188552,-0.010101010101010102,-0.9696969696969697,-0.13131313131313133,-0.47474747474747475,-0.07744107744107744,-0.7171717171717171,-0.04377104377104377,-0.8754208754208754,-0.037037037037037035,-1.0,-0.18855218855218855,-0.4107744107744108,0.010101010101010102,-0.5353535353535354,0.11784511784511785,-0.4175084175084175,0.14814814814814814,-0.3164983164983165,-0.1919191919191919,-0.32323232323232326,0.003367003367003367,-0.42424242424242425,0.10101010101010101,-0.3468013468013468,0.12457912457912458,-0.26262626262626265 +4,0.0,0.0,0.10561056105610561,-0.1485148514851485,0.16501650165016502,-0.297029702970297,0.2145214521452145,-0.40594059405940597,0.20132013201320131,-0.47194719471947194,-0.036303630363036306,-0.5016501650165016,-0.0033003300330033004,-0.7128712871287128,0.0033003300330033004,-0.8481848184818482,-0.009900990099009901,-0.9570957095709571,-0.12211221122112212,-0.46864686468646866,-0.066006600660066,-0.7194719471947195,-0.0297029702970297,-0.8778877887788779,-0.0231023102310231,-1.0,-0.1716171617161716,-0.40264026402640263,0.019801980198019802,-0.5412541254125413,0.1353135313531353,-0.429042904290429,0.17491749174917492,-0.33003300330033003,-0.1716171617161716,-0.31353135313531355,0.026402640264026403,-0.41914191419141916,0.1254125412541254,-0.3465346534653465,0.15841584158415842,-0.26732673267326734 +4,0.0,0.0,0.1111111111111111,-0.1414141414141414,0.16161616161616163,-0.2895622895622896,0.19865319865319866,-0.39730639730639733,0.18518518518518517,-0.4511784511784512,-0.0707070707070707,-0.4882154882154882,-0.04040404040404041,-0.7070707070707071,-0.026936026936026935,-0.8484848484848485,-0.03367003367003367,-0.9629629629629629,-0.15151515151515152,-0.45454545454545453,-0.09090909090909091,-0.7037037037037037,-0.05387205387205387,-0.8686868686868687,-0.04377104377104377,-1.0,-0.19865319865319866,-0.3872053872053872,0.003367003367003367,-0.5185185185185185,0.12121212121212122,-0.4107744107744108,0.16835016835016836,-0.30976430976430974,-0.1919191919191919,-0.2996632996632997,0.003367003367003367,-0.40404040404040403,0.1111111111111111,-0.3434343434343434,0.16161616161616163,-0.265993265993266 +4,0.0,0.0,0.11347517730496454,-0.08865248226950355,0.16312056737588654,-0.24113475177304963,0.20212765957446807,-0.3546099290780142,0.2198581560283688,-0.42907801418439717,-0.09574468085106383,-0.44680851063829785,-0.05673758865248227,-0.6808510638297872,-0.03900709219858156,-0.8368794326241135,-0.03900709219858156,-0.9609929078014184,-0.17375886524822695,-0.4078014184397163,-0.09574468085106383,-0.6773049645390071,-0.04964539007092199,-0.8546099290780141,-0.03546099290780142,-1.0,-0.20921985815602837,-0.3404255319148936,0.02127659574468085,-0.4858156028368794,0.1453900709219858,-0.36524822695035464,0.1950354609929078,-0.25177304964539005,-0.1879432624113475,-0.25177304964539005,0.01773049645390071,-0.36879432624113473,0.13120567375886524,-0.3049645390070922,0.18439716312056736,-0.22695035460992907 +4,0.0,0.0,0.11387900355871886,-0.06761565836298933,0.16370106761565836,-0.2206405693950178,0.2099644128113879,-0.33451957295373663,0.2277580071174377,-0.41637010676156583,-0.1103202846975089,-0.4199288256227758,-0.05338078291814947,-0.6619217081850534,-0.028469750889679714,-0.8220640569395018,-0.02491103202846975,-0.9537366548042705,-0.17437722419928825,-0.38434163701067614,-0.08185053380782918,-0.6690391459074733,-0.028469750889679714,-0.8505338078291815,-0.010676156583629894,-1.0,-0.19572953736654805,-0.3167259786476868,0.03914590747330961,-0.48398576512455516,0.1601423487544484,-0.3594306049822064,0.20284697508896798,-0.24199288256227758,-0.1601423487544484,-0.2313167259786477,0.046263345195729534,-0.3665480427046263,0.15658362989323843,-0.298932384341637,0.199288256227758,-0.21352313167259787 +4,0.0,0.0,0.12982456140350876,-0.09824561403508772,0.18947368421052632,-0.23157894736842105,0.2736842105263158,-0.3192982456140351,0.3368421052631579,-0.4,-0.08070175438596491,-0.44912280701754387,-0.031578947368421054,-0.6736842105263158,-0.010526315789473684,-0.8280701754385965,0.0,-0.9578947368421052,-0.14385964912280702,-0.4105263157894737,-0.056140350877192984,-0.6771929824561403,-0.007017543859649123,-0.8526315789473684,0.010526315789473684,-1.0,-0.1649122807017544,-0.34035087719298246,0.08070175438596491,-0.5017543859649123,0.20701754385964913,-0.3824561403508772,0.24912280701754386,-0.2736842105263158,-0.12982456140350876,-0.24912280701754386,0.08421052631578947,-0.37543859649122807,0.19649122807017544,-0.312280701754386,0.23859649122807017,-0.23157894736842105 +4,0.0,0.0,0.12982456140350876,-0.08771929824561403,0.1824561403508772,-0.22456140350877193,0.24912280701754386,-0.3263157894736842,0.2912280701754386,-0.41754385964912283,-0.08771929824561403,-0.4421052631578947,-0.031578947368421054,-0.6631578947368421,-0.0035087719298245615,-0.8175438596491228,0.007017543859649123,-0.9438596491228071,-0.14385964912280702,-0.4070175438596491,-0.05263157894736842,-0.6807017543859649,0.0,-0.8526315789473684,0.021052631578947368,-1.0,-0.15789473684210525,-0.34385964912280703,0.08421052631578947,-0.5157894736842106,0.20701754385964913,-0.38596491228070173,0.24561403508771928,-0.26666666666666666,-0.12280701754385964,-0.25263157894736843,0.08771929824561403,-0.38596491228070173,0.20350877192982456,-0.32280701754385965,0.24561403508771928,-0.23859649122807017 +4,0.0,0.0,0.11805555555555555,-0.1111111111111111,0.16666666666666666,-0.25,0.2326388888888889,-0.3576388888888889,0.28125,-0.4270833333333333,-0.08680555555555555,-0.4444444444444444,-0.027777777777777776,-0.6666666666666666,-0.003472222222222222,-0.8194444444444444,0.006944444444444444,-0.9479166666666666,-0.1423611111111111,-0.4166666666666667,-0.0625,-0.6736111111111112,-0.013888888888888888,-0.8506944444444444,0.006944444444444444,-1.0,-0.1597222222222222,-0.3506944444444444,0.0798611111111111,-0.5069444444444444,0.2048611111111111,-0.3819444444444444,0.2465277777777778,-0.2673611111111111,-0.1284722222222222,-0.2638888888888889,0.0763888888888889,-0.3923611111111111,0.19444444444444445,-0.3368055555555556,0.2465277777777778,-0.2569444444444444 +4,0.0,0.0,0.13651877133105803,-0.10921501706484642,0.18771331058020477,-0.2525597269624573,0.24573378839590443,-0.36177474402730375,0.23208191126279865,-0.43686006825938567,-0.07167235494880546,-0.44368600682593856,-0.04778156996587031,-0.6621160409556314,-0.04436860068259386,-0.8122866894197952,-0.051194539249146756,-0.9351535836177475,-0.12627986348122866,-0.4129692832764505,-0.040955631399317405,-0.6757679180887372,0.0034129692832764505,-0.8532423208191127,0.023890784982935155,-1.0,-0.14334470989761092,-0.3515358361774744,0.09897610921501707,-0.5051194539249146,0.21160409556313994,-0.3822525597269625,0.24573378839590443,-0.2696245733788396,-0.10580204778156997,-0.26621160409556316,0.09556313993174062,-0.3924914675767918,0.20819112627986347,-0.3310580204778157,0.25597269624573377,-0.2525597269624573 +4,0.0,0.0,0.14035087719298245,-0.11228070175438597,0.17894736842105263,-0.2596491228070175,0.23157894736842105,-0.3719298245614035,0.24210526315789474,-0.45614035087719296,-0.06666666666666667,-0.4456140350877193,-0.02456140350877193,-0.6736842105263158,-0.014035087719298246,-0.8315789473684211,-0.017543859649122806,-0.9614035087719298,-0.12280701754385964,-0.42105263157894735,-0.031578947368421054,-0.6771929824561403,0.014035087719298246,-0.8596491228070176,0.042105263157894736,-1.0,-0.13333333333333333,-0.3543859649122807,0.11578947368421053,-0.4982456140350877,0.22105263157894736,-0.37894736842105264,0.25263157894736843,-0.27017543859649124,-0.08771929824561403,-0.2631578947368421,0.11228070175438597,-0.3824561403508772,0.22456140350877193,-0.3298245614035088,0.2807017543859649,-0.256140350877193 +4,0.0,0.0,0.15087719298245614,-0.09824561403508772,0.19649122807017544,-0.25263157894736843,0.24561403508771928,-0.37543859649122807,0.23859649122807017,-0.45614035087719296,-0.06315789473684211,-0.43157894736842106,-0.03508771929824561,-0.6596491228070176,-0.02456140350877193,-0.8245614035087719,-0.021052631578947368,-0.9578947368421052,-0.11228070175438597,-0.4070175438596491,-0.03508771929824561,-0.6701754385964912,0.010526315789473684,-0.856140350877193,0.042105263157894736,-1.0,-0.11929824561403508,-0.3473684210526316,0.13333333333333333,-0.4982456140350877,0.23157894736842105,-0.3824561403508772,0.2631578947368421,-0.27017543859649124,-0.06666666666666667,-0.26666666666666666,0.14385964912280702,-0.37543859649122807,0.24561403508771928,-0.3192982456140351,0.29473684210526313,-0.24210526315789474 +4,0.0,0.0,0.14338235294117646,-0.08088235294117647,0.19117647058823528,-0.23529411764705882,0.23529411764705882,-0.3602941176470588,0.2426470588235294,-0.45588235294117646,-0.0625,-0.43014705882352944,-0.014705882352941176,-0.6580882352941176,0.003676470588235294,-0.8198529411764706,0.011029411764705883,-0.9522058823529411,-0.10661764705882353,-0.39705882352941174,-0.03308823529411765,-0.6617647058823529,0.003676470588235294,-0.8492647058823529,0.029411764705882353,-1.0,-0.11029411764705882,-0.3272058823529412,0.15808823529411764,-0.45955882352941174,0.2610294117647059,-0.35294117647058826,0.29411764705882354,-0.25,-0.05514705882352941,-0.23529411764705882,0.15441176470588236,-0.3492647058823529,0.25735294117647056,-0.29411764705882354,0.3014705882352941,-0.21323529411764705 +4,0.0,0.0,0.15693430656934307,-0.09124087591240876,0.19708029197080293,-0.24087591240875914,0.24452554744525548,-0.354014598540146,0.2518248175182482,-0.4416058394160584,-0.05474452554744526,-0.41605839416058393,0.0,-0.6386861313868614,0.021897810218978103,-0.7992700729927007,0.032846715328467155,-0.927007299270073,-0.09124087591240876,-0.3905109489051095,-0.010948905109489052,-0.656934306569343,0.0364963503649635,-0.8467153284671532,0.06934306569343066,-1.0,-0.08394160583941605,-0.3248175182481752,0.18613138686131386,-0.46715328467153283,0.27007299270072993,-0.354014598540146,0.2846715328467153,-0.2518248175182482,-0.021897810218978103,-0.24087591240875914,0.18248175182481752,-0.3613138686131387,0.2773722627737226,-0.2956204379562044,0.3102189781021898,-0.21532846715328466 +4,0.0,0.0,0.1575091575091575,-0.09157509157509157,0.1978021978021978,-0.2454212454212454,0.24175824175824176,-0.358974358974359,0.26373626373626374,-0.43956043956043955,-0.047619047619047616,-0.42857142857142855,0.007326007326007326,-0.652014652014652,0.029304029304029304,-0.8095238095238095,0.040293040293040296,-0.9340659340659341,-0.08058608058608059,-0.3992673992673993,0.0,-0.6703296703296703,0.04395604395604396,-0.8534798534798534,0.0695970695970696,-1.0,-0.0695970695970696,-0.32967032967032966,0.19047619047619047,-0.4725274725274725,0.2783882783882784,-0.3626373626373626,0.2893772893772894,-0.2600732600732601,-0.01098901098901099,-0.2454212454212454,0.19413919413919414,-0.37362637362637363,0.2893772893772894,-0.304029304029304,0.315018315018315,-0.21978021978021978 +4,0.0,0.0,0.15925925925925927,-0.08518518518518518,0.2,-0.24074074074074073,0.24074074074074073,-0.3592592592592593,0.2777777777777778,-0.4185185185185185,-0.037037037037037035,-0.4444444444444444,0.014814814814814815,-0.6555555555555556,0.040740740740740744,-0.8037037037037037,0.05185185185185185,-0.9259259259259259,-0.06296296296296296,-0.4111111111111111,0.007407407407407408,-0.674074074074074,0.05185185185185185,-0.8555555555555555,0.08148148148148149,-1.0,-0.05185185185185185,-0.337037037037037,0.2074074074074074,-0.48148148148148145,0.3,-0.37407407407407406,0.3111111111111111,-0.2740740740740741,0.011111111111111112,-0.24074074074074073,0.21481481481481482,-0.37037037037037035,0.3074074074074074,-0.3037037037037037,0.3333333333333333,-0.21851851851851853 +4,0.0,0.0,0.15037593984962405,-0.07518796992481203,0.18421052631578946,-0.23684210526315788,0.22556390977443608,-0.3533834586466165,0.2556390977443609,-0.41729323308270677,-0.05639097744360902,-0.4398496240601504,-0.0037593984962406013,-0.6578947368421053,0.022556390977443608,-0.8082706766917294,0.03759398496240601,-0.9323308270676691,-0.07518796992481203,-0.40601503759398494,-0.007518796992481203,-0.6654135338345865,0.03759398496240601,-0.8533834586466166,0.07142857142857142,-1.0,-0.05263157894736842,-0.3233082706766917,0.19924812030075187,-0.47368421052631576,0.29699248120300753,-0.3684210526315789,0.31203007518796994,-0.2706766917293233,0.015037593984962405,-0.22556390977443608,0.21428571428571427,-0.3609022556390977,0.3082706766917293,-0.3007518796992481,0.32706766917293234,-0.22180451127819548 +4,0.0,0.0,0.15057915057915058,-0.04633204633204633,0.1891891891891892,-0.21235521235521235,0.23938223938223938,-0.3359073359073359,0.2702702702702703,-0.4092664092664093,-0.06563706563706563,-0.4247104247104247,0.007722007722007722,-0.6525096525096525,0.04247104247104247,-0.8108108108108109,0.06177606177606178,-0.9382239382239382,-0.08494208494208494,-0.3861003861003861,0.0,-0.6563706563706564,0.04633204633204633,-0.8494208494208494,0.07722007722007722,-1.0,-0.05791505791505792,-0.2972972972972973,0.21235521235521235,-0.4517374517374517,0.3088803088803089,-0.33976833976833976,0.3166023166023166,-0.24324324324324326,0.023166023166023165,-0.1969111969111969,0.2277992277992278,-0.3436293436293436,0.3204633204633205,-0.277992277992278,0.33976833976833976,-0.19305019305019305 +4,0.0,0.0,0.1383399209486166,-0.007905138339920948,0.18181818181818182,-0.18181818181818182,0.22924901185770752,-0.31225296442687744,0.2727272727272727,-0.34782608695652173,-0.06324110671936758,-0.39920948616600793,0.011857707509881422,-0.6403162055335968,0.05138339920948617,-0.8023715415019763,0.07114624505928854,-0.932806324110672,-0.08300395256916997,-0.35968379446640314,0.003952569169960474,-0.6442687747035574,0.05138339920948617,-0.841897233201581,0.08300395256916997,-1.0,-0.06324110671936758,-0.26877470355731226,0.22529644268774704,-0.4189723320158103,0.3201581027667984,-0.308300395256917,0.3241106719367589,-0.20948616600790515,0.011857707509881422,-0.16600790513833993,0.233201581027668,-0.31620553359683795,0.33201581027667987,-0.25296442687747034,0.3557312252964427,-0.16600790513833993 +4,0.0,0.0,0.12653061224489795,0.0,0.1673469387755102,-0.17551020408163265,0.21224489795918366,-0.3142857142857143,0.23265306122448978,-0.37551020408163266,-0.08163265306122448,-0.4,0.004081632653061225,-0.6489795918367347,0.044897959183673466,-0.8122448979591836,0.0653061224489796,-0.9469387755102041,-0.10612244897959183,-0.3469387755102041,0.004081632653061225,-0.636734693877551,0.05714285714285714,-0.8408163265306122,0.08571428571428572,-1.0,-0.08163265306122448,-0.2530612244897959,0.22448979591836735,-0.40408163265306124,0.33877551020408164,-0.2897959183673469,0.35918367346938773,-0.1836734693877551,-0.004081632653061225,-0.14285714285714285,0.23265306122448978,-0.2938775510204082,0.3346938775510204,-0.22448979591836735,0.35918367346938773,-0.1346938775510204 +4,0.0,0.0,0.15163934426229508,0.0,0.20491803278688525,-0.1598360655737705,0.26229508196721313,-0.29098360655737704,0.28688524590163933,-0.36885245901639346,-0.05737704918032787,-0.38934426229508196,0.02459016393442623,-0.6270491803278688,0.0778688524590164,-0.7909836065573771,0.11475409836065574,-0.9262295081967213,-0.09836065573770492,-0.3401639344262295,0.00819672131147541,-0.6229508196721312,0.0778688524590164,-0.8360655737704918,0.12704918032786885,-1.0,-0.0778688524590164,-0.24180327868852458,0.22131147540983606,-0.38934426229508196,0.3360655737704918,-0.2786885245901639,0.3524590163934426,-0.1721311475409836,-0.00819672131147541,-0.13524590163934427,0.24180327868852458,-0.27459016393442626,0.3401639344262295,-0.20491803278688525,0.3524590163934426,-0.11065573770491803 +4,0.0,0.0,0.1434108527131783,-0.015503875968992248,0.18604651162790697,-0.1744186046511628,0.2441860465116279,-0.3023255813953488,0.2596899224806202,-0.3992248062015504,-0.06976744186046512,-0.40310077519379844,0.01937984496124031,-0.6162790697674418,0.06201550387596899,-0.7674418604651163,0.08527131782945736,-0.8953488372093024,-0.1124031007751938,-0.36046511627906974,-0.003875968992248062,-0.6356589147286822,0.05426356589147287,-0.8410852713178295,0.09689922480620156,-1.0,-0.10077519379844961,-0.27906976744186046,0.1937984496124031,-0.42248062015503873,0.313953488372093,-0.3023255813953488,0.34108527131782945,-0.18604651162790697,-0.03488372093023256,-0.1744186046511628,0.2054263565891473,-0.313953488372093,0.3023255813953488,-0.2364341085271318,0.32558139534883723,-0.13565891472868216 +4,0.0,0.0,0.14661654135338345,-0.03383458646616541,0.19172932330827067,-0.19924812030075187,0.2556390977443609,-0.32706766917293234,0.2894736842105263,-0.41729323308270677,-0.06015037593984962,-0.40977443609022557,0.015037593984962405,-0.6278195488721805,0.05263157894736842,-0.7819548872180451,0.07518796992481203,-0.9097744360902256,-0.09774436090225563,-0.3684210526315789,0.0,-0.650375939849624,0.05639097744360902,-0.849624060150376,0.10150375939849623,-1.0,-0.08270676691729323,-0.2932330827067669,0.19924812030075187,-0.43609022556390975,0.30451127819548873,-0.31954887218045114,0.33458646616541354,-0.21052631578947367,-0.015037593984962405,-0.19548872180451127,0.21428571428571427,-0.33458646616541354,0.31203007518796994,-0.2631578947368421,0.3383458646616541,-0.16541353383458646 +4,0.0,0.0,0.1366906474820144,-0.08633093525179857,0.17625899280575538,-0.24820143884892087,0.21223021582733814,-0.3669064748201439,0.21942446043165467,-0.45323741007194246,-0.07194244604316546,-0.45323741007194246,-0.007194244604316547,-0.6690647482014388,0.02877697841726619,-0.8201438848920863,0.046762589928057555,-0.9460431654676259,-0.1079136690647482,-0.4136690647482014,-0.014388489208633094,-0.6762589928057554,0.03597122302158273,-0.8561151079136691,0.0683453237410072,-1.0,-0.08992805755395683,-0.3345323741007194,0.1906474820143885,-0.46402877697841727,0.28776978417266186,-0.3489208633093525,0.29856115107913667,-0.2446043165467626,-0.02158273381294964,-0.2446043165467626,0.20503597122302158,-0.37050359712230213,0.29856115107913667,-0.29856115107913667,0.32014388489208634,-0.21223021582733814 +4,0.0,0.0,0.1643835616438356,-0.1541095890410959,0.20205479452054795,-0.3219178082191781,0.2191780821917808,-0.4349315068493151,0.1952054794520548,-0.5068493150684932,-0.04452054794520548,-0.5,0.010273972602739725,-0.7123287671232876,0.04452054794520548,-0.8527397260273972,0.06164383561643835,-0.9691780821917808,-0.07191780821917808,-0.4520547945205479,0.017123287671232876,-0.6986301369863014,0.07191780821917808,-0.8664383561643836,0.1095890410958904,-1.0,-0.0547945205479452,-0.3767123287671233,0.2089041095890411,-0.4965753424657534,0.3082191780821918,-0.3972602739726027,0.3321917808219178,-0.3047945205479452,0.010273972602739725,-0.2808219178082192,0.2226027397260274,-0.4041095890410959,0.3047945205479452,-0.3424657534246575,0.3219178082191781,-0.2636986301369863 +4,0.0,0.0,0.1563517915309446,-0.18566775244299674,0.18566775244299674,-0.33876221498371334,0.20521172638436483,-0.4527687296416938,0.18241042345276873,-0.5407166123778502,-0.048859934853420196,-0.495114006514658,0.006514657980456026,-0.6970684039087948,0.03257328990228013,-0.8306188925081434,0.03908794788273615,-0.9413680781758957,-0.0749185667752443,-0.46579804560260585,0.009771986970684038,-0.7003257328990228,0.05211726384364821,-0.8664495114006515,0.08469055374592833,-1.0,-0.05537459283387622,-0.4006514657980456,0.19543973941368079,-0.511400651465798,0.28664495114006516,-0.4201954397394137,0.3127035830618892,-0.3322475570032573,0.003257328990228013,-0.31921824104234525,0.19543973941368079,-0.42996742671009774,0.28338762214983715,-0.3778501628664495,0.32247557003257327,-0.30293159609120524 +4,0.0,0.0,0.1557632398753894,-0.18691588785046728,0.17757009345794392,-0.3426791277258567,0.19003115264797507,-0.45794392523364486,0.17133956386292834,-0.5451713395638629,-0.040498442367601244,-0.49221183800623053,0.009345794392523364,-0.6915887850467289,0.03426791277258567,-0.8286604361370716,0.04361370716510903,-0.940809968847352,-0.06542056074766354,-0.4672897196261682,0.009345794392523364,-0.7009345794392523,0.0529595015576324,-0.8691588785046729,0.08099688473520249,-1.0,-0.0529595015576324,-0.40809968847352024,0.17757009345794392,-0.5389408099688473,0.26791277258566976,-0.4485981308411215,0.29595015576323985,-0.3613707165109034,0.009345794392523364,-0.3333333333333333,0.19937694704049844,-0.45482866043613707,0.27414330218068533,-0.3987538940809969,0.29906542056074764,-0.32710280373831774 +4,0.0,0.0,0.16049382716049382,-0.19444444444444445,0.17901234567901234,-0.3487654320987654,0.18518518518518517,-0.4691358024691358,0.16358024691358025,-0.5617283950617284,-0.040123456790123455,-0.5030864197530864,0.012345679012345678,-0.7037037037037037,0.037037037037037035,-0.845679012345679,0.046296296296296294,-0.9598765432098766,-0.07098765432098765,-0.4783950617283951,0.0030864197530864196,-0.7098765432098766,0.043209876543209874,-0.8734567901234568,0.07407407407407407,-1.0,-0.05864197530864197,-0.4228395061728395,0.1697530864197531,-0.5524691358024691,0.25925925925925924,-0.45987654320987653,0.2839506172839506,-0.37037037037037035,0.0,-0.3487654320987654,0.19135802469135801,-0.46296296296296297,0.27469135802469136,-0.4074074074074074,0.3055555555555556,-0.3333333333333333 +4,0.0,0.0,0.15454545454545454,-0.1787878787878788,0.18484848484848485,-0.3393939393939394,0.19393939393939394,-0.4636363636363636,0.19696969696969696,-0.5303030303030303,-0.02727272727272727,-0.5181818181818182,0.024242424242424242,-0.696969696969697,0.04242424242424243,-0.8363636363636363,0.05454545454545454,-0.9393939393939394,-0.06666666666666667,-0.5,-0.0030303030303030303,-0.7212121212121212,0.03636363636363636,-0.8848484848484849,0.07272727272727272,-1.0,-0.06363636363636363,-0.44242424242424244,0.14242424242424243,-0.5909090909090909,0.23636363636363636,-0.4909090909090909,0.2636363636363636,-0.403030303030303,-0.00909090909090909,-0.36666666666666664,0.18484848484848485,-0.48787878787878786,0.2727272727272727,-0.4303030303030303,0.3090909090909091,-0.3575757575757576 +4,0.0,0.0,0.15060240963855423,-0.1897590361445783,0.1746987951807229,-0.3463855421686747,0.17771084337349397,-0.46686746987951805,0.16265060240963855,-0.536144578313253,-0.04216867469879518,-0.5060240963855421,0.006024096385542169,-0.6987951807228916,0.02710843373493976,-0.8403614457831325,0.0391566265060241,-0.9487951807228916,-0.07530120481927711,-0.49096385542168675,-0.009036144578313253,-0.7198795180722891,0.030120481927710843,-0.8855421686746988,0.060240963855421686,-1.0,-0.06927710843373494,-0.4427710843373494,0.14457831325301204,-0.5783132530120482,0.24397590361445784,-0.4819277108433735,0.28012048192771083,-0.3885542168674699,-0.009036144578313253,-0.37650602409638556,0.18674698795180722,-0.48493975903614456,0.2710843373493976,-0.42771084337349397,0.3042168674698795,-0.35240963855421686 +4,0.0,0.0,0.1519756838905775,-0.1884498480243161,0.18541033434650456,-0.3434650455927052,0.2066869300911854,-0.45896656534954405,0.19148936170212766,-0.5167173252279635,-0.03951367781155015,-0.49848024316109424,0.00911854103343465,-0.6778115501519757,0.02735562310030395,-0.8145896656534954,0.0243161094224924,-0.9179331306990881,-0.0729483282674772,-0.48632218844984804,-0.0121580547112462,-0.7142857142857143,0.02735562310030395,-0.878419452887538,0.05167173252279635,-1.0,-0.06990881458966565,-0.4376899696048632,0.1398176291793313,-0.5835866261398176,0.23708206686930092,-0.48936170212765956,0.2613981762917933,-0.4012158054711246,-0.0121580547112462,-0.3677811550151976,0.17325227963525835,-0.49544072948328266,0.25835866261398177,-0.4376899696048632,0.2887537993920973,-0.3617021276595745 +4,0.0,0.0,0.16666666666666666,-0.2,0.19393939393939394,-0.3484848484848485,0.21212121212121213,-0.4575757575757576,0.18181818181818182,-0.5333333333333333,-0.045454545454545456,-0.48787878787878786,0.0030303030303030303,-0.6727272727272727,0.01818181818181818,-0.8090909090909091,0.01818181818181818,-0.9151515151515152,-0.08181818181818182,-0.47575757575757577,-0.012121212121212121,-0.7090909090909091,0.02727272727272727,-0.8727272727272727,0.05454545454545454,-1.0,-0.07575757575757576,-0.42727272727272725,0.14545454545454545,-0.5696969696969697,0.23939393939393938,-0.4727272727272727,0.26666666666666666,-0.38181818181818183,-0.021212121212121213,-0.3606060606060606,0.1606060606060606,-0.4818181818181818,0.2515151515151515,-0.43333333333333335,0.2909090909090909,-0.36666666666666664 +4,0.0,0.0,0.1606060606060606,-0.20303030303030303,0.20303030303030303,-0.34545454545454546,0.23636363636363636,-0.46060606060606063,0.2,-0.5212121212121212,-0.03939393939393939,-0.48787878787878786,0.0,-0.6787878787878788,0.015151515151515152,-0.8121212121212121,0.012121212121212121,-0.9181818181818182,-0.07878787878787878,-0.47575757575757577,-0.012121212121212121,-0.7090909090909091,0.024242424242424242,-0.8727272727272727,0.045454545454545456,-1.0,-0.08181818181818182,-0.4303030303030303,0.1393939393939394,-0.5696969696969697,0.23030303030303031,-0.4666666666666667,0.24848484848484848,-0.37575757575757573,-0.030303030303030304,-0.36666666666666664,0.15151515151515152,-0.48484848484848486,0.23939393939393938,-0.43636363636363634,0.27575757575757576,-0.3696969696969697 +4,0.0,0.0,0.15501519756838905,-0.17325227963525835,0.20972644376899696,-0.331306990881459,0.25227963525835867,-0.44984802431610943,0.24316109422492402,-0.5045592705167173,-0.0121580547112462,-0.513677811550152,0.0243161094224924,-0.6838905775075987,0.030395136778115502,-0.8115501519756839,0.0182370820668693,-0.9057750759878419,-0.060790273556231005,-0.49544072948328266,-0.00303951367781155,-0.7142857142857143,0.0243161094224924,-0.878419452887538,0.0364741641337386,-1.0,-0.08814589665653495,-0.44072948328267475,0.1094224924012158,-0.5805471124620061,0.20972644376899696,-0.46504559270516715,0.23708206686930092,-0.3768996960486322,-0.057750759878419454,-0.3617021276595745,0.11246200607902736,-0.49240121580547114,0.20972644376899696,-0.43465045592705165,0.24924012158054712,-0.364741641337386 +4,0.0,0.0,0.16566265060240964,-0.18674698795180722,0.21987951807228914,-0.32831325301204817,0.2680722891566265,-0.4427710843373494,0.2469879518072289,-0.5060240963855421,-0.02710843373493976,-0.49096385542168675,0.018072289156626505,-0.6746987951807228,0.02710843373493976,-0.8102409638554217,0.015060240963855422,-0.9186746987951807,-0.07530120481927711,-0.4789156626506024,0.0030120481927710845,-0.7018072289156626,0.030120481927710843,-0.8674698795180723,0.0391566265060241,-1.0,-0.09036144578313253,-0.4307228915662651,0.12349397590361445,-0.572289156626506,0.2289156626506024,-0.4608433734939759,0.26506024096385544,-0.3614457831325301,-0.05421686746987952,-0.35843373493975905,0.11144578313253012,-0.49096385542168675,0.21385542168674698,-0.4457831325301205,0.2710843373493976,-0.37349397590361444 +4,0.0,0.0,0.16071428571428573,-0.18154761904761904,0.21726190476190477,-0.3244047619047619,0.2648809523809524,-0.44345238095238093,0.23809523809523808,-0.5059523809523809,-0.026785714285714284,-0.5,0.017857142857142856,-0.6845238095238095,0.03273809523809524,-0.8184523809523809,0.026785714285714284,-0.9255952380952381,-0.07738095238095238,-0.4851190476190476,0.0,-0.7113095238095238,0.03571428571428571,-0.8720238095238095,0.05357142857142857,-1.0,-0.09821428571428571,-0.43452380952380953,0.11607142857142858,-0.5773809523809523,0.21428571428571427,-0.46726190476190477,0.24404761904761904,-0.37202380952380953,-0.0625,-0.3601190476190476,0.10119047619047619,-0.4851190476190476,0.20535714285714285,-0.44345238095238093,0.2648809523809524,-0.37797619047619047 +4,0.0,0.0,0.16158536585365854,-0.1798780487804878,0.21951219512195122,-0.32621951219512196,0.2652439024390244,-0.4420731707317073,0.23780487804878048,-0.5,-0.03048780487804878,-0.5,0.009146341463414634,-0.7042682926829268,0.024390243902439025,-0.8536585365853658,0.021341463414634148,-0.9664634146341463,-0.08536585365853659,-0.47865853658536583,-0.009146341463414634,-0.7195121951219512,0.03353658536585366,-0.8689024390243902,0.042682926829268296,-1.0,-0.10975609756097561,-0.4298780487804878,0.10060975609756098,-0.5670731707317073,0.19817073170731708,-0.4603658536585366,0.22560975609756098,-0.36585365853658536,-0.08231707317073171,-0.3597560975609756,0.08536585365853659,-0.4725609756097561,0.19207317073170732,-0.4329268292682927,0.24695121951219512,-0.36585365853658536 +4,0.0,0.0,0.14714714714714713,-0.16216216216216217,0.2072072072072072,-0.32432432432432434,0.24624624624624625,-0.45645645645645644,0.2042042042042042,-0.5075075075075075,-0.03303303303303303,-0.5015015015015015,0.009009009009009009,-0.6906906906906907,0.03003003003003003,-0.8318318318318318,0.03303303303303303,-0.93993993993994,-0.0990990990990991,-0.4804804804804805,-0.036036036036036036,-0.7207207207207207,0.0,-0.8738738738738738,0.006006006006006006,-1.0,-0.13513513513513514,-0.43543543543543545,0.06606606606606606,-0.5765765765765766,0.18018018018018017,-0.47147147147147145,0.21921921921921922,-0.3783783783783784,-0.12312312312312312,-0.3633633633633634,0.04804804804804805,-0.4774774774774775,0.14714714714714713,-0.4264264264264264,0.1921921921921922,-0.36036036036036034 +4,0.0,0.0,0.13580246913580246,-0.16049382716049382,0.20679012345679013,-0.31790123456790126,0.25308641975308643,-0.4351851851851852,0.24074074074074073,-0.5123456790123457,-0.024691358024691357,-0.5123456790123457,0.009259259259259259,-0.7129629629629629,0.021604938271604937,-0.8518518518518519,0.015432098765432098,-0.9629629629629629,-0.10493827160493827,-0.4876543209876543,-0.033950617283950615,-0.7222222222222222,-0.009259259259259259,-0.8796296296296297,-0.015432098765432098,-1.0,-0.16049382716049382,-0.4382716049382716,0.043209876543209874,-0.5771604938271605,0.16358024691358025,-0.45987654320987653,0.21296296296296297,-0.35802469135802467,-0.1697530864197531,-0.3611111111111111,0.0030864197530864196,-0.48148148148148145,0.10802469135802469,-0.41975308641975306,0.16666666666666666,-0.3395061728395062 +4,0.0,0.0,0.12,-0.15692307692307692,0.19384615384615383,-0.3230769230769231,0.23692307692307693,-0.4492307692307692,0.18461538461538463,-0.5015384615384615,-0.046153846153846156,-0.5076923076923077,-0.006153846153846154,-0.7015384615384616,0.006153846153846154,-0.8338461538461538,-0.003076923076923077,-0.9476923076923077,-0.12615384615384614,-0.48615384615384616,-0.06769230769230769,-0.7261538461538461,-0.033846153846153845,-0.8769230769230769,-0.03076923076923077,-1.0,-0.18461538461538463,-0.4369230769230769,0.012307692307692308,-0.5938461538461538,0.13846153846153847,-0.47384615384615386,0.18769230769230769,-0.36923076923076925,-0.19692307692307692,-0.36,-0.021538461538461538,-0.48615384615384616,0.08615384615384615,-0.4153846153846154,0.13846153846153847,-0.3323076923076923 +4,0.0,0.0,0.11875,-0.153125,0.1875,-0.325,0.215625,-0.459375,0.146875,-0.4875,-0.046875,-0.515625,-0.025,-0.7125,-0.021875,-0.846875,-0.034375,-0.9625,-0.1375,-0.49375,-0.090625,-0.728125,-0.0625,-0.88125,-0.059375,-1.0,-0.20625,-0.4375,-0.021875,-0.578125,0.090625,-0.453125,0.13125,-0.34375,-0.23125,-0.35625,-0.0625,-0.484375,0.04375,-0.4125,0.09375,-0.325 +4,0.0,0.0,0.11182108626198083,-0.14376996805111822,0.18210862619808307,-0.3194888178913738,0.20447284345047922,-0.45686900958466453,0.12779552715654952,-0.49201277955271566,-0.04792332268370607,-0.5175718849840255,-0.03514376996805112,-0.7220447284345048,-0.03514376996805112,-0.8562300319488818,-0.04792332268370607,-0.9680511182108626,-0.14057507987220447,-0.49201277955271566,-0.10543130990415335,-0.731629392971246,-0.07348242811501597,-0.8817891373801917,-0.0670926517571885,-1.0,-0.21405750798722045,-0.43130990415335463,-0.038338658146964855,-0.5814696485623003,0.07987220447284345,-0.4536741214057508,0.12140575079872204,-0.3450479233226837,-0.24281150159744408,-0.3514376996805112,-0.07667731629392971,-0.4792332268370607,0.02875399361022364,-0.402555910543131,0.07667731629392971,-0.31629392971246006 +4,0.0,0.0,0.10932475884244373,-0.1382636655948553,0.18006430868167203,-0.31511254019292606,0.19292604501607716,-0.4533762057877814,0.1157556270096463,-0.4630225080385852,-0.03536977491961415,-0.5176848874598071,-0.022508038585209004,-0.7138263665594855,-0.01929260450160772,-0.842443729903537,-0.03536977491961415,-0.954983922829582,-0.12861736334405144,-0.4919614147909968,-0.09967845659163987,-0.7266881028938906,-0.06752411575562701,-0.8778135048231511,-0.06430868167202572,-1.0,-0.2057877813504823,-0.4340836012861736,-0.05466237942122187,-0.5755627009646302,0.06430868167202572,-0.45016077170418006,0.10610932475884244,-0.3440514469453376,-0.24758842443729903,-0.3504823151125402,-0.09646302250803858,-0.4790996784565916,0.00964630225080386,-0.40192926045016075,0.05466237942122187,-0.31189710610932475 +4,0.0,0.0,0.10509554140127389,-0.14012738853503184,0.1751592356687898,-0.31528662420382164,0.19745222929936307,-0.4554140127388535,0.11464968152866242,-0.46496815286624205,-0.03184713375796178,-0.5159235668789809,-0.012738853503184714,-0.7165605095541401,-0.012738853503184714,-0.8471337579617835,-0.03184713375796178,-0.9554140127388535,-0.12101910828025478,-0.49044585987261147,-0.08917197452229299,-0.7261146496815286,-0.06369426751592357,-0.8757961783439491,-0.06050955414012739,-1.0,-0.20063694267515925,-0.43312101910828027,-0.05732484076433121,-0.5764331210191083,0.050955414012738856,-0.45222929936305734,0.09235668789808917,-0.3471337579617834,-0.24203821656050956,-0.3503184713375796,-0.09554140127388536,-0.4745222929936306,0.006369426751592357,-0.3980891719745223,0.04777070063694268,-0.3089171974522293 +4,0.0,0.0,0.10064935064935066,-0.1331168831168831,0.17532467532467533,-0.30844155844155846,0.19480519480519481,-0.44805194805194803,0.10714285714285714,-0.461038961038961,-0.03571428571428571,-0.512987012987013,-0.022727272727272728,-0.7142857142857143,-0.022727272727272728,-0.8409090909090909,-0.03896103896103896,-0.9545454545454546,-0.12987012987012986,-0.4837662337662338,-0.09740259740259741,-0.724025974025974,-0.06818181818181818,-0.8766233766233766,-0.06493506493506493,-1.0,-0.21103896103896103,-0.42207792207792205,-0.06168831168831169,-0.5616883116883117,0.048701298701298704,-0.4318181818181818,0.09090909090909091,-0.3246753246753247,-0.2564935064935065,-0.33766233766233766,-0.10714285714285714,-0.4577922077922078,-0.006493506493506494,-0.37987012987012986,0.03896103896103896,-0.29545454545454547 +4,0.0,0.0,0.10264900662251655,-0.1423841059602649,0.17549668874172186,-0.31788079470198677,0.19536423841059603,-0.45695364238410596,0.10927152317880795,-0.46357615894039733,-0.03642384105960265,-0.5198675496688742,-0.023178807947019868,-0.7251655629139073,-0.023178807947019868,-0.8509933774834437,-0.03642384105960265,-0.9635761589403974,-0.13245033112582782,-0.49337748344370863,-0.10596026490066225,-0.7284768211920529,-0.07947019867549669,-0.8807947019867549,-0.076158940397351,-1.0,-0.2119205298013245,-0.4304635761589404,-0.0695364238410596,-0.5662251655629139,0.03642384105960265,-0.4370860927152318,0.076158940397351,-0.3344370860927152,-0.25496688741721857,-0.347682119205298,-0.10927152317880795,-0.46357615894039733,-0.009933774834437087,-0.38079470198675497,0.029801324503311258,-0.2913907284768212 +4,0.0,0.0,0.09966777408637874,-0.13953488372093023,0.17940199335548174,-0.32558139534883723,0.19933554817275748,-0.4684385382059801,0.11960132890365449,-0.46511627906976744,-0.03322259136212625,-0.5282392026578073,-0.019933554817275746,-0.7308970099667774,-0.023255813953488372,-0.8571428571428571,-0.036544850498338874,-0.9667774086378738,-0.12956810631229235,-0.5016611295681063,-0.10299003322259136,-0.7308970099667774,-0.07641196013289037,-0.8803986710963455,-0.07641196013289037,-1.0,-0.20930232558139536,-0.43853820598006643,-0.06312292358803986,-0.574750830564784,0.04318936877076412,-0.4418604651162791,0.07973421926910298,-0.3388704318936877,-0.24916943521594684,-0.3521594684385382,-0.09966777408637874,-0.46511627906976744,0.0,-0.3787375415282392,0.036544850498338874,-0.292358803986711 +4,0.0,0.0,0.09897610921501707,-0.14334470989761092,0.16723549488054607,-0.32764505119453924,0.18088737201365188,-0.46757679180887374,0.09897610921501707,-0.4709897610921502,-0.040955631399317405,-0.5392491467576792,-0.030716723549488054,-0.7372013651877133,-0.034129692832764506,-0.863481228668942,-0.051194539249146756,-0.9726962457337884,-0.14334470989761092,-0.5051194539249146,-0.12286689419795221,-0.7303754266211604,-0.10238907849829351,-0.8805460750853242,-0.09556313993174062,-1.0,-0.22866894197952217,-0.43686006825938567,-0.08532423208191127,-0.5699658703071673,0.020477815699658702,-0.4334470989761092,0.06143344709897611,-0.3242320819112628,-0.2696245733788396,-0.34812286689419797,-0.10580204778156997,-0.447098976109215,-0.013651877133105802,-0.3515358361774744,0.020477815699658702,-0.2593856655290102 +4,0.0,0.0,0.0958904109589041,-0.136986301369863,0.1678082191780822,-0.3184931506849315,0.18493150684931506,-0.4623287671232877,0.10273972602739725,-0.4554794520547945,-0.03424657534246575,-0.5308219178082192,-0.023972602739726026,-0.7294520547945206,-0.030821917808219176,-0.8527397260273972,-0.04452054794520548,-0.9623287671232876,-0.13356164383561644,-0.5,-0.11986301369863013,-0.726027397260274,-0.0958904109589041,-0.8801369863013698,-0.08904109589041095,-1.0,-0.2191780821917808,-0.4315068493150685,-0.08561643835616438,-0.565068493150685,0.023972602739726026,-0.4315068493150685,0.0684931506849315,-0.3219178082191781,-0.2602739726027397,-0.3424657534246575,-0.1095890410958904,-0.4417808219178082,-0.010273972602739725,-0.3527397260273973,0.0273972602739726,-0.2636986301369863 +4,0.0,0.0,0.1037037037037037,-0.08888888888888889,0.17777777777777778,-0.2777777777777778,0.2,-0.4185185185185185,0.1259259259259259,-0.4074074074074074,-0.044444444444444446,-0.5074074074074074,-0.02962962962962963,-0.7111111111111111,-0.02962962962962963,-0.8407407407407408,-0.044444444444444446,-0.9555555555555556,-0.14444444444444443,-0.4777777777777778,-0.12222222222222222,-0.7074074074074074,-0.1,-0.8703703703703703,-0.0962962962962963,-1.0,-0.23333333333333334,-0.40370370370370373,-0.08518518518518518,-0.5370370370370371,0.037037037037037035,-0.3925925925925926,0.08518518518518518,-0.2777777777777778,-0.2814814814814815,-0.3074074074074074,-0.11481481481481481,-0.40370370370370373,-0.011111111111111112,-0.3148148148148148,0.025925925925925925,-0.2222222222222222 +4,0.0,0.0,0.10358565737051793,-0.03187250996015936,0.18725099601593626,-0.22709163346613545,0.20717131474103587,-0.3784860557768924,0.11553784860557768,-0.3745019920318725,-0.05179282868525897,-0.47410358565737054,-0.0398406374501992,-0.6932270916334662,-0.04780876494023904,-0.8326693227091634,-0.06374501992031872,-0.9561752988047809,-0.16334661354581673,-0.44223107569721115,-0.13545816733067728,-0.6892430278884463,-0.10756972111553785,-0.8605577689243028,-0.099601593625498,-1.0,-0.2549800796812749,-0.35856573705179284,-0.08366533864541832,-0.4940239043824701,0.05179282868525897,-0.3386454183266932,0.10756972111553785,-0.2151394422310757,-0.29880478087649404,-0.250996015936255,-0.11553784860557768,-0.3426294820717131,-0.00398406374501992,-0.250996015936255,0.035856573705179286,-0.1553784860557769 +4,0.0,0.0,0.11063829787234042,0.0,0.19574468085106383,-0.18723404255319148,0.2170212765957447,-0.33617021276595743,0.11914893617021277,-0.3404255319148936,-0.059574468085106386,-0.451063829787234,-0.05106382978723404,-0.6808510638297872,-0.05531914893617021,-0.825531914893617,-0.07659574468085106,-0.9574468085106383,-0.17872340425531916,-0.4085106382978723,-0.14893617021276595,-0.6723404255319149,-0.12340425531914893,-0.8553191489361702,-0.11914893617021277,-1.0,-0.2723404255319149,-0.3148936170212766,-0.10212765957446808,-0.451063829787234,0.04680851063829787,-0.3021276595744681,0.11063829787234042,-0.17872340425531916,-0.3191489361702128,-0.19574468085106383,-0.13617021276595745,-0.2936170212765957,0.0,-0.20851063829787234,0.06382978723404255,-0.1148936170212766 +4,0.0,0.0,0.09482758620689655,0.0,0.1724137931034483,-0.1724137931034483,0.1939655172413793,-0.3275862068965517,0.09913793103448276,-0.33189655172413796,-0.08620689655172414,-0.43103448275862066,-0.07758620689655173,-0.6681034482758621,-0.08189655172413793,-0.8189655172413793,-0.10344827586206896,-0.9525862068965517,-0.2025862068965517,-0.3879310344827586,-0.17672413793103448,-0.6551724137931034,-0.14655172413793102,-0.8448275862068966,-0.14224137931034483,-1.0,-0.3017241379310345,-0.2974137931034483,-0.11637931034482758,-0.4396551724137931,0.034482758620689655,-0.2801724137931034,0.09482758620689655,-0.15086206896551724,-0.3448275862068966,-0.17672413793103448,-0.14655172413793102,-0.27586206896551724,-0.01293103448275862,-0.1853448275862069,0.03879310344827586,-0.09051724137931035 +4,0.0,0.0,0.1,0.0,0.18695652173913044,-0.1782608695652174,0.21739130434782608,-0.3391304347826087,0.12608695652173912,-0.34347826086956523,-0.08260869565217391,-0.43043478260869567,-0.0782608695652174,-0.6652173913043479,-0.08695652173913043,-0.8173913043478261,-0.10869565217391304,-0.9478260869565217,-0.19130434782608696,-0.3869565217391304,-0.16521739130434782,-0.6565217391304348,-0.13478260869565217,-0.8478260869565217,-0.12608695652173912,-1.0,-0.2826086956521739,-0.3,-0.09130434782608696,-0.44782608695652176,0.05652173913043478,-0.28695652173913044,0.11739130434782609,-0.1608695652173913,-0.3217391304347826,-0.1826086956521739,-0.12608695652173912,-0.2826086956521739,0.013043478260869565,-0.1956521739130435,0.07391304347826087,-0.10434782608695652 +4,0.0,0.0,0.1111111111111111,0.0,0.20085470085470086,-0.1794871794871795,0.23076923076923078,-0.3333333333333333,0.13675213675213677,-0.33760683760683763,-0.04700854700854701,-0.4358974358974359,-0.038461538461538464,-0.6709401709401709,-0.038461538461538464,-0.8205128205128205,-0.05982905982905983,-0.9487179487179487,-0.1623931623931624,-0.4017094017094017,-0.13247863247863248,-0.6666666666666666,-0.10683760683760683,-0.8504273504273504,-0.09401709401709402,-1.0,-0.2606837606837607,-0.3162393162393162,-0.0641025641025641,-0.44871794871794873,0.07264957264957266,-0.2863247863247863,0.13247863247863248,-0.1581196581196581,-0.3034188034188034,-0.20085470085470086,-0.10256410256410256,-0.2905982905982906,0.021367521367521368,-0.19658119658119658,0.07692307692307693,-0.09829059829059829 +4,0.0,0.0,0.10833333333333334,-0.020833333333333332,0.19583333333333333,-0.20833333333333334,0.2125,-0.3541666666666667,0.12083333333333333,-0.3375,-0.05,-0.4583333333333333,-0.03333333333333333,-0.6833333333333333,-0.041666666666666664,-0.8333333333333334,-0.0625,-0.9583333333333334,-0.1625,-0.42083333333333334,-0.13333333333333333,-0.675,-0.10416666666666667,-0.8541666666666666,-0.09583333333333334,-1.0,-0.25833333333333336,-0.3375,-0.0875,-0.4791666666666667,0.05,-0.32083333333333336,0.1125,-0.2,-0.30833333333333335,-0.225,-0.13333333333333333,-0.32083333333333336,0.004166666666666667,-0.23333333333333334,0.06666666666666667,-0.14166666666666666 +4,0.0,0.0,0.104,-0.028,0.188,-0.22,0.208,-0.364,0.112,-0.372,-0.048,-0.464,-0.04,-0.68,-0.048,-0.82,-0.068,-0.944,-0.16,-0.432,-0.136,-0.68,-0.112,-0.856,-0.108,-1.0,-0.256,-0.352,-0.08,-0.492,0.052,-0.34,0.1,-0.216,-0.3,-0.252,-0.112,-0.348,0.004,-0.252,0.044,-0.156 +4,0.0,0.0,0.10526315789473684,-0.020242914979757085,0.1902834008097166,-0.20242914979757085,0.21052631578947367,-0.340080971659919,0.1214574898785425,-0.3562753036437247,-0.05668016194331984,-0.4534412955465587,-0.03643724696356275,-0.6720647773279352,-0.032388663967611336,-0.8137651821862348,-0.044534412955465584,-0.9352226720647774,-0.1700404858299595,-0.42105263157894735,-0.12955465587044535,-0.680161943319838,-0.10121457489878542,-0.8582995951417004,-0.08906882591093117,-1.0,-0.2631578947368421,-0.3481781376518219,-0.0728744939271255,-0.46963562753036436,0.06072874493927125,-0.3157894736842105,0.11740890688259109,-0.1862348178137652,-0.30364372469635625,-0.2388663967611336,-0.10931174089068826,-0.32388663967611336,0.016194331983805668,-0.23076923076923078,0.08097165991902834,-0.12955465587044535 +4,0.0,0.0,0.11842105263157894,0.0,0.19298245614035087,-0.14473684210526316,0.2324561403508772,-0.27631578947368424,0.18859649122807018,-0.32456140350877194,-0.05701754385964912,-0.40350877192982454,-0.039473684210526314,-0.6622807017543859,-0.03508771929824561,-0.8245614035087719,-0.043859649122807015,-0.9649122807017544,-0.17543859649122806,-0.35964912280701755,-0.12719298245614036,-0.6491228070175439,-0.08771929824561403,-0.8464912280701754,-0.06578947368421052,-1.0,-0.2675438596491228,-0.27631578947368424,-0.02631578947368421,-0.40350877192982454,0.10964912280701754,-0.25877192982456143,0.17543859649122806,-0.13157894736842105,-0.29385964912280704,-0.15789473684210525,-0.06140350877192982,-0.25877192982456143,0.08333333333333333,-0.17982456140350878,0.16228070175438597,-0.08333333333333333 +4,0.0,0.0,0.11926605504587157,0.0,0.17889908256880735,-0.10091743119266056,0.22477064220183487,-0.23853211009174313,0.22477064220183487,-0.3211009174311927,-0.11926605504587157,-0.3623853211009174,-0.0779816513761468,-0.6284403669724771,-0.06422018348623854,-0.8027522935779816,-0.06880733944954129,-0.9495412844036697,-0.22018348623853212,-0.3119266055045872,-0.14220183486238533,-0.6238532110091743,-0.0871559633027523,-0.8394495412844036,-0.05963302752293578,-1.0,-0.2889908256880734,-0.21559633027522937,-0.03211009174311927,-0.38073394495412843,0.12385321100917432,-0.23853211009174313,0.1926605504587156,-0.10550458715596331,-0.2889908256880734,-0.09174311926605505,-0.04128440366972477,-0.22477064220183487,0.11467889908256881,-0.1559633027522936,0.2018348623853211,-0.06422018348623854 +4,0.0,0.0,0.10232558139534884,0.0,0.14418604651162792,-0.08837209302325581,0.18604651162790697,-0.22325581395348837,0.20930232558139536,-0.3302325581395349,-0.17209302325581396,-0.34418604651162793,-0.13488372093023257,-0.6232558139534884,-0.11162790697674418,-0.8,-0.11162790697674418,-0.9534883720930233,-0.26046511627906976,-0.2930232558139535,-0.1813953488372093,-0.6186046511627907,-0.12093023255813953,-0.8325581395348837,-0.09302325581395349,-1.0,-0.30697674418604654,-0.20465116279069767,-0.037209302325581395,-0.3813953488372093,0.12558139534883722,-0.2372093023255814,0.20465116279069767,-0.09767441860465116,-0.28837209302325584,-0.08372093023255814,-0.037209302325581395,-0.23255813953488372,0.12093023255813953,-0.16279069767441862,0.2,-0.06511627906976744 +4,0.0,0.0,0.10849056603773585,0.0,0.1509433962264151,-0.07075471698113207,0.19811320754716982,-0.2169811320754717,0.22641509433962265,-0.30660377358490565,-0.17452830188679244,-0.3160377358490566,-0.14150943396226415,-0.5990566037735849,-0.1179245283018868,-0.7830188679245284,-0.1179245283018868,-0.9339622641509434,-0.25943396226415094,-0.25471698113207547,-0.18396226415094338,-0.589622641509434,-0.12735849056603774,-0.8207547169811321,-0.10377358490566038,-1.0,-0.2971698113207547,-0.14622641509433962,-0.009433962264150943,-0.3443396226415094,0.1650943396226415,-0.20754716981132076,0.24056603773584906,-0.07075471698113207,-0.2688679245283019,-0.02358490566037736,0.0047169811320754715,-0.19811320754716982,0.1650943396226415,-0.1320754716981132,0.23113207547169812,-0.0330188679245283 +4,0.0,0.0,0.10606060606060606,0.0,0.1414141414141414,-0.025252525252525252,0.1919191919191919,-0.18181818181818182,0.21717171717171718,-0.2727272727272727,-0.23737373737373738,-0.2727272727272727,-0.18181818181818182,-0.5808080808080808,-0.14646464646464646,-0.7777777777777778,-0.1414141414141414,-0.9494949494949495,-0.30808080808080807,-0.20707070707070707,-0.20202020202020202,-0.5555555555555556,-0.13636363636363635,-0.803030303030303,-0.10606060606060606,-1.0,-0.3282828282828283,-0.09090909090909091,0.0,-0.31313131313131315,0.17676767676767677,-0.1717171717171717,0.23737373737373738,-0.030303030303030304,-0.2727272727272727,0.0,0.015151515151515152,-0.15656565656565657,0.1717171717171717,-0.08080808080808081,0.23232323232323232,0.0 +4,0.0,0.0,0.13541666666666666,0.0,0.16666666666666666,0.0,0.20833333333333334,-0.16666666666666666,0.22916666666666666,-0.24479166666666666,-0.21875,-0.25,-0.15625,-0.5572916666666666,-0.11458333333333333,-0.7708333333333334,-0.10416666666666667,-0.9479166666666666,-0.2864583333333333,-0.18229166666666666,-0.17708333333333334,-0.5364583333333334,-0.11458333333333333,-0.796875,-0.08333333333333333,-1.0,-0.2916666666666667,-0.06770833333333333,0.020833333333333332,-0.296875,0.19791666666666666,-0.16666666666666666,0.2604166666666667,-0.03125,-0.234375,0.0,0.057291666666666664,-0.125,0.19791666666666666,-0.057291666666666664,0.234375,0.0 +4,0.0,0.0,0.10270270270270271,0.0,0.14054054054054055,0.0,0.1945945945945946,-0.14594594594594595,0.24324324324324326,-0.21621621621621623,-0.24324324324324326,-0.21621621621621623,-0.17297297297297298,-0.5459459459459459,-0.12432432432432433,-0.7621621621621621,-0.10270270270270271,-0.9459459459459459,-0.31351351351351353,-0.14054054054054055,-0.21081081081081082,-0.5081081081081081,-0.14594594594594595,-0.7837837837837838,-0.0972972972972973,-1.0,-0.31891891891891894,-0.016216216216216217,0.005405405405405406,-0.24864864864864866,0.1837837837837838,-0.12972972972972974,0.24864864864864866,0.0,-0.25405405405405407,0.0,0.02702702702702703,-0.08108108108108109,0.1783783783783784,-0.02702702702702703,0.22702702702702704,0.0 +4,0.0,0.0,0.11049723756906077,0.0,0.15469613259668508,0.0,0.23204419889502761,-0.12154696132596685,0.281767955801105,-0.1712707182320442,-0.22099447513812154,-0.16574585635359115,-0.13259668508287292,-0.5027624309392266,-0.07734806629834254,-0.7237569060773481,-0.049723756906077346,-0.9060773480662984,-0.27071823204419887,-0.09392265193370165,-0.16574585635359115,-0.48066298342541436,-0.09392265193370165,-0.7679558011049724,-0.049723756906077346,-1.0,-0.26519337016574585,0.0,0.11602209944751381,-0.16022099447513813,0.23756906077348067,0.0,0.23204419889502761,0.0,-0.19889502762430938,0.0,0.12154696132596685,0.0,0.2154696132596685,0.0,0.19889502762430938,0.0 +4,0.0,0.0,0.1488095238095238,0.0,0.2261904761904762,0.0,0.30952380952380953,-0.06547619047619048,0.3630952380952381,-0.13690476190476192,-0.17857142857142858,-0.16666666666666666,-0.08333333333333333,-0.5476190476190477,-0.005952380952380952,-0.7857142857142857,0.023809523809523808,-1.0,-0.25,-0.05357142857142857,0.13095238095238096,-0.23214285714285715,0.2261904761904762,-0.13690476190476192,0.15476190476190477,-0.07738095238095238,-0.22023809523809523,0.0,0.21428571428571427,-0.023809523809523808,0.2976190476190476,0.0,0.20833333333333334,0.0,-0.1488095238095238,0.0,0.20833333333333334,0.0,0.27976190476190477,0.0,0.22023809523809523,0.0 +4,0.0,0.0,-0.025974025974025976,0.0,0.045454545454545456,0.0,0.22727272727272727,0.0,0.38311688311688313,-0.045454545454545456,-0.16233766233766234,-0.05844155844155844,-0.03896103896103896,-0.5,0.05194805194805195,-0.7662337662337663,0.1038961038961039,-1.0,-0.05844155844155844,-0.03896103896103896,0.07142857142857142,-0.37662337662337664,0.12987012987012986,-0.6168831168831169,0.11688311688311688,-0.8376623376623377,0.06493506493506493,0.0,0.3246753246753247,-0.07142857142857142,0.33766233766233766,0.0,0.2532467532467532,0.0,0.19480519480519481,0.0,0.38311688311688313,0.0,0.3961038961038961,0.0,0.34415584415584416,0.0 +4,0.0,0.0,-0.14102564102564102,0.0,-0.09615384615384616,0.0,0.10897435897435898,0.0,0.3141025641025641,-0.07051282051282051,-0.21794871794871795,-0.038461538461538464,-0.07692307692307693,-0.4935897435897436,0.03205128205128205,-0.7628205128205128,0.08333333333333333,-1.0,-0.02564102564102564,0.0,0.19230769230769232,-0.1282051282051282,0.24358974358974358,0.0,0.1794871794871795,0.0,0.17307692307692307,0.0,0.3525641025641026,-0.057692307692307696,0.358974358974359,0.0,0.2692307692307692,0.0,0.34615384615384615,0.0,0.4807692307692308,-0.00641025641025641,0.4807692307692308,0.0,0.41025641025641024,0.0 +4,0.0,0.0,-0.11724137931034483,0.0,-0.15172413793103448,0.0,-0.041379310344827586,0.0,0.0896551724137931,0.0,-0.2206896551724138,-0.020689655172413793,-0.09655172413793103,-0.45517241379310347,-0.006896551724137931,-0.7241379310344828,0.04827586206896552,-0.9586206896551724,-0.041379310344827586,-0.013793103448275862,0.034482758620689655,-0.4206896551724138,0.0896551724137931,-0.7241379310344828,0.10344827586206896,-1.0,0.14482758620689656,0.0,0.30344827586206896,-0.041379310344827586,0.2689655172413793,0.0,0.1793103448275862,0.0,0.33793103448275863,0.0,0.4482758620689655,0.0,0.43448275862068964,0.0,0.3793103448275862,0.0 +4,0.0,0.0,-0.14388489208633093,0.0,-0.09352517985611511,0.0,0.1079136690647482,0.0,0.3381294964028777,0.0,-0.1510791366906475,-0.014388489208633094,0.007194244604316547,-0.460431654676259,0.11510791366906475,-0.7482014388489209,0.19424460431654678,-1.0,0.07194244604316546,0.0,0.35251798561151076,0.0,0.3237410071942446,0.0,0.2158273381294964,0.0,0.302158273381295,0.0,0.539568345323741,0.0,0.460431654676259,0.0,0.3597122302158273,0.0,0.49640287769784175,0.0,0.6690647482014388,0.0,0.60431654676259,0.0,0.5251798561151079,0.0 +4,0.0,0.0,-0.18705035971223022,0.0,-0.1510791366906475,0.0,0.04316546762589928,0.0,0.26618705035971224,0.0,-0.23741007194244604,0.0,-0.04316546762589928,-0.4460431654676259,0.08633093525179857,-0.7482014388489209,0.16546762589928057,-1.0,-0.02877697841726619,0.0,0.2949640287769784,-0.04316546762589928,0.30935251798561153,0.0,0.2014388489208633,0.0,0.20863309352517986,0.0,0.4892086330935252,0.0,0.4676258992805755,0.0,0.3669064748201439,0.0,0.43884892086330934,0.0,0.6402877697841727,0.0,0.6187050359712231,0.0,0.5539568345323741,0.0 +4,0.0,0.0,-0.2074074074074074,0.0,-0.2,0.0,0.0,0.0,0.22962962962962963,0.0,-0.22962962962962963,0.0,-0.05925925925925926,-0.4444444444444444,0.06666666666666667,-0.7481481481481481,0.14074074074074075,-1.0,-0.007407407407407408,0.0,0.23703703703703705,-0.08888888888888889,0.2814814814814815,0.0,0.22962962962962963,0.0,0.24444444444444444,0.0,0.4740740740740741,0.0,0.42962962962962964,0.0,0.32592592592592595,0.0,0.4666666666666667,0.0,0.6296296296296297,0.0,0.5925925925925926,0.0,0.5185185185185185,0.0 +4,0.0,0.0,-0.17985611510791366,0.0,-0.17266187050359713,0.0,-0.007194244604316547,0.0,0.20863309352517986,0.0,-0.18705035971223022,0.0,0.007194244604316547,-0.4460431654676259,0.12949640287769784,-0.7482014388489209,0.2014388489208633,-1.0,0.050359712230215826,0.0,0.35251798561151076,0.0,0.3597122302158273,0.0,0.2589928057553957,0.0,0.2805755395683453,0.0,0.5251798561151079,0.0,0.4892086330935252,0.0,0.39568345323741005,0.0,0.48201438848920863,0.0,0.6402877697841727,0.0,0.6187050359712231,0.0,0.5611510791366906,0.0 +4,0.0,0.0,-0.16666666666666666,0.0,-0.2152777777777778,0.0,-0.09722222222222222,0.0,0.06944444444444445,0.0,-0.2361111111111111,-0.013888888888888888,-0.0763888888888889,-0.4722222222222222,0.04861111111111111,-0.7569444444444444,0.11805555555555555,-1.0,-0.041666666666666664,0.0,0.1597222222222222,-0.1597222222222222,0.2152777777777778,-0.0763888888888889,0.18055555555555555,-0.04861111111111111,0.1736111111111111,0.0,0.3263888888888889,-0.020833333333333332,0.3194444444444444,0.0,0.24305555555555555,0.0,0.3611111111111111,0.0,0.4722222222222222,0.0,0.4722222222222222,0.0,0.4236111111111111,0.0 +4,0.0,0.0,-0.16778523489932887,0.0,-0.19463087248322147,0.0,-0.03355704697986577,0.0,0.1476510067114094,-0.006711409395973154,-0.2684563758389262,-0.04697986577181208,-0.12751677852348994,-0.4899328859060403,-0.013422818791946308,-0.7516778523489933,0.040268456375838924,-1.0,-0.06711409395973154,-0.026845637583892617,0.06711409395973154,-0.16778523489932887,0.12751677852348994,-0.03355704697986577,0.08053691275167785,0.0,0.1342281879194631,0.0,0.2483221476510067,-0.040268456375838924,0.2348993288590604,0.0,0.15436241610738255,0.0,0.31543624161073824,0.0,0.40939597315436244,-0.006711409395973154,0.38926174496644295,0.0,0.3288590604026846,0.0 +4,0.0,0.0,-0.030864197530864196,0.0,0.043209876543209874,0.0,0.22839506172839505,-0.030864197530864196,0.38271604938271603,-0.07407407407407407,-0.16049382716049382,-0.10493827160493827,-0.018518518518518517,-0.4876543209876543,0.07407407407407407,-0.7407407407407407,0.12962962962962962,-0.9506172839506173,-0.037037037037037035,-0.08641975308641975,0.06172839506172839,-0.4567901234567901,0.12962962962962962,-0.7469135802469136,0.16049382716049382,-1.0,0.10493827160493827,-0.024691358024691357,0.3333333333333333,-0.14814814814814814,0.3888888888888889,-0.006172839506172839,0.35802469135802467,0.0,0.24691358024691357,0.0,0.41975308641975306,-0.06790123456790123,0.4567901234567901,0.0,0.43209876543209874,0.0 +4,0.0,0.0,0.06896551724137931,0.0,0.14367816091954022,0.0,0.28735632183908044,-0.14942528735632185,0.3505747126436782,-0.13793103448275862,-0.15517241379310345,-0.2413793103448276,-0.05172413793103448,-0.5862068965517241,0.017241379310344827,-0.8160919540229885,0.05172413793103448,-1.0,-0.1781609195402299,-0.14942528735632185,-0.04597701149425287,-0.5287356321839081,0.04597701149425287,-0.7873563218390804,0.08620689655172414,-1.0,-0.14367816091954022,-0.017241379310344827,0.2413793103448276,-0.1206896551724138,0.3103448275862069,0.0,0.25287356321839083,0.0,-0.05747126436781609,0.0,0.27586206896551724,0.0,0.3333333333333333,0.0,0.27011494252873564,0.0 +4,0.0,0.0,0.08205128205128205,0.0,0.1282051282051282,-0.005128205128205128,0.1794871794871795,-0.1794871794871795,0.14871794871794872,-0.22564102564102564,-0.24102564102564103,-0.23076923076923078,-0.15897435897435896,-0.5333333333333333,-0.09230769230769231,-0.7384615384615385,-0.06153846153846154,-0.9076923076923077,-0.2923076923076923,-0.1641025641025641,-0.19487179487179487,-0.5230769230769231,-0.11282051282051282,-0.7846153846153846,-0.05128205128205128,-1.0,-0.27692307692307694,-0.05641025641025641,0.09743589743589744,-0.23076923076923078,0.21025641025641026,-0.09743589743589744,0.19487179487179487,0.0,-0.19487179487179487,0.0,0.14871794871794872,-0.09230769230769231,0.24102564102564103,0.0,0.21025641025641026,0.0 +4,0.0,0.0,0.12735849056603774,0.0,0.17452830188679244,-0.03773584905660377,0.2028301886792453,-0.2028301886792453,0.1792452830188679,-0.2971698113207547,-0.19339622641509435,-0.2783018867924528,-0.12735849056603774,-0.5707547169811321,-0.07547169811320754,-0.7641509433962265,-0.05188679245283019,-0.9198113207547169,-0.25,-0.22641509433962265,-0.14150943396226415,-0.5660377358490566,-0.06132075471698113,-0.8113207547169812,-0.009433962264150943,-1.0,-0.2358490566037736,-0.1320754716981132,0.11320754716981132,-0.30660377358490565,0.24056603773584906,-0.16981132075471697,0.25471698113207547,-0.04716981132075472,-0.15566037735849056,-0.02358490566037736,0.1650943396226415,-0.16037735849056603,0.27358490566037735,-0.07075471698113207,0.2783018867924528,0.0 +4,0.0,0.0,0.13302752293577982,0.0,0.17889908256880735,-0.0779816513761468,0.22935779816513763,-0.24770642201834864,0.22477064220183487,-0.3440366972477064,-0.17889908256880735,-0.30275229357798167,-0.0963302752293578,-0.5963302752293578,-0.04128440366972477,-0.7981651376146789,-0.009174311926605505,-0.9587155963302753,-0.22018348623853212,-0.24770642201834864,-0.11009174311926606,-0.591743119266055,-0.03211009174311927,-0.8256880733944955,0.013761467889908258,-1.0,-0.2018348623853211,-0.16055045871559634,0.12385321100917432,-0.3623853211009174,0.2706422018348624,-0.24311926605504589,0.3211009174311927,-0.11009174311926606,-0.11467889908256881,-0.05504587155963303,0.16972477064220184,-0.22935779816513763,0.2981651376146789,-0.1559633027522936,0.3440366972477064,-0.05045871559633028 +4,0.0,0.0,0.12446351931330472,0.0,0.1630901287553648,-0.12017167381974249,0.22317596566523606,-0.2703862660944206,0.21030042918454936,-0.3776824034334764,-0.1630901287553648,-0.33047210300429186,-0.07725321888412018,-0.6008583690987125,-0.030042918454935622,-0.7854077253218884,-0.008583690987124463,-0.9356223175965666,-0.2017167381974249,-0.27896995708154504,-0.09012875536480687,-0.5965665236051502,-0.02575107296137339,-0.8197424892703863,0.017167381974248927,-1.0,-0.1759656652360515,-0.19313304721030042,0.13304721030042918,-0.3776824034334764,0.26609442060085836,-0.26609442060085836,0.30472103004291845,-0.14163090128755365,-0.0944206008583691,-0.0944206008583691,0.1630901287553648,-0.2575107296137339,0.27896995708154504,-0.19313304721030042,0.3218884120171674,-0.09871244635193133 +4,0.0,0.0,0.12955465587044535,0.0,0.1659919028340081,-0.17408906882591094,0.22267206477732793,-0.3117408906882591,0.21052631578947367,-0.4008097165991903,-0.16194331983805668,-0.3643724696356275,-0.0931174089068826,-0.6072874493927125,-0.05668016194331984,-0.7773279352226721,-0.03643724696356275,-0.9149797570850202,-0.20242914979757085,-0.31983805668016196,-0.09716599190283401,-0.6153846153846154,-0.04048582995951417,-0.8340080971659919,0.0,-1.0,-0.1862348178137652,-0.2388663967611336,0.10121457489878542,-0.42105263157894735,0.2388663967611336,-0.3157894736842105,0.2874493927125506,-0.19838056680161945,-0.11336032388663968,-0.14979757085020243,0.12955465587044535,-0.3076923076923077,0.24696356275303644,-0.25101214574898784,0.29554655870445345,-0.15789473684210525 +4,0.0,0.0,0.13127413127413126,-0.03088803088803089,0.16216216216216217,-0.20077220077220076,0.1969111969111969,-0.3359073359073359,0.16988416988416988,-0.42857142857142855,-0.12355212355212356,-0.38223938223938225,-0.06177606177606178,-0.6023166023166023,-0.03474903474903475,-0.7606177606177607,-0.023166023166023165,-0.8841698841698842,-0.16988416988416988,-0.3436293436293436,-0.08108108108108109,-0.6254826254826255,-0.03474903474903475,-0.8378378378378378,0.0,-1.0,-0.16216216216216217,-0.2625482625482625,0.10424710424710425,-0.43243243243243246,0.2277992277992278,-0.3281853281853282,0.277992277992278,-0.21621621621621623,-0.09266409266409266,-0.16988416988416988,0.138996138996139,-0.3281853281853282,0.25868725868725867,-0.26640926640926643,0.305019305019305,-0.1776061776061776 +4,0.0,0.0,0.12359550561797752,-0.06367041198501873,0.149812734082397,-0.22846441947565543,0.1760299625468165,-0.36329588014981273,0.13108614232209737,-0.46441947565543074,-0.149812734082397,-0.3895131086142322,-0.08239700374531835,-0.6179775280898876,-0.052434456928838954,-0.7752808988764045,-0.03745318352059925,-0.9063670411985019,-0.18726591760299627,-0.35580524344569286,-0.0898876404494382,-0.6367041198501873,-0.0449438202247191,-0.8426966292134831,-0.011235955056179775,-1.0,-0.17228464419475656,-0.2846441947565543,0.10486891385767791,-0.44569288389513106,0.2397003745318352,-0.3408239700374532,0.299625468164794,-0.22846441947565543,-0.10486891385767791,-0.1947565543071161,0.11610486891385768,-0.3445692883895131,0.23595505617977527,-0.29213483146067415,0.2958801498127341,-0.20599250936329588 +4,0.0,0.0,0.13261648745519714,-0.08243727598566308,0.15770609318996415,-0.24731182795698925,0.17921146953405018,-0.3727598566308244,0.15053763440860216,-0.4767025089605735,-0.11469534050179211,-0.4014336917562724,-0.06093189964157706,-0.6308243727598566,-0.035842293906810034,-0.7921146953405018,-0.021505376344086023,-0.9175627240143369,-0.15053763440860216,-0.36917562724014336,-0.06810035842293907,-0.6487455197132617,-0.025089605734767026,-0.8494623655913979,0.010752688172043012,-1.0,-0.13261648745519714,-0.3010752688172043,0.14336917562724014,-0.46236559139784944,0.2616487455197133,-0.3548387096774194,0.30824372759856633,-0.24372759856630824,-0.06451612903225806,-0.21863799283154123,0.14695340501792115,-0.36200716845878134,0.25448028673835127,-0.3046594982078853,0.3046594982078853,-0.2222222222222222 +4,0.0,0.0,0.13380281690140844,-0.10211267605633803,0.15492957746478872,-0.2640845070422535,0.18661971830985916,-0.3908450704225352,0.15845070422535212,-0.49295774647887325,-0.11971830985915492,-0.4154929577464789,-0.05985915492957746,-0.647887323943662,-0.035211267605633804,-0.8063380281690141,-0.02464788732394366,-0.9401408450704225,-0.15492957746478872,-0.38380281690140844,-0.06338028169014084,-0.6584507042253521,-0.02112676056338028,-0.8485915492957746,0.007042253521126761,-1.0,-0.13732394366197184,-0.3204225352112676,0.13732394366197184,-0.4788732394366197,0.2535211267605634,-0.3732394366197183,0.2992957746478873,-0.2640845070422535,-0.07042253521126761,-0.23943661971830985,0.14084507042253522,-0.38028169014084506,0.25,-0.323943661971831,0.2992957746478873,-0.24295774647887325 +4,0.0,0.0,0.11864406779661017,-0.12203389830508475,0.1423728813559322,-0.28135593220338984,0.17288135593220338,-0.4033898305084746,0.1423728813559322,-0.5050847457627119,-0.11186440677966102,-0.4271186440677966,-0.06779661016949153,-0.6474576271186441,-0.04406779661016949,-0.7966101694915254,-0.03728813559322034,-0.9220338983050848,-0.14576271186440679,-0.39661016949152544,-0.06779661016949153,-0.6644067796610169,-0.030508474576271188,-0.8508474576271187,-0.003389830508474576,-1.0,-0.13220338983050847,-0.33559322033898303,0.1288135593220339,-0.4847457627118644,0.23728813559322035,-0.37966101694915255,0.27796610169491526,-0.2745762711864407,-0.06779661016949153,-0.2576271186440678,0.13559322033898305,-0.39322033898305087,0.23728813559322035,-0.33559322033898303,0.27796610169491526,-0.2576271186440678 +4,0.0,0.0,0.12956810631229235,-0.1461794019933555,0.15282392026578073,-0.2956810631229236,0.18604651162790697,-0.4152823920265781,0.16611295681063123,-0.5116279069767442,-0.10299003322259136,-0.4418604651162791,-0.059800664451827246,-0.6611295681063123,-0.036544850498338874,-0.813953488372093,-0.026578073089700997,-0.9401993355481728,-0.1362126245847176,-0.4119601328903654,-0.0664451827242525,-0.6744186046511628,-0.026578073089700997,-0.8604651162790697,0.006644518272425249,-1.0,-0.12292358803986711,-0.3554817275747508,0.12292358803986711,-0.5116279069767442,0.23588039867109634,-0.4152823920265781,0.27906976744186046,-0.3122923588039867,-0.059800664451827246,-0.27906976744186046,0.14285714285714285,-0.4152823920265781,0.23588039867109634,-0.3588039867109635,0.2757475083056478,-0.2757475083056478 +4,0.0,0.0,0.1182108626198083,-0.1853035143769968,0.13738019169329074,-0.329073482428115,0.15654952076677317,-0.44089456869009586,0.12460063897763578,-0.5399361022364217,-0.12140575079872204,-0.4536741214057508,-0.07028753993610223,-0.6645367412140575,-0.04792332268370607,-0.8115015974440895,-0.03514376996805112,-0.9329073482428115,-0.1501597444089457,-0.4249201277955272,-0.07348242811501597,-0.6805111821086262,-0.03194888178913738,-0.8562300319488818,0.003194888178913738,-1.0,-0.13738019169329074,-0.3706070287539936,0.11182108626198083,-0.5143769968051118,0.21725239616613418,-0.4185303514376997,0.26198083067092653,-0.3194888178913738,-0.07667731629392971,-0.3003194888178914,0.10862619808306709,-0.4281150159744409,0.20766773162939298,-0.3865814696485623,0.25878594249201275,-0.31309904153354634 +4,0.0,0.0,0.12693498452012383,-0.19814241486068113,0.15170278637770898,-0.33746130030959753,0.17337461300309598,-0.44891640866873067,0.14551083591331268,-0.544891640866873,-0.09907120743034056,-0.4674922600619195,-0.05572755417956656,-0.6718266253869969,-0.034055727554179564,-0.8142414860681114,-0.021671826625386997,-0.9287925696594427,-0.13312693498452013,-0.44272445820433437,-0.06501547987616099,-0.6904024767801857,-0.02476780185758514,-0.8637770897832817,0.01238390092879257,-1.0,-0.12074303405572756,-0.39009287925696595,0.11145510835913312,-0.5386996904024768,0.21671826625386997,-0.4520123839009288,0.26625386996904027,-0.3591331269349845,-0.06191950464396285,-0.3219814241486068,0.1238390092879257,-0.4520123839009288,0.21671826625386997,-0.4086687306501548,0.2631578947368421,-0.34365325077399383 +4,0.0,0.0,0.13595166163141995,-0.2084592145015106,0.15709969788519637,-0.3504531722054381,0.17522658610271905,-0.4622356495468278,0.14501510574018128,-0.552870090634441,-0.08459214501510574,-0.48036253776435045,-0.03927492447129909,-0.6797583081570997,-0.01812688821752266,-0.8157099697885196,-0.00906344410876133,-0.9274924471299094,-0.12084592145015106,-0.459214501510574,-0.0513595166163142,-0.6978851963746223,-0.012084592145015106,-0.8670694864048338,0.021148036253776436,-1.0,-0.11178247734138973,-0.4078549848942598,0.11782477341389729,-0.5498489425981873,0.2175226586102719,-0.459214501510574,0.256797583081571,-0.36555891238670696,-0.054380664652567974,-0.3413897280966767,0.1299093655589124,-0.46827794561933533,0.22054380664652568,-0.4259818731117825,0.26586102719033233,-0.3595166163141994 +4,0.0,0.0,0.14545454545454545,-0.21818181818181817,0.1606060606060606,-0.36363636363636365,0.1606060606060606,-0.47575757575757577,0.11818181818181818,-0.5727272727272728,-0.07575757575757576,-0.47878787878787876,-0.03333333333333333,-0.6818181818181818,-0.01818181818181818,-0.8242424242424242,-0.015151515151515152,-0.9363636363636364,-0.11818181818181818,-0.46060606060606063,-0.048484848484848485,-0.7,-0.012121212121212121,-0.8727272727272727,0.01818181818181818,-1.0,-0.11515151515151516,-0.4090909090909091,0.11515151515151516,-0.5575757575757576,0.22121212121212122,-0.4666666666666667,0.2696969696969697,-0.37272727272727274,-0.06060606060606061,-0.34545454545454546,0.12727272727272726,-0.4666666666666667,0.23030303030303031,-0.4303030303030303,0.2909090909090909,-0.3696969696969697 +4,0.0,0.0,0.15015015015015015,-0.2042042042042042,0.16516516516516516,-0.3633633633633634,0.16216216216216217,-0.4774774774774775,0.1111111111111111,-0.5585585585585585,-0.07207207207207207,-0.48348348348348347,-0.03003003003003003,-0.6846846846846847,-0.018018018018018018,-0.8258258258258259,-0.018018018018018018,-0.933933933933934,-0.11411411411411411,-0.46546546546546547,-0.04504504504504504,-0.7087087087087087,-0.009009009009009009,-0.8768768768768769,0.015015015015015015,-1.0,-0.11411411411411411,-0.4144144144144144,0.10810810810810811,-0.5675675675675675,0.21021021021021022,-0.47147147147147145,0.24924924924924924,-0.3783783783783784,-0.06006006006006006,-0.3483483483483483,0.12612612612612611,-0.4804804804804805,0.2222222222222222,-0.43543543543543545,0.2702702702702703,-0.36936936936936937 +4,0.0,0.0,0.15015015015015015,-0.2072072072072072,0.16216216216216217,-0.36036036036036034,0.15615615615615616,-0.4744744744744745,0.12312312312312312,-0.5645645645645646,-0.07507507507507508,-0.4894894894894895,-0.03303303303303303,-0.6846846846846847,-0.021021021021021023,-0.8288288288288288,-0.021021021021021023,-0.9369369369369369,-0.11411411411411411,-0.47147147147147145,-0.04804804804804805,-0.7087087087087087,-0.015015015015015015,-0.8768768768768769,0.012012012012012012,-1.0,-0.11411411411411411,-0.42342342342342343,0.10510510510510511,-0.5705705705705706,0.2072072072072072,-0.4774774774774775,0.24624624624624625,-0.38738738738738737,-0.06306306306306306,-0.36036036036036034,0.12312312312312312,-0.4804804804804805,0.2222222222222222,-0.43843843843843844,0.27627627627627627,-0.37237237237237236 +4,0.0,0.0,0.14414414414414414,-0.2072072072072072,0.15015015015015015,-0.36936936936936937,0.14114114114114115,-0.4894894894894895,0.1021021021021021,-0.5765765765765766,-0.07207207207207207,-0.4924924924924925,-0.03003003003003003,-0.6936936936936937,-0.018018018018018018,-0.8348348348348348,-0.021021021021021023,-0.9459459459459459,-0.10810810810810811,-0.4744744744744745,-0.04804804804804805,-0.7147147147147147,-0.015015015015015015,-0.8768768768768769,0.003003003003003003,-1.0,-0.1021021021021021,-0.4264264264264264,0.11411411411411411,-0.5825825825825826,0.21921921921921922,-0.4984984984984985,0.25825825825825827,-0.40540540540540543,-0.04804804804804805,-0.3633633633633634,0.13513513513513514,-0.4924924924924925,0.22822822822822822,-0.45045045045045046,0.27627627627627627,-0.3843843843843844 +4,0.0,0.0,0.14540059347181009,-0.19584569732937684,0.17210682492581603,-0.34124629080118696,0.18397626112759644,-0.4540059347181009,0.17507418397626112,-0.5370919881305638,-0.06824925816023739,-0.486646884272997,-0.02373887240356083,-0.6795252225519288,-0.011869436201780416,-0.8219584569732937,-0.01483679525222552,-0.9287833827893175,-0.10385756676557864,-0.47477744807121663,-0.03857566765578635,-0.712166172106825,-0.011869436201780416,-0.8783382789317508,0.008902077151335312,-1.0,-0.09792284866468842,-0.43026706231454004,0.11572700296735905,-0.5816023738872403,0.2166172106824926,-0.49258160237388726,0.2551928783382789,-0.4035608308605341,-0.04451038575667656,-0.36795252225519287,0.13649851632047477,-0.4896142433234421,0.2344213649851632,-0.44807121661721067,0.29080118694362017,-0.3857566765578635 +4,0.0,0.0,0.14114114114114115,-0.1981981981981982,0.15915915915915915,-0.34534534534534533,0.16816816816816818,-0.45645645645645644,0.16516516516516516,-0.5285285285285285,-0.08108108108108109,-0.4894894894894895,-0.042042042042042045,-0.6816816816816816,-0.03303303303303303,-0.8228228228228228,-0.03003003003003003,-0.933933933933934,-0.10810810810810811,-0.4774774774774775,-0.05105105105105105,-0.7147147147147147,-0.024024024024024024,-0.8798798798798799,-0.003003003003003003,-1.0,-0.0990990990990991,-0.43543543543543545,0.11711711711711711,-0.5885885885885885,0.21921921921921922,-0.4924924924924925,0.2552552552552553,-0.3963963963963964,-0.03903903903903904,-0.37237237237237236,0.13513513513513514,-0.5045045045045045,0.23123123123123124,-0.4594594594594595,0.2852852852852853,-0.38738738738738737 +4,0.0,0.0,0.11428571428571428,-0.2126984126984127,0.13015873015873017,-0.38095238095238093,0.11428571428571428,-0.5015873015873016,0.06031746031746032,-0.5523809523809524,-0.12063492063492064,-0.5111111111111111,-0.08888888888888889,-0.7015873015873015,-0.07936507936507936,-0.8412698412698413,-0.07301587301587302,-0.946031746031746,-0.1619047619047619,-0.48253968253968255,-0.11428571428571428,-0.7111111111111111,-0.08888888888888889,-0.8761904761904762,-0.06031746031746032,-1.0,-0.15555555555555556,-0.4253968253968254,0.06031746031746032,-0.5936507936507937,0.1523809523809524,-0.4984126984126984,0.1746031746031746,-0.4158730158730159,-0.08888888888888889,-0.35555555555555557,0.09206349206349207,-0.5079365079365079,0.19047619047619047,-0.45714285714285713,0.24126984126984127,-0.3904761904761905 +4,0.0,0.0,0.0981012658227848,-0.2120253164556962,0.11392405063291139,-0.3860759493670886,0.0949367088607595,-0.5126582278481012,0.056962025316455694,-0.5727848101265823,-0.12974683544303797,-0.4936708860759494,-0.10126582278481013,-0.680379746835443,-0.08860759493670886,-0.8164556962025317,-0.08544303797468354,-0.9208860759493671,-0.16772151898734178,-0.4810126582278481,-0.12341772151898735,-0.7025316455696202,-0.10126582278481013,-0.870253164556962,-0.07911392405063292,-1.0,-0.16772151898734178,-0.43354430379746833,0.04746835443037975,-0.6044303797468354,0.14556962025316456,-0.5063291139240507,0.17721518987341772,-0.4240506329113924,-0.10759493670886076,-0.37341772151898733,0.07278481012658228,-0.5253164556962026,0.16455696202531644,-0.47468354430379744,0.2120253164556962,-0.40822784810126583 +4,0.0,0.0,0.10062893081761007,-0.20440251572327045,0.1289308176100629,-0.3742138364779874,0.12578616352201258,-0.5031446540880503,0.06918238993710692,-0.5471698113207547,-0.12578616352201258,-0.5,-0.10062893081761007,-0.6823899371069182,-0.09433962264150944,-0.8207547169811321,-0.09119496855345911,-0.9213836477987422,-0.17295597484276728,-0.4811320754716981,-0.13522012578616352,-0.7012578616352201,-0.11006289308176101,-0.8710691823899371,-0.08490566037735849,-1.0,-0.18553459119496854,-0.4308176100628931,0.02830188679245283,-0.5911949685534591,0.1289308176100629,-0.5,0.15723270440251572,-0.42452830188679247,-0.13522012578616352,-0.36163522012578614,0.050314465408805034,-0.5062893081761006,0.1540880503144654,-0.46540880503144655,0.20754716981132076,-0.4088050314465409 +4,0.0,0.0,0.12158054711246201,-0.19148936170212766,0.1519756838905775,-0.3525835866261398,0.16717325227963525,-0.47720364741641336,0.11550151975683891,-0.5440729483282675,-0.10030395136778116,-0.49240121580547114,-0.07598784194528875,-0.6838905775075987,-0.0729483282674772,-0.817629179331307,-0.0851063829787234,-0.9240121580547113,-0.14893617021276595,-0.47720364741641336,-0.0911854103343465,-0.7082066869300911,-0.0668693009118541,-0.8723404255319149,-0.0547112462006079,-1.0,-0.16109422492401215,-0.425531914893617,0.03951367781155015,-0.5805471124620061,0.14893617021276595,-0.48328267477203646,0.18541033434650456,-0.3951367781155015,-0.11550151975683891,-0.3556231003039514,0.0425531914893617,-0.5015197568389058,0.1519756838905775,-0.46808510638297873,0.21580547112462006,-0.4133738601823708 +4,0.0,0.0,0.13595166163141995,-0.1903323262839879,0.17522658610271905,-0.3474320241691843,0.19939577039274925,-0.4652567975830816,0.1540785498489426,-0.5287009063444109,-0.0634441087613293,-0.5045317220543807,-0.045317220543806644,-0.6948640483383686,-0.045317220543806644,-0.8277945619335347,-0.05740181268882175,-0.9335347432024169,-0.12386706948640483,-0.486404833836858,-0.0755287009063444,-0.7190332326283988,-0.0513595166163142,-0.8761329305135952,-0.04229607250755287,-1.0,-0.1510574018126888,-0.4350453172205438,0.054380664652567974,-0.5800604229607251,0.1661631419939577,-0.47129909365558914,0.20241691842900303,-0.3806646525679758,-0.12386706948640483,-0.36253776435045315,0.04833836858006042,-0.49244712990936557,0.15709969788519637,-0.4501510574018127,0.22054380664652568,-0.3867069486404834 +4,0.0,0.0,0.13149847094801223,-0.18042813455657492,0.18654434250764526,-0.3333333333333333,0.2324159021406728,-0.4617737003058104,0.18960244648318042,-0.5259938837920489,-0.06422018348623854,-0.4984709480122324,-0.045871559633027525,-0.6880733944954128,-0.045871559633027525,-0.8256880733944955,-0.05504587155963303,-0.9327217125382263,-0.13149847094801223,-0.4801223241590214,-0.08868501529051988,-0.709480122324159,-0.06422018348623854,-0.8715596330275229,-0.0581039755351682,-1.0,-0.16819571865443425,-0.43119266055045874,0.039755351681957186,-0.581039755351682,0.15902140672782875,-0.4709480122324159,0.2018348623853211,-0.3761467889908257,-0.14984709480122324,-0.36085626911314983,0.01834862385321101,-0.4892966360856269,0.12844036697247707,-0.44648318042813456,0.1926605504587156,-0.382262996941896 +4,0.0,0.0,0.13719512195121952,-0.18902439024390244,0.20121951219512196,-0.35365853658536583,0.2347560975609756,-0.49390243902439024,0.1951219512195122,-0.5335365853658537,-0.057926829268292686,-0.5152439024390244,-0.036585365853658534,-0.7073170731707317,-0.03048780487804878,-0.8536585365853658,-0.036585365853658534,-0.9664634146341463,-0.12195121951219512,-0.49085365853658536,-0.07621951219512195,-0.7164634146341463,-0.04573170731707317,-0.8689024390243902,-0.039634146341463415,-1.0,-0.15853658536585366,-0.4420731707317073,0.03048780487804878,-0.6128048780487805,0.14634146341463414,-0.5030487804878049,0.17682926829268292,-0.4024390243902439,-0.14329268292682926,-0.36890243902439024,0.021341463414634148,-0.5182926829268293,0.13414634146341464,-0.4725609756097561,0.19207317073170732,-0.3932926829268293 +4,0.0,0.0,0.1347305389221557,-0.18263473053892215,0.18862275449101795,-0.3502994011976048,0.2215568862275449,-0.48502994011976047,0.18263473053892215,-0.5209580838323353,-0.0718562874251497,-0.4880239520958084,-0.038922155688622756,-0.688622754491018,-0.03293413173652695,-0.8323353293413174,-0.04790419161676647,-0.9431137724550899,-0.1347305389221557,-0.46706586826347307,-0.0718562874251497,-0.7155688622754491,-0.04491017964071856,-0.8712574850299402,-0.04491017964071856,-1.0,-0.16766467065868262,-0.4221556886227545,0.03293413173652695,-0.5958083832335329,0.1497005988023952,-0.4880239520958084,0.19760479041916168,-0.38922155688622756,-0.1497005988023952,-0.3562874251497006,0.008982035928143712,-0.5,0.11377245508982035,-0.4491017964071856,0.17365269461077845,-0.3772455089820359 +4,0.0,0.0,0.12844036697247707,-0.17737003058103976,0.1834862385321101,-0.3577981651376147,0.21406727828746178,-0.4892966360856269,0.15902140672782875,-0.5045871559633027,-0.07951070336391437,-0.5229357798165137,-0.06422018348623854,-0.709480122324159,-0.06422018348623854,-0.8470948012232415,-0.07951070336391437,-0.9510703363914373,-0.14984709480122324,-0.4923547400611621,-0.09785932721712538,-0.7308868501529052,-0.07339449541284404,-0.8807339449541285,-0.07339449541284404,-1.0,-0.19571865443425077,-0.43425076452599387,0.0030581039755351682,-0.5902140672782875,0.12844036697247707,-0.47706422018348627,0.1743119266055046,-0.37920489296636084,-0.18654434250764526,-0.3547400611620795,-0.021406727828746176,-0.4923547400611621,0.08256880733944955,-0.43119266055045874,0.14067278287461774,-0.3547400611620795 +4,0.0,0.0,0.12232415902140673,-0.16819571865443425,0.17737003058103976,-0.3516819571865443,0.20795107033639143,-0.4923547400611621,0.14678899082568808,-0.5076452599388379,-0.06422018348623854,-0.5168195718654435,-0.0581039755351682,-0.709480122324159,-0.0581039755351682,-0.8470948012232415,-0.07339449541284404,-0.9510703363914373,-0.13761467889908258,-0.4892966360856269,-0.11009174311926606,-0.7308868501529052,-0.08868501529051988,-0.8807339449541285,-0.08256880733944955,-1.0,-0.18960244648318042,-0.43119266055045874,-0.01834862385321101,-0.5963302752293578,0.10091743119266056,-0.4801223241590214,0.1437308868501529,-0.382262996941896,-0.1926605504587156,-0.3547400611620795,-0.03363914373088685,-0.4923547400611621,0.07033639143730887,-0.42813455657492355,0.11926605504587157,-0.3516819571865443 +4,0.0,0.0,-0.16901408450704225,-0.08098591549295775,-0.23591549295774647,-0.24295774647887325,-0.29577464788732394,-0.34507042253521125,-0.34507042253521125,-0.352112676056338,-0.028169014084507043,-0.45774647887323944,-0.08450704225352113,-0.6795774647887324,-0.13028169014084506,-0.8380281690140845,-0.16549295774647887,-0.9647887323943662,0.04225352112676056,-0.41901408450704225,-0.014084507042253521,-0.676056338028169,-0.09507042253521127,-0.8556338028169014,-0.14788732394366197,-1.0,0.06338028169014084,-0.3204225352112676,-0.1619718309859155,-0.4964788732394366,-0.2676056338028169,-0.3767605633802817,-0.2887323943661972,-0.2887323943661972,0.03169014084507042,-0.1936619718309859,-0.1795774647887324,-0.3204225352112676,-0.25704225352112675,-0.25,-0.25704225352112675,-0.176056338028169 +4,0.0,0.0,-0.20408163265306123,-0.034013605442176874,-0.2755102040816326,-0.2108843537414966,-0.3469387755102041,-0.3333333333333333,-0.445578231292517,-0.3877551020408163,-0.07142857142857142,-0.445578231292517,-0.1360544217687075,-0.673469387755102,-0.17346938775510204,-0.8333333333333334,-0.20748299319727892,-0.9659863945578231,-0.003401360544217687,-0.3877551020408163,-0.09523809523809523,-0.6598639455782312,-0.16666666666666666,-0.8503401360544217,-0.21428571428571427,-1.0,0.013605442176870748,-0.2925170068027211,-0.2108843537414966,-0.5034013605442177,-0.3299319727891156,-0.3877551020408163,-0.36054421768707484,-0.29591836734693877,-0.017006802721088437,-0.17346938775510204,-0.23129251700680273,-0.32653061224489793,-0.29931972789115646,-0.24489795918367346,-0.29591836734693877,-0.1564625850340136 +4,0.0,0.0,-0.1858974358974359,-0.07692307692307693,-0.2467948717948718,-0.24358974358974358,-0.3108974358974359,-0.3557692307692308,-0.375,-0.40705128205128205,-0.041666666666666664,-0.46474358974358976,-0.08653846153846154,-0.6891025641025641,-0.11217948717948718,-0.8461538461538461,-0.13141025641025642,-0.967948717948718,0.016025641025641024,-0.41346153846153844,-0.07371794871794872,-0.6794871794871795,-0.14423076923076922,-0.8653846153846154,-0.1891025641025641,-1.0,0.022435897435897436,-0.32371794871794873,-0.18269230769230768,-0.5288461538461539,-0.2948717948717949,-0.4326923076923077,-0.3301282051282051,-0.34935897435897434,-0.01282051282051282,-0.21794871794871795,-0.20192307692307693,-0.3685897435897436,-0.2724358974358974,-0.2948717948717949,-0.27564102564102566,-0.21153846153846154 +4,0.0,0.0,-0.17891373801916932,-0.09584664536741214,-0.2364217252396166,-0.2715654952076677,-0.29073482428115016,-0.3865814696485623,-0.34824281150159747,-0.4249201277955272,-0.038338658146964855,-0.48562300319488816,-0.07667731629392971,-0.7028753993610224,-0.09904153354632587,-0.8594249201277955,-0.12140575079872204,-0.9840255591054313,0.025559105431309903,-0.43130990415335463,-0.06389776357827476,-0.6837060702875399,-0.13099041533546327,-0.865814696485623,-0.17252396166134185,-1.0,0.03514376996805112,-0.34185303514376997,-0.16932907348242812,-0.5399361022364217,-0.28115015974440893,-0.43769968051118213,-0.31309904153354634,-0.3546325878594249,0.003194888178913738,-0.23003194888178913,-0.18849840255591055,-0.3738019169329074,-0.25559105431309903,-0.3003194888178914,-0.25559105431309903,-0.22364217252396165 +4,0.0,0.0,-0.1620795107033639,-0.11926605504587157,-0.22018348623853212,-0.2996941896024465,-0.27522935779816515,-0.41590214067278286,-0.30275229357798167,-0.4434250764525994,-0.04281345565749235,-0.5107033639143731,-0.07339449541284404,-0.7125382262996942,-0.09480122324159021,-0.8623853211009175,-0.11314984709480122,-0.9785932721712538,0.01834862385321101,-0.4648318042813456,-0.04892966360856269,-0.6941896024464832,-0.10397553516819572,-0.8685015290519877,-0.14067278287461774,-1.0,0.03669724770642202,-0.3761467889908257,-0.13149847094801223,-0.5596330275229358,-0.23547400611620795,-0.4617737003058104,-0.2599388379204893,-0.382262996941896,0.01529051987767584,-0.26605504587155965,-0.14984709480122324,-0.41284403669724773,-0.22018348623853212,-0.345565749235474,-0.22629969418960244,-0.26605504587155965 +4,0.0,0.0,-0.1276595744680851,-0.1458966565349544,-0.1884498480243161,-0.3161094224924012,-0.23100303951367782,-0.42857142857142855,-0.2066869300911854,-0.46200607902735563,-0.0060790273556231,-0.5349544072948328,-0.0486322188449848,-0.7173252279635258,-0.06990881458966565,-0.8571428571428571,-0.08814589665653495,-0.9604863221884499,0.06990881458966565,-0.48936170212765956,0.0243161094224924,-0.7112462006079028,-0.02735562310030395,-0.8814589665653495,-0.060790273556231005,-1.0,0.1033434650455927,-0.41033434650455924,-0.0547112462006079,-0.574468085106383,-0.14285714285714285,-0.46808510638297873,-0.16109422492401215,-0.3890577507598784,0.0911854103343465,-0.303951367781155,-0.07598784194528875,-0.45288753799392095,-0.1458966565349544,-0.3768996960486322,-0.1519756838905775,-0.3009118541033435 +4,0.0,0.0,-0.11926605504587157,-0.13149847094801223,-0.17737003058103976,-0.2966360856269113,-0.22018348623853212,-0.4036697247706422,-0.20489296636085627,-0.4525993883792049,-0.0061162079510703364,-0.5290519877675841,-0.045871559633027525,-0.7125382262996942,-0.0672782874617737,-0.8501529051987767,-0.07951070336391437,-0.9571865443425076,0.07339449541284404,-0.48623853211009177,0.024464831804281346,-0.7064220183486238,-0.01834862385321101,-0.8776758409785933,-0.04281345565749235,-1.0,0.10703363914373089,-0.40672782874617736,-0.045871559633027525,-0.5657492354740061,-0.1345565749235474,-0.45871559633027525,-0.14984709480122324,-0.37920489296636084,0.10091743119266056,-0.30275229357798167,-0.0672782874617737,-0.4434250764525994,-0.1345565749235474,-0.3669724770642202,-0.14067278287461774,-0.29357798165137616 +4,0.0,0.0,-0.1540785498489426,-0.12084592145015106,-0.22054380664652568,-0.283987915407855,-0.25075528700906347,-0.38972809667673713,-0.19939577039274925,-0.4622356495468278,-0.0634441087613293,-0.5045317220543807,-0.09969788519637462,-0.716012084592145,-0.1148036253776435,-0.8489425981873112,-0.12084592145015106,-0.9607250755287009,0.015105740181268883,-0.4773413897280967,-0.0030211480362537764,-0.7190332326283988,-0.03323262839879154,-0.8731117824773413,-0.04833836858006042,-1.0,0.0755287009063444,-0.4108761329305136,-0.03323262839879154,-0.5740181268882175,-0.11782477341389729,-0.4561933534743202,-0.14501510574018128,-0.36555891238670696,0.09667673716012085,-0.3202416918429003,-0.030211480362537766,-0.4561933534743202,-0.10574018126888217,-0.3776435045317221,-0.12386706948640483,-0.29607250755287007 +4,0.0,0.0,-0.16417910447761194,-0.11343283582089553,-0.23880597014925373,-0.2865671641791045,-0.2656716417910448,-0.3970149253731343,-0.21194029850746268,-0.4626865671641791,-0.08656716417910448,-0.4925373134328358,-0.1253731343283582,-0.7074626865671642,-0.14328358208955225,-0.8388059701492537,-0.14626865671641792,-0.9492537313432836,-0.008955223880597015,-0.46865671641791046,-0.026865671641791045,-0.7194029850746269,-0.056716417910447764,-0.8746268656716418,-0.07462686567164178,-1.0,0.05373134328358209,-0.408955223880597,-0.05373134328358209,-0.5701492537313433,-0.13432835820895522,-0.44776119402985076,-0.1582089552238806,-0.35522388059701493,0.08358208955223881,-0.3164179104477612,-0.03880597014925373,-0.45671641791044776,-0.11044776119402985,-0.373134328358209,-0.12835820895522387,-0.28955223880597014 +4,0.0,0.0,-0.13225806451612904,-0.06774193548387097,-0.1967741935483871,-0.23225806451612904,-0.21935483870967742,-0.34838709677419355,-0.16774193548387098,-0.4129032258064516,-0.02258064516129032,-0.4612903225806452,-0.06129032258064516,-0.6709677419354839,-0.08064516129032258,-0.8129032258064516,-0.0935483870967742,-0.9258064516129032,0.06129032258064516,-0.44193548387096776,0.05161290322580645,-0.6870967741935484,0.0,-0.8612903225806452,-0.03225806451612903,-1.0,0.12580645161290321,-0.3774193548387097,0.0,-0.5419354838709678,-0.0935483870967742,-0.4129032258064516,-0.11290322580645161,-0.3096774193548387,0.15806451612903225,-0.2870967741935484,0.02258064516129032,-0.4129032258064516,-0.06129032258064516,-0.3225806451612903,-0.08064516129032258,-0.23225806451612904 +4,0.0,0.0,-0.1588235294117647,-0.12352941176470589,-0.22941176470588234,-0.2911764705882353,-0.25882352941176473,-0.39705882352941174,-0.21176470588235294,-0.47058823529411764,-0.08235294117647059,-0.4970588235294118,-0.12352941176470589,-0.7147058823529412,-0.14411764705882352,-0.8441176470588235,-0.14705882352941177,-0.9558823529411765,-0.0058823529411764705,-0.4764705882352941,-0.026470588235294117,-0.7264705882352941,-0.061764705882352944,-0.8764705882352941,-0.07647058823529412,-1.0,0.052941176470588235,-0.4176470588235294,-0.052941176470588235,-0.5852941176470589,-0.13529411764705881,-0.4647058823529412,-0.16176470588235295,-0.37058823529411766,0.07941176470588235,-0.32941176470588235,-0.041176470588235294,-0.47058823529411764,-0.11470588235294117,-0.38823529411764707,-0.1323529411764706,-0.3029411764705882 +4,0.0,0.0,-0.16129032258064516,-0.1378299120234604,-0.2316715542521994,-0.2991202346041056,-0.26392961876832843,-0.40762463343108507,-0.22287390029325513,-0.4780058651026393,-0.08797653958944282,-0.5073313782991202,-0.1348973607038123,-0.7096774193548387,-0.15249266862170088,-0.8328445747800587,-0.15542521994134897,-0.9413489736070382,-0.011730205278592375,-0.4868035190615836,-0.03519061583577713,-0.7302052785923754,-0.07038123167155426,-0.8797653958944281,-0.08797653958944282,-1.0,0.0469208211143695,-0.4281524926686217,-0.06451612903225806,-0.592375366568915,-0.15249266862170088,-0.47214076246334313,-0.17888563049853373,-0.3782991202346041,0.07331378299120235,-0.33724340175953077,-0.05278592375366569,-0.4750733137829912,-0.12609970674486803,-0.39296187683284456,-0.1436950146627566,-0.30498533724340177 +4,0.0,0.0,-0.16279069767441862,-0.13372093023255813,-0.22965116279069767,-0.28488372093023256,-0.26453488372093026,-0.38372093023255816,-0.25,-0.4563953488372093,-0.09011627906976744,-0.502906976744186,-0.125,-0.7005813953488372,-0.14244186046511628,-0.8284883720930233,-0.14534883720930233,-0.938953488372093,-0.01744186046511628,-0.48255813953488375,-0.0377906976744186,-0.7151162790697675,-0.07848837209302326,-0.872093023255814,-0.09593023255813954,-1.0,0.0377906976744186,-0.42441860465116277,-0.0755813953488372,-0.5813953488372093,-0.1569767441860465,-0.4622093023255814,-0.18023255813953487,-0.37209302325581395,0.06395348837209303,-0.3313953488372093,-0.061046511627906974,-0.47093023255813954,-0.1308139534883721,-0.38953488372093026,-0.14244186046511628,-0.3023255813953488 +4,0.0,0.0,-0.16184971098265896,-0.14739884393063585,-0.22832369942196531,-0.2976878612716763,-0.26878612716763006,-0.3988439306358382,-0.2543352601156069,-0.4682080924855491,-0.08092485549132948,-0.5057803468208093,-0.11271676300578035,-0.6994219653179191,-0.1329479768786127,-0.8265895953757225,-0.13583815028901733,-0.9335260115606936,-0.011560693641618497,-0.4884393063583815,-0.03757225433526012,-0.7225433526011561,-0.07803468208092486,-0.8757225433526011,-0.09826589595375723,-1.0,0.03757225433526012,-0.430635838150289,-0.07803468208092486,-0.5953757225433526,-0.15895953757225434,-0.47398843930635837,-0.18208092485549132,-0.3815028901734104,0.05491329479768786,-0.3439306358381503,-0.07225433526011561,-0.48265895953757226,-0.14450867052023122,-0.40173410404624277,-0.15606936416184972,-0.315028901734104 +4,0.0,0.0,-0.16913946587537093,-0.1572700296735905,-0.26112759643916916,-0.29376854599406527,-0.3115727002967359,-0.39762611275964393,-0.27299703264094954,-0.4658753709198813,-0.10979228486646884,-0.5133531157270029,-0.1513353115727003,-0.7002967359050445,-0.16913946587537093,-0.8219584569732937,-0.16913946587537093,-0.9258160237388724,-0.032640949554896145,-0.49554896142433236,-0.05934718100890208,-0.7299703264094956,-0.09792284866468842,-0.8813056379821959,-0.11572700296735905,-1.0,0.02373887240356083,-0.4391691394658754,-0.09792284866468842,-0.5875370919881305,-0.18397626112759644,-0.4688427299703264,-0.20771513353115728,-0.37388724035608306,0.04451038575667656,-0.35311572700296734,-0.08902077151335312,-0.4836795252225519,-0.1632047477744807,-0.4065281899109792,-0.18100890207715134,-0.31750741839762614 +4,0.0,0.0,-0.17507418397626112,-0.1513353115727003,-0.26409495548961426,-0.29673590504451036,-0.3115727002967359,-0.39762611275964393,-0.27596439169139464,-0.4836795252225519,-0.08902077151335312,-0.5133531157270029,-0.1394658753709199,-0.6943620178041543,-0.1661721068249258,-0.8160237388724035,-0.17210682492581603,-0.9169139465875371,-0.017804154302670624,-0.49851632047477745,-0.050445103857566766,-0.7388724035608308,-0.09198813056379822,-0.884272997032641,-0.10979228486646884,-1.0,0.02967359050445104,-0.44510385756676557,-0.10385756676557864,-0.5905044510385756,-0.18991097922848665,-0.47477744807121663,-0.21068249258160238,-0.3768545994065282,0.03857566765578635,-0.3620178041543027,-0.10089020771513353,-0.4896142433234421,-0.17210682492581603,-0.4094955489614243,-0.18991097922848665,-0.3264094955489614 +4,0.0,0.0,-0.18289085545722714,-0.1592920353982301,-0.26843657817109146,-0.30383480825958703,-0.3185840707964602,-0.40707964601769914,-0.2920353982300885,-0.4837758112094395,-0.0855457227138643,-0.5103244837758112,-0.13864306784660768,-0.6932153392330384,-0.16224188790560473,-0.8171091445427728,-0.1710914454277286,-0.9203539823008849,-0.014749262536873156,-0.49262536873156343,-0.05604719764011799,-0.7286135693215339,-0.10029498525073746,-0.8820058997050148,-0.12389380530973451,-1.0,0.029498525073746312,-0.43952802359882004,-0.11799410029498525,-0.584070796460177,-0.20058997050147492,-0.471976401179941,-0.22123893805309736,-0.3775811209439528,0.029498525073746312,-0.35693215339233036,-0.11504424778761062,-0.48672566371681414,-0.18289085545722714,-0.41002949852507375,-0.19469026548672566,-0.3274336283185841 +4,0.0,0.0,-0.17941176470588235,-0.16470588235294117,-0.25588235294117645,-0.31176470588235294,-0.3088235294117647,-0.40588235294117647,-0.3058823529411765,-0.4852941176470588,-0.08529411764705883,-0.5058823529411764,-0.14411764705882352,-0.7,-0.17058823529411765,-0.8264705882352941,-0.18529411764705883,-0.9294117647058824,-0.020588235294117647,-0.49117647058823527,-0.07352941176470588,-0.7264705882352941,-0.12352941176470589,-0.8823529411764706,-0.15294117647058825,-1.0,0.014705882352941176,-0.43823529411764706,-0.13823529411764707,-0.5941176470588235,-0.21176470588235294,-0.47941176470588237,-0.22647058823529412,-0.38823529411764707,0.014705882352941176,-0.3588235294117647,-0.13529411764705881,-0.4970588235294118,-0.2,-0.4147058823529412,-0.20588235294117646,-0.32941176470588235 +4,0.0,0.0,-0.17888563049853373,-0.16129032258064516,-0.24926686217008798,-0.31671554252199413,-0.2932551319648094,-0.41642228739002934,-0.3020527859237537,-0.4838709677419355,-0.07624633431085044,-0.5131964809384164,-0.12316715542521994,-0.7067448680351907,-0.15249266862170088,-0.8387096774193549,-0.17008797653958943,-0.9413489736070382,-0.01466275659824047,-0.49560117302052786,-0.05571847507331378,-0.7243401759530792,-0.10850439882697947,-0.8797653958944281,-0.14076246334310852,-1.0,0.020527859237536656,-0.4398826979472141,-0.12903225806451613,-0.5894428152492669,-0.20234604105571846,-0.4809384164222874,-0.21700879765395895,-0.39882697947214074,0.017595307917888565,-0.3519061583577713,-0.1348973607038123,-0.4868035190615836,-0.19941348973607037,-0.41055718475073316,-0.20527859237536658,-0.3313782991202346 +4,0.0,0.0,-0.17804154302670624,-0.1632047477744807,-0.2433234421364985,-0.32344213649851633,-0.2789317507418398,-0.42433234421364985,-0.27299703264094954,-0.4896142433234421,-0.08011869436201781,-0.5192878338278932,-0.12759643916913946,-0.712166172106825,-0.1543026706231454,-0.8427299703264095,-0.16913946587537093,-0.9465875370919882,-0.008902077151335312,-0.49851632047477745,-0.04154302670623145,-0.7299703264094956,-0.08902077151335312,-0.8813056379821959,-0.11869436201780416,-1.0,0.032640949554896145,-0.4391691394658754,-0.10979228486646884,-0.599406528189911,-0.18694362017804153,-0.4896142433234421,-0.20771513353115728,-0.4065281899109792,0.03560830860534125,-0.35014836795252224,-0.11572700296735905,-0.47774480712166173,-0.18100890207715134,-0.4094955489614243,-0.19287833827893175,-0.3323442136498516 +4,0.0,0.0,-0.17751479289940827,-0.16272189349112426,-0.2455621301775148,-0.33136094674556216,-0.2781065088757396,-0.4349112426035503,-0.26627218934911245,-0.4881656804733728,-0.07988165680473373,-0.5207100591715976,-0.1242603550295858,-0.7100591715976331,-0.15088757396449703,-0.834319526627219,-0.16863905325443787,-0.9378698224852071,-0.008875739644970414,-0.5,-0.038461538461538464,-0.7307692307692307,-0.07988165680473373,-0.8816568047337278,-0.10946745562130178,-1.0,0.03550295857988166,-0.4408284023668639,-0.10355029585798817,-0.5976331360946746,-0.1893491124260355,-0.4911242603550296,-0.21301775147928995,-0.40532544378698226,0.04142011834319527,-0.3520710059171598,-0.10946745562130178,-0.47928994082840237,-0.17455621301775148,-0.40828402366863903,-0.1893491124260355,-0.3343195266272189 +4,0.0,0.0,-0.17888563049853373,-0.17008797653958943,-0.25219941348973607,-0.3343108504398827,-0.2932551319648094,-0.44574780058651026,-0.24633431085043989,-0.49560117302052786,-0.06158357771260997,-0.5219941348973607,-0.11436950146627566,-0.7214076246334311,-0.14076246334310852,-0.8504398826979472,-0.16422287390029325,-0.9530791788856305,0.011730205278592375,-0.49560117302052786,-0.020527859237536656,-0.7331378299120235,-0.07038123167155426,-0.8826979472140762,-0.10263929618768329,-1.0,0.05278592375366569,-0.4340175953079179,-0.09090909090909091,-0.6011730205278593,-0.17595307917888564,-0.4897360703812317,-0.1935483870967742,-0.4046920821114369,0.04985337243401759,-0.3519061583577713,-0.09970674486803519,-0.4897360703812317,-0.16715542521994134,-0.41642228739002934,-0.17595307917888564,-0.33724340175953077 +4,0.0,0.0,-0.17251461988304093,-0.17251461988304093,-0.24561403508771928,-0.34502923976608185,-0.28362573099415206,-0.4619883040935672,-0.2309941520467836,-0.49415204678362573,-0.05847953216374269,-0.5321637426900585,-0.1023391812865497,-0.7251461988304093,-0.1286549707602339,-0.847953216374269,-0.15204678362573099,-0.9473684210526315,0.014619883040935672,-0.5058479532163743,-0.005847953216374269,-0.7368421052631579,-0.05555555555555555,-0.8859649122807017,-0.0847953216374269,-1.0,0.05555555555555555,-0.4415204678362573,-0.08187134502923976,-0.6052631578947368,-0.1608187134502924,-0.49122807017543857,-0.1783625730994152,-0.4093567251461988,0.05847953216374269,-0.3508771929824561,-0.08187134502923976,-0.49122807017543857,-0.14619883040935672,-0.41812865497076024,-0.15497076023391812,-0.34210526315789475 +4,0.0,0.0,-0.16231884057971013,-0.1681159420289855,-0.2289855072463768,-0.3391304347826087,-0.2608695652173913,-0.45217391304347826,-0.20579710144927535,-0.48695652173913045,-0.0463768115942029,-0.527536231884058,-0.08695652173913043,-0.7188405797101449,-0.10434782608695652,-0.8434782608695652,-0.11594202898550725,-0.9478260869565217,0.03188405797101449,-0.5014492753623189,0.005797101449275362,-0.7275362318840579,-0.034782608695652174,-0.881159420289855,-0.06086956521739131,-1.0,0.0782608695652174,-0.43768115942028984,-0.057971014492753624,-0.6057971014492753,-0.14202898550724638,-0.48695652173913045,-0.15942028985507245,-0.4,0.08405797101449275,-0.34782608695652173,-0.057971014492753624,-0.48985507246376814,-0.1246376811594203,-0.4144927536231884,-0.13623188405797101,-0.3333333333333333 +4,0.0,0.0,-0.15743440233236153,-0.1661807580174927,-0.22448979591836735,-0.33819241982507287,-0.2536443148688047,-0.4518950437317784,-0.19825072886297376,-0.49854227405247814,-0.043731778425655975,-0.5335276967930029,-0.07871720116618076,-0.7288629737609329,-0.09037900874635568,-0.8542274052478134,-0.09620991253644315,-0.9591836734693877,0.03206997084548105,-0.5043731778425656,0.014577259475218658,-0.7317784256559767,-0.023323615160349854,-0.880466472303207,-0.043731778425655975,-1.0,0.07871720116618076,-0.4402332361516035,-0.043731778425655975,-0.6034985422740525,-0.1282798833819242,-0.4897959183673469,-0.14868804664723032,-0.40524781341107874,0.09037900874635568,-0.3498542274052478,-0.04664723032069971,-0.4897959183673469,-0.11370262390670553,-0.4139941690962099,-0.1282798833819242,-0.33819241982507287 +4,0.0,0.0,-0.15588235294117647,-0.17058823529411765,-0.21764705882352942,-0.35,-0.24705882352941178,-0.47352941176470587,-0.18235294117647058,-0.4970588235294118,-0.04411764705882353,-0.5441176470588235,-0.06470588235294118,-0.7323529411764705,-0.07058823529411765,-0.8529411764705882,-0.07058823529411765,-0.9529411764705882,0.03823529411764706,-0.5117647058823529,0.04411764705882353,-0.7352941176470589,0.014705882352941176,-0.8852941176470588,-0.0058823529411764705,-1.0,0.09117647058823529,-0.4441176470588235,-0.0058823529411764705,-0.6088235294117647,-0.10294117647058823,-0.49411764705882355,-0.1323529411764706,-0.40294117647058825,0.10588235294117647,-0.35,-0.008823529411764706,-0.49411764705882355,-0.08529411764705883,-0.42058823529411765,-0.10588235294117647,-0.3382352941176471 +4,0.0,0.0,-0.14583333333333334,-0.16666666666666666,-0.20535714285714285,-0.35119047619047616,-0.23214285714285715,-0.46726190476190477,-0.17261904761904762,-0.4880952380952381,-0.03273809523809524,-0.5446428571428571,-0.050595238095238096,-0.7380952380952381,-0.050595238095238096,-0.8630952380952381,-0.047619047619047616,-0.9613095238095238,0.050595238095238096,-0.5148809523809523,0.05654761904761905,-0.7351190476190477,0.02976190476190476,-0.8839285714285714,0.011904761904761904,-1.0,0.10714285714285714,-0.44642857142857145,0.002976190476190476,-0.6130952380952381,-0.09226190476190477,-0.49404761904761907,-0.12202380952380952,-0.4017857142857143,0.12797619047619047,-0.3482142857142857,0.005952380952380952,-0.49107142857142855,-0.07142857142857142,-0.41369047619047616,-0.08630952380952381,-0.3333333333333333 +4,0.0,0.0,-0.15088757396449703,-0.16568047337278108,-0.21301775147928995,-0.34911242603550297,-0.24260355029585798,-0.46745562130177515,-0.1834319526627219,-0.4940828402366864,-0.038461538461538464,-0.5443786982248521,-0.05917159763313609,-0.7366863905325444,-0.0621301775147929,-0.8609467455621301,-0.0621301775147929,-0.9585798816568047,0.04437869822485207,-0.5118343195266272,0.04437869822485207,-0.7366863905325444,0.014792899408284023,-0.8875739644970414,-0.0029585798816568047,-1.0,0.09763313609467456,-0.4467455621301775,-0.014792899408284023,-0.6124260355029586,-0.10355029585798817,-0.4940828402366864,-0.1301775147928994,-0.3994082840236686,0.11538461538461539,-0.3520710059171598,-0.014792899408284023,-0.4970414201183432,-0.08875739644970414,-0.4171597633136095,-0.10059171597633136,-0.3343195266272189 +4,0.0,0.0,-0.14792899408284024,-0.16272189349112426,-0.21005917159763313,-0.3343195266272189,-0.23964497041420119,-0.4526627218934911,-0.1804733727810651,-0.4940828402366864,-0.038461538461538464,-0.5325443786982249,-0.05917159763313609,-0.7218934911242604,-0.0650887573964497,-0.8431952662721893,-0.0650887573964497,-0.9437869822485208,0.04142011834319527,-0.5059171597633136,0.04142011834319527,-0.7307692307692307,0.011834319526627219,-0.8816568047337278,-0.005917159763313609,-1.0,0.09467455621301775,-0.4467455621301775,-0.01775147928994083,-0.6094674556213018,-0.10650887573964497,-0.4911242603550296,-0.13313609467455623,-0.3994082840236686,0.11242603550295859,-0.35502958579881655,-0.01775147928994083,-0.4970414201183432,-0.08875739644970414,-0.41420118343195267,-0.10355029585798817,-0.32840236686390534 +4,0.0,0.0,-0.15,-0.1588235294117647,-0.21764705882352942,-0.32941176470588235,-0.2529411764705882,-0.4470588235294118,-0.21764705882352942,-0.4852941176470588,-0.047058823529411764,-0.5294117647058824,-0.07647058823529412,-0.7147058823529412,-0.09117647058823529,-0.8382352941176471,-0.09705882352941177,-0.9411764705882353,0.026470588235294117,-0.5058823529411764,0.008823529411764706,-0.7264705882352941,-0.029411764705882353,-0.8823529411764706,-0.05,-1.0,0.07352941176470588,-0.4411764705882353,-0.052941176470588235,-0.5941176470588235,-0.13823529411764707,-0.4852941176470588,-0.1588235294117647,-0.40294117647058825,0.07941176470588235,-0.35294117647058826,-0.05588235294117647,-0.49411764705882355,-0.12058823529411765,-0.4147058823529412,-0.12941176470588237,-0.3352941176470588 +4,0.0,0.0,-0.15680473372781065,-0.15976331360946747,-0.22781065088757396,-0.34023668639053256,-0.26627218934911245,-0.47041420118343197,-0.22189349112426035,-0.4881656804733728,-0.04142011834319527,-0.5384615384615384,-0.08284023668639054,-0.7189349112426036,-0.10355029585798817,-0.8431952662721893,-0.11538461538461539,-0.9437869822485208,0.029585798816568046,-0.5118343195266272,0.005917159763313609,-0.727810650887574,-0.038461538461538464,-0.8816568047337278,-0.06804733727810651,-1.0,0.06804733727810651,-0.44970414201183434,-0.07988165680473373,-0.6124260355029586,-0.16272189349112426,-0.4970414201183432,-0.17751479289940827,-0.4171597633136095,0.06804733727810651,-0.35798816568047337,-0.08579881656804733,-0.5029585798816568,-0.14792899408284024,-0.42011834319526625,-0.15384615384615385,-0.3343195266272189 +4,0.0,0.0,-0.1701492537313433,-0.17313432835820897,-0.22686567164179106,-0.3402985074626866,-0.2716417910447761,-0.44776119402985076,-0.28059701492537314,-0.5164179104477612,-0.03582089552238806,-0.5283582089552239,-0.08358208955223881,-0.7194029850746269,-0.10746268656716418,-0.8507462686567164,-0.1253731343283582,-0.9552238805970149,0.026865671641791045,-0.5014925373134328,-0.023880597014925373,-0.7283582089552239,-0.06865671641791045,-0.8835820895522388,-0.09253731343283582,-1.0,0.04477611940298507,-0.44477611940298506,-0.11641791044776119,-0.6208955223880597,-0.19701492537313434,-0.5134328358208955,-0.21194029850746268,-0.43582089552238806,0.023880597014925373,-0.35522388059701493,-0.13134328358208955,-0.5074626865671642,-0.191044776119403,-0.42686567164179107,-0.19701492537313434,-0.3492537313432836 +4,0.0,0.0,-0.17058823529411765,-0.17352941176470588,-0.21764705882352942,-0.34411764705882353,-0.25882352941176473,-0.46176470588235297,-0.27647058823529413,-0.5205882352941177,-0.03529411764705882,-0.5294117647058824,-0.09117647058823529,-0.7205882352941176,-0.11470588235294117,-0.8529411764705882,-0.1323529411764706,-0.9588235294117647,0.020588235294117647,-0.4970588235294118,-0.03529411764705882,-0.7205882352941176,-0.07941176470588235,-0.8823529411764706,-0.10294117647058823,-1.0,0.03529411764705882,-0.43529411764705883,-0.12941176470588237,-0.6088235294117647,-0.21176470588235294,-0.5088235294117647,-0.2323529411764706,-0.43529411764705883,0.008823529411764706,-0.35,-0.15,-0.5,-0.2088235294117647,-0.4235294117647059,-0.21764705882352942,-0.34411764705882353 +4,0.0,0.0,-0.168141592920354,-0.17404129793510326,-0.20058997050147492,-0.3303834808259587,-0.22123893805309736,-0.4424778761061947,-0.22713864306784662,-0.5132743362831859,-0.017699115044247787,-0.5132743362831859,-0.07374631268436578,-0.7020648967551623,-0.09734513274336283,-0.8348082595870207,-0.11504424778761062,-0.9410029498525073,0.02359882005899705,-0.4837758112094395,-0.04424778761061947,-0.7138643067846607,-0.0943952802359882,-0.8790560471976401,-0.12389380530973451,-1.0,0.02064896755162242,-0.4306784660766962,-0.15634218289085547,-0.6017699115044248,-0.23893805309734514,-0.5073746312684366,-0.24778761061946902,-0.4306784660766962,-0.02064896755162242,-0.35398230088495575,-0.19174041297935104,-0.4896755162241888,-0.24778761061946902,-0.41002949852507375,-0.24778761061946902,-0.3333333333333333 +4,0.0,0.0,-0.17647058823529413,-0.17058823529411765,-0.2088235294117647,-0.3264705882352941,-0.23529411764705882,-0.4294117647058823,-0.24411764705882352,-0.4823529411764706,-0.029411764705882353,-0.5088235294117647,-0.07058823529411765,-0.6941176470588235,-0.08235294117647059,-0.8264705882352941,-0.09117647058823529,-0.9294117647058824,0.0058823529411764705,-0.4852941176470588,-0.06764705882352941,-0.711764705882353,-0.11176470588235295,-0.8823529411764706,-0.13823529411764707,-1.0,-0.0029411764705882353,-0.4323529411764706,-0.18235294117647058,-0.6029411764705882,-0.26176470588235295,-0.5088235294117647,-0.27058823529411763,-0.4323529411764706,-0.047058823529411764,-0.3588235294117647,-0.22058823529411764,-0.4852941176470588,-0.2735294117647059,-0.4117647058823529,-0.2735294117647059,-0.3382352941176471 +4,0.0,0.0,-0.18529411764705883,-0.15294117647058825,-0.24411764705882352,-0.31470588235294117,-0.29705882352941176,-0.4323529411764706,-0.3264705882352941,-0.4764705882352941,-0.03823529411764706,-0.5235294117647059,-0.08823529411764706,-0.6970588235294117,-0.10882352941176471,-0.8205882352941176,-0.12352941176470589,-0.9205882352941176,0.0058823529411764705,-0.4970588235294118,-0.058823529411764705,-0.7176470588235294,-0.11470588235294117,-0.8823529411764706,-0.1411764705882353,-1.0,-0.0058823529411764705,-0.43823529411764706,-0.18823529411764706,-0.6088235294117647,-0.26176470588235295,-0.5117647058823529,-0.25882352941176473,-0.4441176470588235,-0.05,-0.35294117647058826,-0.2235294117647059,-0.5,-0.2735294117647059,-0.4235294117647059,-0.2647058823529412,-0.34705882352941175 +4,0.0,0.0,-0.20059880239520958,-0.15868263473053892,-0.25149700598802394,-0.31736526946107785,-0.2874251497005988,-0.4281437125748503,-0.31137724550898205,-0.47604790419161674,-0.03293413173652695,-0.5149700598802395,-0.0658682634730539,-0.7005988023952096,-0.08682634730538923,-0.8263473053892215,-0.10479041916167664,-0.9251497005988024,0.005988023952095809,-0.48502994011976047,-0.05389221556886228,-0.7155688622754491,-0.11377245508982035,-0.8802395209580839,-0.1497005988023952,-1.0,-0.005988023952095809,-0.4221556886227545,-0.18862275449101795,-0.592814371257485,-0.2694610778443114,-0.5029940119760479,-0.27844311377245506,-0.4311377245508982,-0.059880239520958084,-0.3383233532934132,-0.23353293413173654,-0.47904191616766467,-0.2874251497005988,-0.41317365269461076,-0.281437125748503,-0.3413173652694611 +4,0.0,0.0,-0.16498316498316498,-0.14814814814814814,-0.2222222222222222,-0.29292929292929293,-0.2895622895622896,-0.39057239057239057,-0.3468013468013468,-0.468013468013468,-0.003367003367003367,-0.48148148148148145,-0.05723905723905724,-0.696969696969697,-0.09090909090909091,-0.8451178451178452,-0.12457912457912458,-0.9562289562289562,0.02356902356902357,-0.45791245791245794,-0.04713804713804714,-0.7037037037037037,-0.10774410774410774,-0.8754208754208754,-0.1447811447811448,-1.0,0.003367003367003367,-0.3939393939393939,-0.19865319865319866,-0.5791245791245792,-0.27946127946127947,-0.48148148148148145,-0.2996632996632997,-0.40404040404040403,-0.050505050505050504,-0.2996632996632997,-0.2356902356902357,-0.44107744107744107,-0.28619528619528617,-0.3771043771043771,-0.28619528619528617,-0.2962962962962963 +4,0.0,0.0,-0.1901840490797546,-0.1656441717791411,-0.2392638036809816,-0.3282208588957055,-0.27300613496932513,-0.4294478527607362,-0.29141104294478526,-0.4754601226993865,-0.049079754601226995,-0.5245398773006135,-0.06748466257668712,-0.7024539877300614,-0.06748466257668712,-0.8312883435582822,-0.06748466257668712,-0.9325153374233128,-0.02147239263803681,-0.49693251533742333,-0.09202453987730061,-0.7239263803680982,-0.147239263803681,-0.8865030674846626,-0.18098159509202455,-1.0,-0.03680981595092025,-0.43558282208588955,-0.23006134969325154,-0.6134969325153374,-0.3006134969325153,-0.5184049079754601,-0.30368098159509205,-0.44171779141104295,-0.08588957055214724,-0.35276073619631904,-0.26993865030674846,-0.4815950920245399,-0.3128834355828221,-0.40797546012269936,-0.294478527607362,-0.3343558282208589 +4,0.0,0.0,-0.17,-0.15,-0.23333333333333334,-0.3,-0.2966666666666667,-0.4066666666666667,-0.34,-0.45666666666666667,-0.02,-0.5,-0.06333333333333334,-0.7,-0.09,-0.84,-0.11666666666666667,-0.95,0.016666666666666666,-0.47333333333333333,-0.04,-0.7166666666666667,-0.10333333333333333,-0.8766666666666667,-0.14666666666666667,-1.0,0.0033333333333333335,-0.4033333333333333,-0.20333333333333334,-0.59,-0.2833333333333333,-0.4766666666666667,-0.3,-0.39666666666666667,-0.04666666666666667,-0.30666666666666664,-0.24,-0.44666666666666666,-0.29,-0.37666666666666665,-0.2833333333333333,-0.2966666666666667 +4,0.0,0.0,-0.17575757575757575,-0.1696969696969697,-0.22727272727272727,-0.3303030303030303,-0.27575757575757576,-0.42727272727272725,-0.31212121212121213,-0.4727272727272727,-0.05454545454545454,-0.5363636363636364,-0.07272727272727272,-0.7090909090909091,-0.07575757575757576,-0.8363636363636363,-0.07272727272727272,-0.9333333333333333,-0.01818181818181818,-0.509090909090909,-0.09090909090909091,-0.7272727272727273,-0.14242424242424243,-0.8878787878787879,-0.1696969696969697,-1.0,-0.030303030303030304,-0.4484848484848485,-0.22424242424242424,-0.6212121212121212,-0.3,-0.5303030303030303,-0.3,-0.46060606060606063,-0.07272727272727272,-0.3606060606060606,-0.2636363636363636,-0.49696969696969695,-0.30606060606060603,-0.42424242424242425,-0.2878787878787879,-0.35454545454545455 +4,0.0,0.0,-0.16819571865443425,-0.1559633027522936,-0.23853211009174313,-0.3211009174311927,-0.3058103975535168,-0.44036697247706424,-0.3363914373088685,-0.4709480122324159,-0.0672782874617737,-0.5168195718654435,-0.11926605504587157,-0.6972477064220184,-0.1437308868501529,-0.8318042813455657,-0.15902140672782875,-0.9327217125382263,-0.012232415902140673,-0.4892966360856269,-0.0764525993883792,-0.7064220183486238,-0.12232415902140673,-0.8776758409785933,-0.1437308868501529,-1.0,-0.0030581039755351682,-0.42201834862385323,-0.18960244648318042,-0.5749235474006116,-0.2782874617737003,-0.48623853211009177,-0.290519877675841,-0.41896024464831805,-0.03363914373088685,-0.3333333333333333,-0.21100917431192662,-0.4617737003058104,-0.2599388379204893,-0.39755351681957185,-0.2599388379204893,-0.327217125382263 +4,0.0,0.0,-0.16158536585365854,-0.15853658536585366,-0.24390243902439024,-0.31097560975609756,-0.3079268292682927,-0.42073170731707316,-0.3079268292682927,-0.4695121951219512,-0.06402439024390244,-0.5304878048780488,-0.11890243902439024,-0.7103658536585366,-0.14634146341463414,-0.8475609756097561,-0.16158536585365854,-0.9512195121951219,0.0,-0.5,-0.06402439024390244,-0.7195121951219512,-0.10975609756097561,-0.8810975609756098,-0.13109756097560976,-1.0,0.024390243902439025,-0.4298780487804878,-0.1524390243902439,-0.5792682926829268,-0.23780487804878048,-0.4817073170731707,-0.25,-0.4054878048780488,0.003048780487804878,-0.3384146341463415,-0.17073170731707318,-0.4634146341463415,-0.22865853658536586,-0.3932926829268293,-0.22865853658536586,-0.3201219512195122 +4,0.0,0.0,-0.15479876160990713,-0.14551083591331268,-0.22910216718266255,-0.30030959752321984,-0.29411764705882354,-0.4117647058823529,-0.3188854489164087,-0.4520123839009288,-0.06191950464396285,-0.5139318885448917,-0.12074303405572756,-0.6996904024767802,-0.15170278637770898,-0.8328173374613003,-0.17027863777089783,-0.934984520123839,0.006191950464396285,-0.47987616099071206,-0.05263157894736842,-0.7089783281733746,-0.10526315789473684,-0.8792569659442725,-0.13003095975232198,-1.0,0.034055727554179564,-0.4086687306501548,-0.1238390092879257,-0.56656346749226,-0.20743034055727555,-0.4613003095975232,-0.2260061919504644,-0.38080495356037153,0.02476780185758514,-0.3157894736842105,-0.14241486068111456,-0.4458204334365325,-0.2043343653250774,-0.3746130030959752,-0.20743034055727555,-0.30030959752321984 +4,0.0,0.0,-0.1557632398753894,-0.14018691588785046,-0.22741433021806853,-0.29906542056074764,-0.29283489096573206,-0.40809968847352024,-0.32398753894080995,-0.4454828660436137,-0.06230529595015576,-0.5109034267912772,-0.11214953271028037,-0.6947040498442367,-0.14018691588785046,-0.8317757009345794,-0.1557632398753894,-0.9376947040498442,0.006230529595015576,-0.4766355140186916,-0.0529595015576324,-0.7040498442367601,-0.1059190031152648,-0.8785046728971962,-0.1308411214953271,-1.0,0.03426791277258567,-0.40498442367601245,-0.1277258566978193,-0.5669781931464174,-0.2087227414330218,-0.45794392523364486,-0.22118380062305296,-0.37383177570093457,0.028037383177570093,-0.308411214953271,-0.14641744548286603,-0.4423676012461059,-0.2087227414330218,-0.367601246105919,-0.2087227414330218,-0.2897196261682243 +4,0.0,0.0,-0.17592592592592593,-0.14814814814814814,-0.23148148148148148,-0.3117283950617284,-0.2808641975308642,-0.43209876543209874,-0.3117283950617284,-0.4567901234567901,-0.05864197530864197,-0.5092592592592593,-0.10185185185185185,-0.7006172839506173,-0.12654320987654322,-0.8364197530864198,-0.14506172839506173,-0.9475308641975309,0.009259259259259259,-0.48148148148148145,-0.04938271604938271,-0.7037037037037037,-0.10185185185185185,-0.8703703703703703,-0.12962962962962962,-1.0,0.040123456790123455,-0.41358024691358025,-0.12654320987654322,-0.5709876543209876,-0.21296296296296297,-0.4660493827160494,-0.23148148148148148,-0.38271604938271603,0.027777777777777776,-0.3148148148148148,-0.13271604938271606,-0.4444444444444444,-0.19753086419753085,-0.3734567901234568,-0.2006172839506173,-0.2932098765432099 +4,0.0,0.0,-0.16923076923076924,-0.13846153846153847,-0.22153846153846155,-0.31076923076923074,-0.27076923076923076,-0.4276923076923077,-0.3046153846153846,-0.46153846153846156,-0.055384615384615386,-0.5046153846153846,-0.09846153846153846,-0.6984615384615385,-0.12307692307692308,-0.8338461538461538,-0.14153846153846153,-0.9446153846153846,0.009230769230769232,-0.48,-0.05846153846153846,-0.6984615384615385,-0.1076923076923077,-0.8707692307692307,-0.13538461538461538,-1.0,0.036923076923076927,-0.40923076923076923,-0.12923076923076923,-0.5661538461538461,-0.2153846153846154,-0.46153846153846156,-0.23384615384615384,-0.38153846153846155,0.024615384615384615,-0.31384615384615383,-0.13538461538461538,-0.4461538461538462,-0.19692307692307692,-0.3723076923076923,-0.20307692307692307,-0.2923076923076923 +4,0.0,0.0,-0.17337461300309598,-0.14860681114551083,-0.2476780185758514,-0.29411764705882354,-0.29721362229102166,-0.4086687306501548,-0.29411764705882354,-0.43653250773993807,-0.07739938080495357,-0.5108359133126935,-0.11455108359133127,-0.7027863777089783,-0.13622291021671826,-0.8359133126934984,-0.14860681114551083,-0.9411764705882353,0.0030959752321981426,-0.48297213622291024,-0.043343653250773995,-0.7120743034055728,-0.08978328173374613,-0.8761609907120743,-0.11455108359133127,-1.0,0.04643962848297214,-0.4148606811145511,-0.1021671826625387,-0.5634674922600619,-0.18575851393188855,-0.4520123839009288,-0.20743034055727555,-0.3653250773993808,0.04953560371517028,-0.3188854489164087,-0.10835913312693499,-0.43962848297213625,-0.17337461300309598,-0.3653250773993808,-0.1826625386996904,-0.28792569659442724 +4,0.0,0.0,-0.17647058823529413,-0.15170278637770898,-0.26006191950464397,-0.28792569659442724,-0.30959752321981426,-0.39628482972136225,-0.29411764705882354,-0.43653250773993807,-0.08359133126934984,-0.5139318885448917,-0.13003095975232198,-0.7089783281733746,-0.15479876160990713,-0.8390092879256966,-0.16718266253869968,-0.9473684210526315,-0.006191950464396285,-0.48297213622291024,-0.04643962848297214,-0.7151702786377709,-0.08668730650154799,-0.8761609907120743,-0.10835913312693499,-1.0,0.04643962848297214,-0.4148606811145511,-0.09597523219814241,-0.5603715170278638,-0.18575851393188855,-0.4551083591331269,-0.21362229102167182,-0.3653250773993808,0.05263157894736842,-0.3219814241486068,-0.09597523219814241,-0.44272445820433437,-0.17027863777089783,-0.3746130030959752,-0.18885448916408668,-0.29411764705882354 +4,0.0,0.0,-0.16666666666666666,-0.14814814814814814,-0.25308641975308643,-0.2839506172839506,-0.3055555555555556,-0.3888888888888889,-0.25617283950617287,-0.4382716049382716,-0.08333333333333333,-0.5123456790123457,-0.12962962962962962,-0.7098765432098766,-0.15432098765432098,-0.8364197530864198,-0.16358024691358025,-0.941358024691358,-0.006172839506172839,-0.4845679012345679,-0.033950617283950615,-0.7191358024691358,-0.07716049382716049,-0.8765432098765432,-0.09567901234567901,-1.0,0.04938271604938271,-0.4166666666666667,-0.07716049382716049,-0.5648148148148148,-0.16358024691358025,-0.4537037037037037,-0.19135802469135801,-0.3611111111111111,0.06172839506172839,-0.3271604938271605,-0.08024691358024691,-0.4537037037037037,-0.15432098765432098,-0.38271604938271603,-0.17592592592592593,-0.2993827160493827 +4,0.0,0.0,-0.1753846153846154,-0.1476923076923077,-0.2553846153846154,-0.30153846153846153,-0.3046153846153846,-0.42153846153846153,-0.27076923076923076,-0.46153846153846156,-0.09230769230769231,-0.5138461538461538,-0.14461538461538462,-0.6953846153846154,-0.16923076923076924,-0.8184615384615385,-0.17846153846153845,-0.92,-0.018461538461538463,-0.49230769230769234,-0.06461538461538462,-0.72,-0.1076923076923077,-0.8769230769230769,-0.12307692307692308,-1.0,0.027692307692307693,-0.4338461538461538,-0.12,-0.5876923076923077,-0.2,-0.4707692307692308,-0.2123076923076923,-0.38153846153846155,0.036923076923076927,-0.3446153846153846,-0.11692307692307692,-0.47384615384615386,-0.18153846153846154,-0.39076923076923076,-0.18461538461538463,-0.3076923076923077 +4,0.0,0.0,-0.17177914110429449,-0.16257668711656442,-0.25153374233128833,-0.31901840490797545,-0.3006134969325153,-0.4325153374233129,-0.27300613496932513,-0.4754601226993865,-0.0736196319018405,-0.5276073619631901,-0.12269938650306748,-0.7116564417177914,-0.15337423312883436,-0.8374233128834356,-0.17484662576687116,-0.9386503067484663,0.0,-0.50920245398773,-0.03987730061349693,-0.7300613496932515,-0.08895705521472393,-0.8834355828220859,-0.1196319018404908,-1.0,0.04294478527607362,-0.44785276073619634,-0.12269938650306748,-0.6012269938650306,-0.19938650306748465,-0.48773006134969327,-0.2085889570552147,-0.4049079754601227,0.04294478527607362,-0.3558282208588957,-0.12269938650306748,-0.48466257668711654,-0.18404907975460122,-0.4049079754601227,-0.18098159509202455,-0.32515337423312884 +4,0.0,0.0,-0.16666666666666666,-0.12,-0.22666666666666666,-0.27666666666666667,-0.2966666666666667,-0.3933333333333333,-0.25333333333333335,-0.44333333333333336,-0.016666666666666666,-0.49,-0.08666666666666667,-0.6866666666666666,-0.12,-0.8333333333333334,-0.13666666666666666,-0.95,0.06333333333333334,-0.47333333333333333,-0.023333333333333334,-0.7,-0.08,-0.87,-0.09666666666666666,-1.0,0.10666666666666667,-0.41,-0.08333333333333333,-0.59,-0.18,-0.4533333333333333,-0.18666666666666668,-0.3466666666666667,0.1,-0.32666666666666666,-0.08,-0.45666666666666667,-0.15666666666666668,-0.37,-0.16,-0.2733333333333333 +4,0.0,0.0,-0.17133956386292834,-0.1557632398753894,-0.24299065420560748,-0.3146417445482866,-0.30218068535825543,-0.42990654205607476,-0.2803738317757009,-0.45794392523364486,-0.03426791277258567,-0.5171339563862928,-0.102803738317757,-0.7102803738317757,-0.13395638629283488,-0.8411214953271028,-0.1557632398753894,-0.940809968847352,0.037383177570093455,-0.49221183800623053,-0.04984423676012461,-0.7227414330218068,-0.11214953271028037,-0.881619937694704,-0.14018691588785046,-1.0,0.06853582554517133,-0.43302180685358255,-0.1277258566978193,-0.5825545171339563,-0.19937694704049844,-0.46105919003115264,-0.205607476635514,-0.37383177570093457,0.0529595015576324,-0.34890965732087226,-0.12461059190031153,-0.4735202492211838,-0.1838006230529595,-0.3925233644859813,-0.1838006230529595,-0.3115264797507788 +4,0.0,0.0,-0.17064846416382254,-0.10921501706484642,-0.24232081911262798,-0.2627986348122867,-0.30716723549488056,-0.3822525597269625,-0.2696245733788396,-0.4334470989761092,-0.051194539249146756,-0.4880546075085324,-0.11262798634812286,-0.6791808873720137,-0.14675767918088736,-0.8191126279863481,-0.16723549488054607,-0.9283276450511946,0.030716723549488054,-0.47440273037542663,-0.040955631399317405,-0.7030716723549488,-0.09897610921501707,-0.8737201365187713,-0.11945392491467577,-1.0,0.07508532423208192,-0.40955631399317405,-0.09897610921501707,-0.5836177474402731,-0.1945392491467577,-0.45051194539249145,-0.20819112627986347,-0.34812286689419797,0.08191126279863481,-0.3174061433447099,-0.09556313993174062,-0.44368600682593856,-0.17064846416382254,-0.35494880546075086,-0.17406143344709898,-0.2627986348122867 +4,0.0,0.0,-0.17133956386292834,-0.13395638629283488,-0.2523364485981308,-0.2897196261682243,-0.3146417445482866,-0.40809968847352024,-0.29595015576323985,-0.4454828660436137,-0.09345794392523364,-0.4953271028037383,-0.17757009345794392,-0.6791277258566978,-0.21495327102803738,-0.8006230529595015,-0.2398753894080997,-0.897196261682243,-0.012461059190031152,-0.4766355140186916,-0.0778816199376947,-0.7133956386292835,-0.13707165109034267,-0.8847352024922118,-0.17133956386292834,-1.0,0.028037383177570093,-0.4143302180685358,-0.14641744548286603,-0.5700934579439252,-0.21495327102803738,-0.4423676012461059,-0.21806853582554517,-0.3582554517133956,0.037383177570093455,-0.32398753894080995,-0.13395638629283488,-0.46417445482866043,-0.19314641744548286,-0.3707165109034268,-0.19626168224299065,-0.2866043613707165 +4,0.0,0.0,-0.16312056737588654,-0.09219858156028368,-0.23049645390070922,-0.24822695035460993,-0.2978723404255319,-0.36524822695035464,-0.25886524822695034,-0.4148936170212766,-0.03546099290780142,-0.4858156028368794,-0.09574468085106383,-0.6737588652482269,-0.13120567375886524,-0.8156028368794326,-0.1595744680851064,-0.925531914893617,0.04964539007092199,-0.46808510638297873,-0.01773049645390071,-0.6914893617021277,-0.07801418439716312,-0.8652482269503546,-0.10638297872340426,-1.0,0.09929078014184398,-0.40070921985815605,-0.08865248226950355,-0.574468085106383,-0.1879432624113475,-0.43617021276595747,-0.20212765957446807,-0.3333333333333333,0.10638297872340426,-0.3049645390070922,-0.07801418439716312,-0.425531914893617,-0.15602836879432624,-0.33687943262411346,-0.16312056737588654,-0.24468085106382978 +4,0.0,0.0,-0.17252396166134185,-0.134185303514377,-0.2523961661341853,-0.29073482428115016,-0.30990415335463256,-0.402555910543131,-0.29073482428115016,-0.4472843450479233,-0.09904153354632587,-0.5047923322683706,-0.16613418530351437,-0.6805111821086262,-0.19808306709265175,-0.8019169329073482,-0.22044728434504793,-0.9009584664536742,-0.012779552715654952,-0.48562300319488816,-0.054313099041533544,-0.7156549520766773,-0.11182108626198083,-0.8817891373801917,-0.14696485623003194,-1.0,0.038338658146964855,-0.4217252396166134,-0.12779552715654952,-0.5782747603833865,-0.20447284345047922,-0.4504792332268371,-0.21405750798722045,-0.36741214057507987,0.054313099041533544,-0.3226837060702875,-0.1182108626198083,-0.46006389776357826,-0.17891373801916932,-0.36741214057507987,-0.17891373801916932,-0.28434504792332266 +4,0.0,0.0,-0.17518248175182483,-0.0948905109489051,-0.2591240875912409,-0.24817518248175183,-0.32116788321167883,-0.3722627737226277,-0.28102189781021897,-0.4306569343065693,-0.06204379562043796,-0.4927007299270073,-0.12043795620437957,-0.6824817518248175,-0.15693430656934307,-0.8248175182481752,-0.17883211678832117,-0.9343065693430657,0.021897810218978103,-0.4744525547445255,-0.0364963503649635,-0.6970802919708029,-0.09124087591240876,-0.864963503649635,-0.11678832116788321,-1.0,0.072992700729927,-0.40875912408759124,-0.09854014598540146,-0.5912408759124088,-0.20072992700729927,-0.45255474452554745,-0.21897810218978103,-0.354014598540146,0.08394160583941605,-0.3175182481751825,-0.10583941605839416,-0.4343065693430657,-0.18248175182481752,-0.34306569343065696,-0.1897810218978102,-0.2518248175182482 +4,0.0,0.0,-0.16720257234726688,-0.12861736334405144,-0.24758842443729903,-0.2861736334405145,-0.3086816720257235,-0.3987138263665595,-0.29260450160771706,-0.4437299035369775,-0.0932475884244373,-0.5016077170418006,-0.1639871382636656,-0.6784565916398714,-0.19614147909967847,-0.8038585209003215,-0.22186495176848875,-0.9035369774919614,-0.012861736334405145,-0.4790996784565916,-0.05787781350482315,-0.707395498392283,-0.10932475884244373,-0.8778135048231511,-0.1414790996784566,-1.0,0.03536977491961415,-0.4180064308681672,-0.12861736334405144,-0.5755627009646302,-0.20257234726688103,-0.44694533762057875,-0.2090032154340836,-0.3633440514469453,0.05144694533762058,-0.3215434083601286,-0.12218649517684887,-0.4533762057877814,-0.18006430868167203,-0.3665594855305466,-0.18006430868167203,-0.2829581993569132 +4,0.0,0.0,-0.17114093959731544,-0.09060402684563758,-0.25838926174496646,-0.2483221476510067,-0.3087248322147651,-0.3691275167785235,-0.2684563758389262,-0.4228187919463087,-0.1040268456375839,-0.47315436241610737,-0.1644295302013423,-0.674496644295302,-0.20134228187919462,-0.8053691275167785,-0.22483221476510068,-0.912751677852349,-0.020134228187919462,-0.45302013422818793,-0.06040268456375839,-0.7013422818791947,-0.11409395973154363,-0.8691275167785235,-0.14429530201342283,-1.0,0.040268456375838924,-0.38926174496644295,-0.10067114093959731,-0.5570469798657718,-0.18791946308724833,-0.42953020134228187,-0.21140939597315436,-0.3288590604026846,0.06375838926174497,-0.29194630872483224,-0.10067114093959731,-0.42953020134228187,-0.17114093959731544,-0.3422818791946309,-0.17785234899328858,-0.25838926174496646 +4,0.0,0.0,-0.15547703180212014,-0.08833922261484099,-0.22614840989399293,-0.24028268551236748,-0.2791519434628975,-0.3568904593639576,-0.21908127208480566,-0.40636042402826855,-0.038869257950530034,-0.4840989399293286,-0.11307420494699646,-0.6784452296819788,-0.15547703180212014,-0.8197879858657244,-0.18021201413427562,-0.9293286219081273,0.053003533568904596,-0.4664310954063604,-0.014134275618374558,-0.696113074204947,-0.07773851590106007,-0.8657243816254417,-0.10600706713780919,-1.0,0.11307420494699646,-0.4028268551236749,-0.05653710247349823,-0.5653710247349824,-0.14487632508833923,-0.4275618374558304,-0.1519434628975265,-0.3215547703180212,0.13427561837455831,-0.31095406360424027,-0.038869257950530034,-0.43109540636042404,-0.11307420494699646,-0.3321554770318021,-0.1166077738515901,-0.23674911660777384 +4,0.0,0.0,-0.17346938775510204,-0.07482993197278912,-0.2619047619047619,-0.22789115646258504,-0.3129251700680272,-0.3435374149659864,-0.2653061224489796,-0.40476190476190477,-0.10204081632653061,-0.46258503401360546,-0.17346938775510204,-0.6598639455782312,-0.2108843537414966,-0.7959183673469388,-0.23469387755102042,-0.9047619047619048,-0.017006802721088437,-0.4387755102040816,-0.06802721088435375,-0.6938775510204082,-0.12585034013605442,-0.8673469387755102,-0.16326530612244897,-1.0,0.04081632653061224,-0.37755102040816324,-0.09523809523809523,-0.5476190476190477,-0.18027210884353742,-0.41496598639455784,-0.20068027210884354,-0.30952380952380953,0.06802721088435375,-0.282312925170068,-0.08843537414965986,-0.4217687074829932,-0.1598639455782313,-0.3333333333333333,-0.17346938775510204,-0.24489795918367346 +4,0.0,0.0,-0.17747440273037543,-0.06484641638225255,-0.2627986348122867,-0.22866894197952217,-0.310580204778157,-0.3412969283276451,-0.26621160409556316,-0.4061433447098976,-0.10921501706484642,-0.45733788395904434,-0.18088737201365188,-0.6552901023890785,-0.21843003412969283,-0.78839590443686,-0.24232081911262798,-0.9010238907849829,-0.020477815699658702,-0.43686006825938567,-0.06484641638225255,-0.6928327645051194,-0.12627986348122866,-0.8668941979522184,-0.16382252559726962,-1.0,0.04436860068259386,-0.3720136518771331,-0.09556313993174062,-0.5460750853242321,-0.17747440273037543,-0.4061433447098976,-0.1945392491467577,-0.3037542662116041,0.07508532423208192,-0.27303754266211605,-0.08191126279863481,-0.4197952218430034,-0.15358361774744028,-0.32764505119453924,-0.16040955631399317,-0.23890784982935154 +4,0.0,0.0,-0.17064846416382254,-0.07508532423208192,-0.25597269624573377,-0.24232081911262798,-0.3003412969283277,-0.3515358361774744,-0.2593856655290102,-0.40955631399317405,-0.09215017064846416,-0.46757679180887374,-0.16040955631399317,-0.6655290102389079,-0.19795221843003413,-0.7952218430034129,-0.22184300341296928,-0.9044368600682594,-0.006825938566552901,-0.447098976109215,-0.051194539249146756,-0.7030716723549488,-0.11262798634812286,-0.8668941979522184,-0.14675767918088736,-1.0,0.05802047781569966,-0.3856655290102389,-0.07849829351535836,-0.5597269624573379,-0.16382252559726962,-0.41638225255972694,-0.18088737201365188,-0.31399317406143346,0.08873720136518772,-0.2832764505119454,-0.06484641638225255,-0.4300341296928328,-0.13651877133105803,-0.3378839590443686,-0.14334470989761092,-0.24914675767918087 +4,0.0,0.0,-0.1602787456445993,-0.020905923344947737,-0.2508710801393728,-0.20209059233449478,-0.29965156794425085,-0.3310104529616725,-0.21951219512195122,-0.3554006968641115,-0.10452961672473868,-0.4738675958188153,-0.17770034843205576,-0.6655052264808362,-0.21254355400696864,-0.7909407665505227,-0.22996515679442509,-0.9059233449477352,-0.003484320557491289,-0.4564459930313589,-0.07317073170731707,-0.7038327526132404,-0.13240418118466898,-0.867595818815331,-0.16376306620209058,-1.0,0.08013937282229965,-0.3797909407665505,-0.059233449477351915,-0.5435540069686411,-0.13937282229965156,-0.3797909407665505,-0.15331010452961671,-0.2613240418118467,0.13240418118466898,-0.2613240418118467,-0.020905923344947737,-0.40069686411149824,-0.09059233449477352,-0.2857142857142857,-0.09407665505226481,-0.18466898954703834 +4,0.0,0.0,-0.16370106761565836,-0.02491103202846975,-0.2491103202846975,-0.199288256227758,-0.2669039145907473,-0.3167259786476868,-0.199288256227758,-0.3309608540925267,-0.1387900355871886,-0.4555160142348754,-0.18149466192170818,-0.6725978647686833,-0.19572953736654805,-0.8113879003558719,-0.199288256227758,-0.9323843416370107,-0.028469750889679714,-0.4412811387900356,-0.0711743772241993,-0.693950177935943,-0.12099644128113879,-0.8576512455516014,-0.1494661921708185,-1.0,0.0711743772241993,-0.3736654804270463,-0.03202846975088968,-0.5338078291814946,-0.10676156583629894,-0.3665480427046263,-0.12455516014234876,-0.24555160142348753,0.1494661921708185,-0.2669039145907473,0.017793594306049824,-0.3807829181494662,-0.0498220640569395,-0.2597864768683274,-0.05693950177935943,-0.1601423487544484 +4,0.0,0.0,-0.1760299625468165,-0.00749063670411985,-0.25842696629213485,-0.19850187265917604,-0.2546816479400749,-0.3258426966292135,-0.1947565543071161,-0.3445692883895131,-0.1198501872659176,-0.4307116104868914,-0.16853932584269662,-0.6704119850187266,-0.19101123595505617,-0.8239700374531835,-0.20599250936329588,-0.947565543071161,-0.011235955056179775,-0.41198501872659177,-0.03745318352059925,-0.6853932584269663,-0.08614232209737828,-0.8614232209737828,-0.11235955056179775,-1.0,0.0898876404494382,-0.3445692883895131,-0.0149812734082397,-0.5056179775280899,-0.10112359550561797,-0.352059925093633,-0.12359550561797752,-0.23220973782771537,0.17228464419475656,-0.2397003745318352,0.052434456928838954,-0.36704119850187267,-0.0299625468164794,-0.250936329588015,-0.0449438202247191,-0.14232209737827714 +4,0.0,0.0,-0.14339622641509434,-0.03018867924528302,-0.2339622641509434,-0.13962264150943396,-0.2490566037735849,-0.23018867924528302,-0.15471698113207547,-0.28679245283018867,-0.12075471698113208,-0.4339622641509434,-0.1471698113207547,-0.6490566037735849,-0.17358490566037735,-0.8,-0.17735849056603772,-0.9283018867924528,-0.007547169811320755,-0.43018867924528303,-0.011320754716981131,-0.6830188679245283,-0.052830188679245285,-0.8528301886792453,-0.07924528301886792,-1.0,0.09811320754716982,-0.37358490566037733,0.011320754716981131,-0.49433962264150944,-0.05660377358490566,-0.32452830188679244,-0.07169811320754717,-0.2037735849056604,0.17735849056603772,-0.27169811320754716,0.06792452830188679,-0.3433962264150943,0.0,-0.22641509433962265,-0.022641509433962263,-0.12075471698113208 +4,0.0,0.0,-0.1828358208955224,0.0,-0.26865671641791045,-0.17164179104477612,-0.26492537313432835,-0.2947761194029851,-0.1791044776119403,-0.31716417910447764,-0.13432835820895522,-0.4216417910447761,-0.1791044776119403,-0.6604477611940298,-0.20522388059701493,-0.8134328358208955,-0.22388059701492538,-0.9365671641791045,-0.026119402985074626,-0.40298507462686567,-0.04477611940298507,-0.6791044776119403,-0.09701492537313433,-0.8582089552238806,-0.13432835820895522,-1.0,0.07835820895522388,-0.33955223880597013,-0.029850746268656716,-0.4925373134328358,-0.10074626865671642,-0.3358208955223881,-0.11567164179104478,-0.2126865671641791,0.16791044776119404,-0.23507462686567165,0.04477611940298507,-0.35447761194029853,-0.029850746268656716,-0.23880597014925373,-0.04477611940298507,-0.13059701492537312 +4,0.0,0.0,-0.15708812260536398,-0.022988505747126436,-0.2720306513409962,-0.12643678160919541,-0.2988505747126437,-0.2260536398467433,-0.19923371647509577,-0.2796934865900383,-0.16475095785440613,-0.41762452107279696,-0.19540229885057472,-0.6398467432950191,-0.21839080459770116,-0.7931034482758621,-0.2222222222222222,-0.9233716475095786,-0.05363984674329502,-0.4099616858237548,-0.07279693486590039,-0.6704980842911877,-0.11494252873563218,-0.8505747126436781,-0.13409961685823754,-1.0,0.05747126436781609,-0.3524904214559387,-0.01532567049808429,-0.46360153256704983,-0.08045977011494253,-0.28735632183908044,-0.09961685823754789,-0.16475095785440613,0.1417624521072797,-0.2567049808429119,0.05363984674329502,-0.3333333333333333,-0.019157088122605363,-0.210727969348659,-0.04980842911877394,-0.09961685823754789 +4,0.0,0.0,-0.16793893129770993,0.0,-0.2595419847328244,-0.13740458015267176,-0.2480916030534351,-0.26717557251908397,-0.1450381679389313,-0.3053435114503817,-0.12595419847328243,-0.40458015267175573,-0.16793893129770993,-0.6564885496183206,-0.18702290076335878,-0.8091603053435115,-0.1946564885496183,-0.9389312977099237,-0.015267175572519083,-0.38549618320610685,-0.03435114503816794,-0.6755725190839694,-0.08778625954198473,-0.8549618320610687,-0.1297709923664122,-1.0,0.09923664122137404,-0.3244274809160305,-0.003816793893129771,-0.48854961832061067,-0.07633587786259542,-0.3244274809160305,-0.0916030534351145,-0.1946564885496183,0.1946564885496183,-0.22137404580152673,0.08396946564885496,-0.35877862595419846,0.003816793893129771,-0.23282442748091603,-0.015267175572519083,-0.1183206106870229 +4,0.0,0.0,-0.18146718146718147,0.0,-0.28185328185328185,-0.11969111969111969,-0.2702702702702703,-0.2625482625482625,-0.1583011583011583,-0.2857142857142857,-0.138996138996139,-0.40540540540540543,-0.17374517374517376,-0.6486486486486487,-0.19305019305019305,-0.7953667953667953,-0.20077220077220076,-0.9227799227799228,-0.023166023166023165,-0.3938223938223938,-0.05019305019305019,-0.6833976833976834,-0.10038610038610038,-0.8571428571428571,-0.13513513513513514,-1.0,0.09652509652509653,-0.3281853281853282,-0.003861003861003861,-0.4864864864864865,-0.07335907335907337,-0.3127413127413127,-0.0888030888030888,-0.18146718146718147,0.19305019305019305,-0.22007722007722008,0.08494208494208494,-0.3552123552123552,0.007722007722007722,-0.22393822393822393,-0.015444015444015444,-0.10810810810810811 +4,0.0,0.0,-0.16793893129770993,0.0,-0.26717557251908397,-0.12213740458015267,-0.2480916030534351,-0.25190839694656486,-0.1297709923664122,-0.2862595419847328,-0.13358778625954199,-0.4083969465648855,-0.16793893129770993,-0.6526717557251909,-0.183206106870229,-0.8015267175572519,-0.19083969465648856,-0.9312977099236641,-0.015267175572519083,-0.3969465648854962,-0.04198473282442748,-0.6870229007633588,-0.08778625954198473,-0.8587786259541985,-0.12595419847328243,-1.0,0.10687022900763359,-0.3320610687022901,0.015267175572519083,-0.48091603053435117,-0.05343511450381679,-0.31297709923664124,-0.07633587786259542,-0.17938931297709923,0.20610687022900764,-0.22519083969465647,0.10305343511450382,-0.3473282442748092,0.026717557251908396,-0.22137404580152673,0.007633587786259542,-0.11068702290076336 +4,0.0,0.0,-0.16730038022813687,0.0,-0.2623574144486692,-0.13688212927756654,-0.23954372623574144,-0.2661596958174905,-0.12167300380228137,-0.2889733840304182,-0.11406844106463879,-0.41064638783269963,-0.1482889733840304,-0.6539923954372624,-0.1634980988593156,-0.8060836501901141,-0.17110266159695817,-0.9315589353612167,0.0,-0.39923954372623577,-0.026615969581749048,-0.6806083650190115,-0.07984790874524715,-0.8555133079847909,-0.11787072243346007,-1.0,0.11787072243346007,-0.33460076045627374,0.026615969581749048,-0.49049429657794674,-0.049429657794676805,-0.3231939163498099,-0.06844106463878327,-0.19391634980988592,0.21673003802281368,-0.22433460076045628,0.11406844106463879,-0.35361216730038025,0.03802281368821293,-0.22813688212927757,0.019011406844106463,-0.11406844106463879 +4,0.0,0.0,-0.16981132075471697,0.0,-0.2641509433962264,-0.15471698113207547,-0.23018867924528302,-0.2792452830188679,-0.10566037735849057,-0.28679245283018867,-0.1169811320754717,-0.41509433962264153,-0.1509433962264151,-0.6566037735849056,-0.1660377358490566,-0.8075471698113208,-0.17358490566037735,-0.9320754716981132,0.0,-0.4,-0.026415094339622643,-0.6867924528301886,-0.06792452830188679,-0.8603773584905661,-0.1018867924528302,-1.0,0.1169811320754717,-0.33584905660377357,0.026415094339622643,-0.4830188679245283,-0.04150943396226415,-0.32075471698113206,-0.06037735849056604,-0.19245283018867926,0.21132075471698114,-0.22641509433962265,0.1169811320754717,-0.35471698113207545,0.04150943396226415,-0.2339622641509434,0.01509433962264151,-0.12075471698113208 +4,0.0,0.0,-0.1821561338289963,0.0,-0.2899628252788104,-0.1449814126394052,-0.25650557620817843,-0.2899628252788104,-0.12639405204460966,-0.2899628252788104,-0.1524163568773234,-0.4200743494423792,-0.18587360594795538,-0.6654275092936803,-0.20074349442379183,-0.8215613382899628,-0.20817843866171004,-0.9516728624535316,-0.03345724907063197,-0.40892193308550184,-0.05204460966542751,-0.6914498141263941,-0.08550185873605948,-0.862453531598513,-0.11152416356877323,-1.0,0.08178438661710037,-0.34572490706319703,0.007434944237918215,-0.49814126394052044,-0.05947955390334572,-0.3345724907063197,-0.08550185873605948,-0.20817843866171004,0.17472118959107807,-0.2342007434944238,0.09293680297397769,-0.3643122676579926,0.022304832713754646,-0.241635687732342,-0.0037174721189591076,-0.13011152416356878 +4,0.0,0.0,-0.1709090909090909,0.0,-0.2581818181818182,-0.1781818181818182,-0.22181818181818183,-0.3236363636363636,-0.10909090909090909,-0.32,-0.11272727272727273,-0.43272727272727274,-0.14181818181818182,-0.6763636363636364,-0.15636363636363637,-0.8218181818181818,-0.15636363636363637,-0.9490909090909091,0.0,-0.41454545454545455,-0.01090909090909091,-0.6981818181818182,-0.04,-0.8654545454545455,-0.06181818181818182,-1.0,0.10909090909090909,-0.3490909090909091,0.04,-0.5054545454545455,-0.04,-0.3527272727272727,-0.06909090909090909,-0.23272727272727273,0.19636363636363635,-0.24,0.12,-0.38181818181818183,0.03636363636363636,-0.2690909090909091,0.0036363636363636364,-0.15272727272727274 +4,0.0,0.0,-0.15932203389830507,-0.01694915254237288,-0.2440677966101695,-0.20677966101694914,-0.21016949152542372,-0.3525423728813559,-0.09491525423728814,-0.36610169491525424,-0.11186440677966102,-0.44745762711864406,-0.1423728813559322,-0.6847457627118644,-0.15254237288135594,-0.8305084745762712,-0.15254237288135594,-0.9559322033898305,-0.006779661016949152,-0.43389830508474575,-0.020338983050847456,-0.7084745762711865,-0.05084745762711865,-0.8711864406779661,-0.06779661016949153,-1.0,0.09491525423728814,-0.3728813559322034,0.04067796610169491,-0.535593220338983,-0.03728813559322034,-0.3864406779661017,-0.0711864406779661,-0.2711864406779661,0.17966101694915254,-0.2677966101694915,0.11186440677966102,-0.4135593220338983,0.03389830508474576,-0.30847457627118646,0.0,-0.2 +4,0.0,0.0,-0.15873015873015872,-0.044444444444444446,-0.24126984126984127,-0.24126984126984127,-0.20952380952380953,-0.3904761904761905,-0.09841269841269841,-0.40634920634920635,-0.11746031746031746,-0.46984126984126984,-0.1492063492063492,-0.6952380952380952,-0.15873015873015872,-0.834920634920635,-0.15873015873015872,-0.9523809523809523,-0.015873015873015872,-0.4603174603174603,-0.031746031746031744,-0.7238095238095238,-0.06031746031746032,-0.8761904761904762,-0.0761904761904762,-1.0,0.08253968253968254,-0.40634920634920635,0.025396825396825397,-0.5682539682539682,-0.044444444444444446,-0.4222222222222222,-0.06984126984126984,-0.3047619047619048,0.16507936507936508,-0.3111111111111111,0.09841269841269841,-0.4507936507936508,0.02857142857142857,-0.34285714285714286,0.0,-0.23492063492063492 +4,0.0,0.0,-0.15759312320916904,-0.11174785100286533,-0.2349570200573066,-0.29512893982808025,-0.23782234957020057,-0.44412607449856734,-0.1518624641833811,-0.4498567335243553,-0.10315186246418338,-0.5071633237822349,-0.12607449856733524,-0.7134670487106017,-0.1318051575931232,-0.8452722063037249,-0.1346704871060172,-0.9541547277936963,-0.014326647564469915,-0.4899713467048711,-0.02005730659025788,-0.7277936962750716,-0.04871060171919771,-0.8825214899713467,-0.0659025787965616,-1.0,0.06876790830945559,-0.4297994269340974,0.0057306590257879654,-0.5902578796561605,-0.07163323782234957,-0.46418338108882523,-0.10315186246418338,-0.3667621776504298,0.1346704871060172,-0.335243553008596,0.054441260744985676,-0.4699140401146132,-0.014326647564469915,-0.38108882521489973,-0.04011461318051576,-0.28939828080229224 +4,0.0,0.0,-0.150997150997151,-0.1282051282051282,-0.21937321937321938,-0.3162393162393162,-0.21937321937321938,-0.45584045584045585,-0.14245014245014245,-0.45584045584045585,-0.07692307692307693,-0.5213675213675214,-0.09116809116809117,-0.7264957264957265,-0.09116809116809117,-0.8547008547008547,-0.08547008547008547,-0.9629629629629629,0.014245014245014245,-0.5014245014245015,0.019943019943019943,-0.7350427350427351,-0.005698005698005698,-0.886039886039886,-0.017094017094017096,-1.0,0.09116809116809117,-0.43304843304843305,0.02849002849002849,-0.584045584045584,-0.05698005698005698,-0.46438746438746437,-0.09401709401709402,-0.37037037037037035,0.14814814814814814,-0.33618233618233617,0.06552706552706553,-0.46438746438746437,-0.008547008547008548,-0.3789173789173789,-0.03418803418803419,-0.2934472934472934 +4,0.0,0.0,-0.14606741573033707,-0.1404494382022472,-0.20786516853932585,-0.32865168539325845,-0.21348314606741572,-0.4691011235955056,-0.13202247191011235,-0.4691011235955056,-0.05898876404494382,-0.5252808988764045,-0.06179775280898876,-0.7247191011235955,-0.056179775280898875,-0.8539325842696629,-0.047752808988764044,-0.9578651685393258,0.028089887640449437,-0.5,0.047752808988764044,-0.7331460674157303,0.028089887640449437,-0.8848314606741573,0.019662921348314606,-1.0,0.10112359550561797,-0.43258426966292135,0.03932584269662921,-0.5926966292134831,-0.05056179775280899,-0.47191011235955055,-0.08426966292134831,-0.37640449438202245,0.14887640449438203,-0.33707865168539325,0.05898876404494382,-0.47191011235955055,-0.014044943820224719,-0.3848314606741573,-0.03651685393258427,-0.300561797752809 +4,0.0,0.0,-0.13714285714285715,-0.20857142857142857,-0.16285714285714287,-0.38857142857142857,-0.20857142857142857,-0.52,-0.25142857142857145,-0.5114285714285715,0.03428571428571429,-0.5314285714285715,0.011428571428571429,-0.7257142857142858,0.002857142857142857,-0.8685714285714285,-0.011428571428571429,-0.9742857142857143,0.08857142857142856,-0.47714285714285715,0.054285714285714284,-0.7114285714285714,0.017142857142857144,-0.88,-0.002857142857142857,-1.0,0.08285714285714285,-0.39714285714285713,-0.08571428571428572,-0.5885714285714285,-0.1657142857142857,-0.4942857142857143,-0.16857142857142857,-0.4228571428571429,0.037142857142857144,-0.3057142857142857,-0.12285714285714286,-0.46,-0.17714285714285713,-0.3942857142857143,-0.1742857142857143,-0.32285714285714284 +4,0.0,0.0,0.06534090909090909,-0.1875,0.056818181818181816,-0.36363636363636365,-0.04261363636363636,-0.46875,-0.13920454545454544,-0.5056818181818182,0.11647727272727272,-0.46875,0.036931818181818184,-0.7102272727272727,-0.005681818181818182,-0.8522727272727273,-0.048295454545454544,-0.9602272727272727,0.03977272727272727,-0.41761363636363635,-0.008522727272727272,-0.6960227272727273,-0.056818181818181816,-0.8693181818181818,-0.09943181818181818,-1.0,-0.06818181818181818,-0.3494318181818182,-0.21875,-0.5880681818181818,-0.23579545454545456,-0.5028409090909091,-0.21022727272727273,-0.4289772727272727,-0.18181818181818182,-0.26988636363636365,-0.29829545454545453,-0.4659090909090909,-0.29261363636363635,-0.4147727272727273,-0.26136363636363635,-0.35795454545454547 +4,0.0,0.0,0.11019283746556474,-0.19008264462809918,0.08539944903581267,-0.38292011019283745,-0.024793388429752067,-0.4573002754820937,-0.13774104683195593,-0.4820936639118457,0.12121212121212122,-0.44352617079889806,0.07162534435261708,-0.7024793388429752,0.03856749311294766,-0.8484848484848485,0.0027548209366391185,-0.9669421487603306,-0.005509641873278237,-0.42424242424242425,-0.03305785123966942,-0.7024793388429752,-0.05785123966942149,-0.8705234159779615,-0.09090909090909091,-1.0,-0.13774104683195593,-0.38292011019283745,-0.18457300275482094,-0.6115702479338843,-0.14600550964187328,-0.5509641873278237,-0.12396694214876033,-0.4738292011019284,-0.2534435261707989,-0.3305785123966942,-0.2699724517906336,-0.5179063360881543,-0.22865013774104684,-0.4820936639118457,-0.20385674931129477,-0.42424242424242425 +4,0.0,0.0,0.11475409836065574,-0.1885245901639344,0.09562841530054644,-0.37158469945355194,0.0,-0.45081967213114754,-0.10655737704918032,-0.48360655737704916,0.12021857923497267,-0.4344262295081967,0.07377049180327869,-0.7021857923497268,0.040983606557377046,-0.8469945355191257,0.00273224043715847,-0.9617486338797814,-0.00546448087431694,-0.4262295081967213,-0.030054644808743168,-0.7076502732240437,-0.0546448087431694,-0.8743169398907104,-0.09016393442622951,-1.0,-0.1366120218579235,-0.39344262295081966,-0.18032786885245902,-0.6202185792349727,-0.14207650273224043,-0.5628415300546448,-0.11748633879781421,-0.4890710382513661,-0.2459016393442623,-0.34153005464480873,-0.2568306010928962,-0.5245901639344263,-0.21584699453551912,-0.4890710382513661,-0.19398907103825136,-0.43169398907103823 +4,0.0,0.0,0.11878453038674033,-0.19613259668508287,0.09944751381215469,-0.3839779005524862,-0.0027624309392265192,-0.4613259668508287,-0.11602209944751381,-0.4889502762430939,0.1270718232044199,-0.4447513812154696,0.0718232044198895,-0.7016574585635359,0.03867403314917127,-0.8425414364640884,0.0,-0.9585635359116023,-0.0027624309392265192,-0.425414364640884,-0.03591160220994475,-0.7044198895027625,-0.06353591160220995,-0.8674033149171271,-0.09668508287292818,-1.0,-0.13812154696132597,-0.3839779005524862,-0.17955801104972377,-0.6077348066298343,-0.1408839779005525,-0.5441988950276243,-0.11602209944751381,-0.46408839779005523,-0.2513812154696133,-0.3287292817679558,-0.26243093922651933,-0.511049723756906,-0.21823204419889503,-0.4723756906077348,-0.19060773480662985,-0.4116022099447514 +4,0.0,0.0,0.13333333333333333,-0.1523809523809524,0.12698412698412698,-0.35555555555555557,0.022222222222222223,-0.4634920634920635,-0.09523809523809523,-0.5174603174603175,0.15555555555555556,-0.38412698412698415,0.09841269841269841,-0.6666666666666666,0.05396825396825397,-0.8285714285714286,0.01904761904761905,-0.9587301587301588,0.006349206349206349,-0.35873015873015873,-0.031746031746031744,-0.6730158730158731,-0.06666666666666667,-0.8603174603174604,-0.09523809523809523,-1.0,-0.14285714285714285,-0.3111111111111111,-0.20634920634920634,-0.5841269841269842,-0.17777777777777778,-0.5238095238095238,-0.1492063492063492,-0.4380952380952381,-0.2698412698412698,-0.24444444444444444,-0.29523809523809524,-0.47619047619047616,-0.26031746031746034,-0.44126984126984126,-0.24126984126984127,-0.3746031746031746 +4,0.0,0.0,0.1111111111111111,-0.19166666666666668,0.09166666666666666,-0.36666666666666664,-0.008333333333333333,-0.44722222222222224,-0.11388888888888889,-0.48055555555555557,0.1111111111111111,-0.4361111111111111,0.06111111111111111,-0.7027777777777777,0.027777777777777776,-0.85,-0.008333333333333333,-0.9666666666666667,-0.016666666666666666,-0.425,-0.04722222222222222,-0.7055555555555556,-0.07777777777777778,-0.8722222222222222,-0.11388888888888889,-1.0,-0.14444444444444443,-0.3888888888888889,-0.18888888888888888,-0.6138888888888889,-0.14722222222222223,-0.5638888888888889,-0.12222222222222222,-0.49166666666666664,-0.25277777777777777,-0.3388888888888889,-0.26666666666666666,-0.5166666666666667,-0.2222222222222222,-0.49444444444444446,-0.19444444444444445,-0.45 +4,0.0,0.0,0.12138728323699421,-0.1994219653179191,0.10404624277456648,-0.3930635838150289,0.011560693641618497,-0.48554913294797686,-0.08959537572254335,-0.5317919075144508,0.10982658959537572,-0.43352601156069365,0.05202312138728324,-0.7023121387283237,0.011560693641618497,-0.8497109826589595,-0.023121387283236993,-0.9653179190751445,-0.028901734104046242,-0.4046242774566474,-0.06647398843930635,-0.6965317919075145,-0.09248554913294797,-0.869942196531792,-0.12138728323699421,-1.0,-0.16473988439306358,-0.3554913294797688,-0.19653179190751446,-0.5953757225433526,-0.15606936416184972,-0.5491329479768786,-0.13005780346820808,-0.47398843930635837,-0.2774566473988439,-0.2976878612716763,-0.2947976878612717,-0.5057803468208093,-0.24855491329479767,-0.47398843930635837,-0.22254335260115607,-0.407514450867052 +4,0.0,0.0,0.12573099415204678,-0.195906432748538,0.11403508771929824,-0.3888888888888889,0.038011695906432746,-0.5087719298245614,-0.038011695906432746,-0.5847953216374269,0.09941520467836257,-0.43567251461988304,0.03508771929824561,-0.716374269005848,0.0,-0.8596491228070176,-0.03508771929824561,-0.9766081871345029,-0.04093567251461988,-0.4093567251461988,-0.09064327485380116,-0.7017543859649122,-0.11695906432748537,-0.8742690058479532,-0.14035087719298245,-1.0,-0.17251461988304093,-0.3654970760233918,-0.2134502923976608,-0.6081871345029239,-0.15789473684210525,-0.5672514619883041,-0.12573099415204678,-0.49122807017543857,-0.28362573099415206,-0.3128654970760234,-0.2982456140350877,-0.5116959064327485,-0.24269005847953215,-0.49415204678362573,-0.21052631578947367,-0.43859649122807015 +4,0.0,0.0,0.1490066225165563,-0.15894039735099338,0.1456953642384106,-0.36423841059602646,0.059602649006622516,-0.5165562913907285,-0.026490066225165563,-0.6125827814569537,0.11589403973509933,-0.3841059602649007,0.052980132450331126,-0.6854304635761589,0.006622516556291391,-0.8509933774834437,-0.03642384105960265,-0.9801324503311258,-0.04304635761589404,-0.3509933774834437,-0.09271523178807947,-0.6754966887417219,-0.11920529801324503,-0.8609271523178808,-0.1423841059602649,-1.0,-0.18543046357615894,-0.30132450331125826,-0.22847682119205298,-0.5894039735099338,-0.17218543046357615,-0.5993377483443708,-0.12251655629139073,-0.5529801324503312,-0.2913907284768212,-0.24503311258278146,-0.31456953642384106,-0.4735099337748344,-0.2582781456953642,-0.49337748344370863,-0.2152317880794702,-0.45695364238410596 +4,0.0,0.0,0.12716763005780346,-0.19653179190751446,0.10982658959537572,-0.38439306358381503,0.02601156069364162,-0.49710982658959535,-0.046242774566473986,-0.5751445086705202,0.07803468208092486,-0.4393063583815029,0.017341040462427744,-0.7167630057803468,-0.023121387283236993,-0.8583815028901735,-0.06069364161849711,-0.9653179190751445,-0.06358381502890173,-0.41040462427745666,-0.11849710982658959,-0.7052023121387283,-0.1416184971098266,-0.8757225433526011,-0.1676300578034682,-1.0,-0.18786127167630057,-0.36416184971098264,-0.22254335260115607,-0.615606936416185,-0.16184971098265896,-0.5924855491329479,-0.12427745664739884,-0.5317919075144508,-0.2832369942196532,-0.3092485549132948,-0.30346820809248554,-0.5260115606936416,-0.26011560693641617,-0.5809248554913294,-0.22832369942196531,-0.5982658959537572 +4,0.0,0.0,0.11815561959654179,-0.1988472622478386,0.09798270893371758,-0.3746397694524496,0.01440922190201729,-0.48703170028818443,-0.06340057636887608,-0.553314121037464,0.05763688760806916,-0.43804034582132567,0.0,-0.7118155619596542,-0.040345821325648415,-0.8530259365994236,-0.08357348703170028,-0.962536023054755,-0.07492795389048991,-0.414985590778098,-0.12103746397694524,-0.7060518731988472,-0.15273775216138327,-0.8760806916426513,-0.1930835734870317,-1.0,-0.2017291066282421,-0.37175792507204614,-0.23054755043227665,-0.6109510086455331,-0.16714697406340057,-0.5821325648414986,-0.12968299711815562,-0.5187319884726225,-0.2968299711815562,-0.3170028818443804,-0.2968299711815562,-0.5187319884726225,-0.23919308357348704,-0.521613832853026,-0.20461095100864554,-0.48703170028818443 +4,0.0,0.0,0.12209302325581395,-0.20348837209302326,0.10465116279069768,-0.3866279069767442,0.01744186046511628,-0.5058139534883721,-0.06395348837209303,-0.5697674418604651,0.046511627906976744,-0.45058139534883723,-0.023255813953488372,-0.7267441860465116,-0.06686046511627906,-0.8691860465116279,-0.11046511627906977,-0.9767441860465116,-0.09011627906976744,-0.42151162790697677,-0.14244186046511628,-0.7151162790697675,-0.17732558139534885,-0.8837209302325582,-0.21220930232558138,-1.0,-0.21220930232558138,-0.37209302325581395,-0.24709302325581395,-0.6104651162790697,-0.18604651162790697,-0.5843023255813954,-0.14825581395348839,-0.5145348837209303,-0.29941860465116277,-0.3168604651162791,-0.311046511627907,-0.5058139534883721,-0.25872093023255816,-0.502906976744186,-0.22674418604651161,-0.45930232558139533 +4,0.0,0.0,0.12753623188405797,-0.2,0.1072463768115942,-0.37971014492753624,0.02608695652173913,-0.5014492753623189,-0.04927536231884058,-0.5710144927536231,0.0463768115942029,-0.4463768115942029,-0.011594202898550725,-0.7217391304347827,-0.057971014492753624,-0.863768115942029,-0.10144927536231885,-0.9681159420289855,-0.08985507246376812,-0.4260869565217391,-0.14202898550724638,-0.7159420289855073,-0.17971014492753623,-0.8869565217391304,-0.22028985507246376,-1.0,-0.20869565217391303,-0.37971014492753624,-0.24057971014492754,-0.6086956521739131,-0.17681159420289855,-0.5884057971014492,-0.13333333333333333,-0.5217391304347826,-0.2956521739130435,-0.3188405797101449,-0.3072463768115942,-0.5072463768115942,-0.25217391304347825,-0.5072463768115942,-0.21739130434782608,-0.46956521739130436 +4,0.0,0.0,0.11849710982658959,-0.20520231213872833,0.09248554913294797,-0.3815028901734104,0.008670520231213872,-0.5,-0.057803468208092484,-0.5722543352601156,0.031791907514450865,-0.45664739884393063,-0.03757225433526012,-0.7225433526011561,-0.08092485549132948,-0.861271676300578,-0.13005780346820808,-0.9653179190751445,-0.10404624277456648,-0.430635838150289,-0.15606936416184972,-0.7167630057803468,-0.1994219653179191,-0.884393063583815,-0.24566473988439305,-1.0,-0.21965317919075145,-0.3786127167630058,-0.2514450867052023,-0.6040462427745664,-0.18786127167630057,-0.5838150289017341,-0.14450867052023122,-0.5202312138728323,-0.30346820809248554,-0.315028901734104,-0.3179190751445087,-0.5086705202312138,-0.2658959537572254,-0.5144508670520231,-0.22832369942196531,-0.48265895953757226 +4,0.0,0.0,0.12179487179487179,-0.16666666666666666,0.10256410256410256,-0.36538461538461536,0.00641025641025641,-0.5064102564102564,-0.08653846153846154,-0.5993589743589743,0.07692307692307693,-0.40064102564102566,0.0,-0.6858974358974359,-0.060897435897435896,-0.8493589743589743,-0.11858974358974358,-0.9775641025641025,-0.07371794871794872,-0.358974358974359,-0.14102564102564102,-0.6730769230769231,-0.1858974358974359,-0.8589743589743589,-0.22756410256410256,-1.0,-0.21153846153846154,-0.30448717948717946,-0.2724358974358974,-0.5737179487179487,-0.21794871794871795,-0.5608974358974359,-0.1762820512820513,-0.5032051282051282,-0.3108974358974359,-0.23717948717948717,-0.358974358974359,-0.46794871794871795,-0.3173076923076923,-0.5128205128205128,-0.28205128205128205,-0.5128205128205128 +4,0.0,0.0,0.1,-0.22,0.05714285714285714,-0.39714285714285713,-0.03428571428571429,-0.5085714285714286,-0.11428571428571428,-0.5857142857142857,0.022857142857142857,-0.4742857142857143,-0.04857142857142857,-0.7314285714285714,-0.09428571428571429,-0.8714285714285714,-0.1457142857142857,-0.9771428571428571,-0.10285714285714286,-0.44,-0.1657142857142857,-0.7171428571428572,-0.21142857142857144,-0.8828571428571429,-0.26,-1.0,-0.22,-0.38285714285714284,-0.2742857142857143,-0.6085714285714285,-0.22285714285714286,-0.5942857142857143,-0.18285714285714286,-0.5428571428571428,-0.3057142857142857,-0.3142857142857143,-0.3628571428571429,-0.5285714285714286,-0.3457142857142857,-0.6,-0.32571428571428573,-0.6314285714285715 +4,0.0,0.0,0.08645533141210375,-0.21902017291066284,0.0345821325648415,-0.40057636887608067,-0.07204610951008646,-0.4812680115273775,-0.17579250720461095,-0.5129682997118156,0.05187319884726225,-0.4668587896253602,-0.043227665706051875,-0.7262247838616714,-0.10086455331412104,-0.8731988472622478,-0.15561959654178675,-0.9855907780979827,-0.06628242074927954,-0.42363112391930835,-0.14697406340057637,-0.7118155619596542,-0.207492795389049,-0.8818443804034583,-0.25936599423631124,-1.0,-0.1930835734870317,-0.36023054755043227,-0.27953890489913547,-0.5850144092219021,-0.25360230547550433,-0.5331412103746398,-0.2219020172910663,-0.45821325648414984,-0.30547550432276654,-0.2881844380403458,-0.36023054755043227,-0.48703170028818443,-0.33429394812680113,-0.4610951008645533,-0.30835734870317005,-0.4034582132564842 +4,0.0,0.0,0.07736389684813753,-0.21203438395415472,0.025787965616045846,-0.3954154727793696,-0.07736389684813753,-0.47277936962750716,-0.1833810888252149,-0.504297994269341,0.06017191977077364,-0.47277936962750716,-0.04011461318051576,-0.7335243553008596,-0.09455587392550144,-0.8739255014326648,-0.14326647564469913,-0.9856733524355301,-0.06017191977077364,-0.4297994269340974,-0.14040114613180515,-0.7163323782234957,-0.19484240687679083,-0.8796561604584527,-0.24355300859598855,-1.0,-0.1833810888252149,-0.3667621776504298,-0.2808022922636103,-0.5959885386819485,-0.2521489971346705,-0.5386819484240688,-0.2177650429799427,-0.46131805157593125,-0.2922636103151863,-0.29512893982808025,-0.3553008595988539,-0.4813753581661891,-0.31805157593123207,-0.44412607449856734,-0.2836676217765043,-0.3868194842406877 +4,0.0,0.0,0.0664819944598338,-0.21329639889196675,0.019390581717451522,-0.3961218836565097,-0.08033240997229917,-0.4709141274238227,-0.1883656509695291,-0.4986149584487535,0.06371191135734072,-0.481994459833795,-0.0332409972299169,-0.7313019390581718,-0.09141274238227147,-0.8642659279778393,-0.1440443213296399,-0.9695290858725761,-0.04709141274238227,-0.44598337950138506,-0.12742382271468145,-0.7229916897506925,-0.18282548476454294,-0.8808864265927978,-0.23545706371191136,-1.0,-0.16620498614958448,-0.3850415512465374,-0.2742382271468144,-0.5983379501385041,-0.2520775623268698,-0.5290858725761773,-0.22160664819944598,-0.45429362880886426,-0.27977839335180055,-0.3074792243767313,-0.3518005540166205,-0.4903047091412742,-0.3268698060941828,-0.44598337950138506,-0.296398891966759,-0.3850415512465374 +4,0.0,0.0,0.07202216066481995,-0.21052631578947367,0.030470914127423823,-0.39335180055401664,-0.07202216066481995,-0.481994459833795,-0.1772853185595568,-0.5235457063711911,0.08033240997229917,-0.4792243767313019,-0.0110803324099723,-0.7229916897506925,-0.0664819944598338,-0.8614958448753463,-0.11911357340720222,-0.9667590027700831,-0.027700831024930747,-0.44321329639889195,-0.10249307479224377,-0.7174515235457064,-0.16066481994459833,-0.8781163434903048,-0.21052631578947367,-1.0,-0.14681440443213298,-0.3850415512465374,-0.2631578947368421,-0.5983379501385041,-0.24930747922437674,-0.5263157894736842,-0.21606648199445982,-0.4515235457063712,-0.26038781163434904,-0.3157894736842105,-0.3379501385041551,-0.49584487534626037,-0.31301939058171746,-0.4487534626038781,-0.27977839335180055,-0.3878116343490305 +4,0.0,0.0,0.06557377049180328,-0.20765027322404372,0.03278688524590164,-0.3825136612021858,-0.06830601092896176,-0.4726775956284153,-0.16393442622950818,-0.5136612021857924,0.08469945355191257,-0.4890710382513661,-0.00819672131147541,-0.7240437158469946,-0.0546448087431694,-0.8633879781420765,-0.09836065573770492,-0.9699453551912568,-0.01366120218579235,-0.44808743169398907,-0.08196721311475409,-0.7158469945355191,-0.13387978142076504,-0.8797814207650273,-0.1721311475409836,-1.0,-0.13114754098360656,-0.3907103825136612,-0.24863387978142076,-0.6120218579234973,-0.24043715846994534,-0.5382513661202186,-0.2103825136612022,-0.4672131147540984,-0.24043715846994534,-0.319672131147541,-0.3251366120218579,-0.5081967213114754,-0.30327868852459017,-0.46174863387978143,-0.2677595628415301,-0.40437158469945356 +4,0.0,0.0,0.0684931506849315,-0.20273972602739726,0.038356164383561646,-0.38082191780821917,-0.052054794520547946,-0.4684931506849315,-0.14794520547945206,-0.5068493150684932,0.09041095890410959,-0.4821917808219178,0.005479452054794521,-0.7205479452054795,-0.038356164383561646,-0.8602739726027397,-0.0821917808219178,-0.9671232876712329,-0.0027397260273972603,-0.4465753424657534,-0.06575342465753424,-0.7150684931506849,-0.1178082191780822,-0.8767123287671232,-0.16164383561643836,-1.0,-0.1178082191780822,-0.38904109589041097,-0.23835616438356164,-0.6109589041095891,-0.23835616438356164,-0.5342465753424658,-0.21095890410958903,-0.4602739726027397,-0.2273972602739726,-0.3232876712328767,-0.3178082191780822,-0.5068493150684932,-0.3013698630136986,-0.4602739726027397,-0.2684931506849315,-0.4 +5,0.0,0.0,0.1724137931034483,-0.07931034482758621,0.3275862068965517,-0.2103448275862069,0.4103448275862069,-0.3275862068965517,0.3448275862068966,-0.4241379310344828,0.2517241379310345,-0.4689655172413793,0.3275862068965517,-0.603448275862069,0.33793103448275863,-0.5379310344827586,0.32068965517241377,-0.44482758620689655,0.15517241379310345,-0.5241379310344828,0.23103448275862068,-0.7206896551724138,0.2827586206896552,-0.8413793103448276,0.32413793103448274,-0.9586206896551724,0.04482758620689655,-0.5275862068965518,0.08620689655172414,-0.7413793103448276,0.1206896551724138,-0.8793103448275862,0.15862068965517243,-1.0,-0.07241379310344828,-0.4896551724137931,-0.07586206896551724,-0.6586206896551724,-0.07241379310344828,-0.7724137931034483,-0.05517241379310345,-0.8758620689655172 +5,0.0,0.0,0.17647058823529413,-0.06920415224913495,0.3391003460207612,-0.2041522491349481,0.42560553633217996,-0.32525951557093424,0.35986159169550175,-0.42214532871972316,0.25259515570934254,-0.47058823529411764,0.3391003460207612,-0.6055363321799307,0.3494809688581315,-0.5294117647058824,0.3391003460207612,-0.43252595155709345,0.15570934256055363,-0.5259515570934256,0.23875432525951557,-0.7231833910034602,0.29411764705882354,-0.8442906574394463,0.3391003460207612,-0.9584775086505191,0.04844290657439446,-0.5294117647058824,0.08996539792387544,-0.7439446366782007,0.12802768166089964,-0.8788927335640139,0.1695501730103806,-1.0,-0.06228373702422145,-0.4913494809688581,-0.0657439446366782,-0.657439446366782,-0.06228373702422145,-0.7716262975778547,-0.04844290657439446,-0.8754325259515571 +5,0.0,0.0,0.17869415807560138,-0.07216494845360824,0.3333333333333333,-0.20618556701030927,0.41580756013745707,-0.32646048109965636,0.35738831615120276,-0.42955326460481097,0.2508591065292096,-0.4639175257731959,0.32989690721649484,-0.6013745704467354,0.3436426116838488,-0.5292096219931272,0.32989690721649484,-0.4329896907216495,0.15463917525773196,-0.5189003436426117,0.23024054982817868,-0.718213058419244,0.28865979381443296,-0.8384879725085911,0.33676975945017185,-0.9587628865979382,0.048109965635738834,-0.5223367697594502,0.0859106529209622,-0.7353951890034365,0.12714776632302405,-0.872852233676976,0.16838487972508592,-1.0,-0.06529209621993128,-0.4879725085910653,-0.06872852233676977,-0.6597938144329897,-0.06529209621993128,-0.7731958762886598,-0.05154639175257732,-0.8797250859106529 +5,0.0,0.0,0.17525773195876287,-0.06872852233676977,0.3333333333333333,-0.2027491408934708,0.41580756013745707,-0.32646048109965636,0.3539518900343643,-0.42955326460481097,0.2542955326460481,-0.46735395189003437,0.33676975945017185,-0.6013745704467354,0.35051546391752575,-0.5360824742268041,0.3436426116838488,-0.44329896907216493,0.15807560137457044,-0.5223367697594502,0.23711340206185566,-0.7216494845360825,0.2920962199312715,-0.8419243986254296,0.33676975945017185,-0.9621993127147767,0.05154639175257732,-0.5292096219931272,0.09278350515463918,-0.7422680412371134,0.13402061855670103,-0.8797250859106529,0.17525773195876287,-1.0,-0.061855670103092786,-0.49828178694158076,-0.06529209621993128,-0.6666666666666666,-0.061855670103092786,-0.7800687285223368,-0.048109965635738834,-0.8831615120274914 +5,0.0,0.0,0.17647058823529413,-0.0726643598615917,0.33217993079584773,-0.2041522491349481,0.4186851211072664,-0.328719723183391,0.356401384083045,-0.4290657439446367,0.25259515570934254,-0.4671280276816609,0.3356401384083045,-0.5986159169550173,0.356401384083045,-0.5397923875432526,0.3460207612456747,-0.44982698961937717,0.15570934256055363,-0.5224913494809689,0.23875432525951557,-0.7231833910034602,0.2906574394463668,-0.8442906574394463,0.3356401384083045,-0.9619377162629758,0.05190311418685121,-0.532871972318339,0.09342560553633218,-0.7439446366782007,0.1314878892733564,-0.8823529411764706,0.17301038062283736,-1.0,-0.0657439446366782,-0.5017301038062284,-0.06920415224913495,-0.671280276816609,-0.06228373702422145,-0.7820069204152249,-0.04844290657439446,-0.8823529411764706 +5,0.0,0.0,0.1695501730103806,-0.07612456747404844,0.328719723183391,-0.20761245674740483,0.40484429065743943,-0.3391003460207612,0.33217993079584773,-0.43944636678200694,0.24567474048442905,-0.4602076124567474,0.3356401384083045,-0.6055363321799307,0.356401384083045,-0.5432525951557093,0.3460207612456747,-0.45674740484429066,0.14878892733564014,-0.5190311418685121,0.22837370242214533,-0.7197231833910035,0.28027681660899656,-0.8408304498269896,0.3217993079584775,-0.9584775086505191,0.04152249134948097,-0.5294117647058824,0.07958477508650519,-0.740484429065744,0.11764705882352941,-0.8788927335640139,0.15570934256055363,-1.0,-0.07958477508650519,-0.49480968858131485,-0.07958477508650519,-0.6678200692041523,-0.07958477508650519,-0.7785467128027682,-0.0657439446366782,-0.8788927335640139 +5,0.0,0.0,0.1724137931034483,-0.07931034482758621,0.3275862068965517,-0.20344827586206896,0.40344827586206894,-0.33448275862068966,0.33448275862068966,-0.43448275862068964,0.2517241379310345,-0.4586206896551724,0.3310344827586207,-0.6,0.35517241379310344,-0.5482758620689655,0.35172413793103446,-0.46551724137931033,0.15172413793103448,-0.5172413793103449,0.23103448275862068,-0.7172413793103448,0.2827586206896552,-0.8413793103448276,0.3310344827586207,-0.9551724137931035,0.04482758620689655,-0.5275862068965518,0.08620689655172414,-0.7413793103448276,0.1206896551724138,-0.8793103448275862,0.16551724137931034,-1.0,-0.07586206896551724,-0.496551724137931,-0.07931034482758621,-0.6655172413793103,-0.07586206896551724,-0.7793103448275862,-0.05862068965517241,-0.8758620689655172 +5,0.0,0.0,0.17647058823529413,-0.07958477508650519,0.328719723183391,-0.20761245674740483,0.4013840830449827,-0.3356401384083045,0.328719723183391,-0.43944636678200694,0.25259515570934254,-0.45674740484429066,0.3356401384083045,-0.6055363321799307,0.35986159169550175,-0.5605536332179931,0.35986159169550175,-0.4809688581314879,0.1522491349480969,-0.5121107266435986,0.22837370242214533,-0.7197231833910035,0.2837370242214533,-0.8408304498269896,0.328719723183391,-0.9550173010380623,0.04498269896193772,-0.5224913494809689,0.08304498269896193,-0.740484429065744,0.12110726643598616,-0.8823529411764706,0.16262975778546712,-1.0,-0.0726643598615917,-0.4913494809688581,-0.07958477508650519,-0.6678200692041523,-0.0726643598615917,-0.7820069204152249,-0.058823529411764705,-0.8788927335640139 +5,0.0,0.0,0.17832167832167833,-0.07342657342657342,0.34265734265734266,-0.1993006993006993,0.4160839160839161,-0.3321678321678322,0.3321678321678322,-0.43006993006993005,0.2692307692307692,-0.45454545454545453,0.35664335664335667,-0.6013986013986014,0.3776223776223776,-0.548951048951049,0.36713286713286714,-0.47202797202797203,0.16783216783216784,-0.5104895104895105,0.24825174825174826,-0.7132867132867133,0.3006993006993007,-0.8356643356643356,0.33916083916083917,-0.951048951048951,0.055944055944055944,-0.5244755244755245,0.10139860139860139,-0.7377622377622378,0.13636363636363635,-0.8776223776223776,0.17482517482517482,-1.0,-0.06643356643356643,-0.48951048951048953,-0.07342657342657342,-0.6608391608391608,-0.06993006993006994,-0.7762237762237763,-0.055944055944055944,-0.8776223776223776 +5,0.0,0.0,0.18181818181818182,-0.06643356643356643,0.34615384615384615,-0.1993006993006993,0.4160839160839161,-0.3356643356643357,0.3356643356643357,-0.43356643356643354,0.27972027972027974,-0.458041958041958,0.36363636363636365,-0.6013986013986014,0.3776223776223776,-0.5559440559440559,0.36713286713286714,-0.479020979020979,0.17832167832167833,-0.513986013986014,0.25524475524475526,-0.7167832167832168,0.3041958041958042,-0.8391608391608392,0.34265734265734266,-0.9545454545454546,0.06293706293706294,-0.5244755244755245,0.1048951048951049,-0.7377622377622378,0.13986013986013987,-0.8776223776223776,0.17482517482517482,-1.0,-0.06293706293706294,-0.48951048951048953,-0.06993006993006994,-0.6608391608391608,-0.06993006993006994,-0.7762237762237763,-0.055944055944055944,-0.8811188811188811 +5,0.0,0.0,0.17301038062283736,-0.06920415224913495,0.3356401384083045,-0.2041522491349481,0.40484429065743943,-0.3356401384083045,0.32525951557093424,-0.4290657439446367,0.2664359861591695,-0.45674740484429066,0.35294117647058826,-0.5951557093425606,0.370242214532872,-0.5467128027681661,0.35986159169550175,-0.4671280276816609,0.16608996539792387,-0.5086505190311419,0.2422145328719723,-0.71280276816609,0.2906574394463668,-0.8339100346020761,0.33217993079584773,-0.9515570934256056,0.05536332179930796,-0.5155709342560554,0.09688581314878893,-0.7301038062283737,0.1314878892733564,-0.8719723183391004,0.1695501730103806,-1.0,-0.0657439446366782,-0.4809688581314879,-0.06920415224913495,-0.657439446366782,-0.0657439446366782,-0.7750865051903114,-0.05536332179930796,-0.8823529411764706 +5,0.0,0.0,0.18118466898954705,-0.07317073170731707,0.34843205574912894,-0.20209059233449478,0.42857142857142855,-0.3344947735191638,0.3519163763066202,-0.43205574912891986,0.26480836236933797,-0.4634146341463415,0.3519163763066202,-0.6062717770034843,0.3797909407665505,-0.5714285714285714,0.37630662020905925,-0.49477351916376305,0.16376306620209058,-0.519163763066202,0.24738675958188153,-0.7212543554006968,0.29965156794425085,-0.8432055749128919,0.34494773519163763,-0.9581881533101045,0.05574912891986063,-0.5296167247386759,0.10104529616724739,-0.7456445993031359,0.13937282229965156,-0.8850174216027874,0.18118466898954705,-1.0,-0.0627177700348432,-0.5017421602787456,-0.0627177700348432,-0.6724738675958188,-0.059233449477351915,-0.7874564459930313,-0.041811846689895474,-0.8885017421602788 +5,0.0,0.0,0.17770034843205576,-0.06968641114982578,0.3344947735191638,-0.20557491289198607,0.4181184668989547,-0.3310104529616725,0.3588850174216028,-0.42857142857142855,0.25435540069686413,-0.4634146341463415,0.3344947735191638,-0.6027874564459931,0.3588850174216028,-0.554006968641115,0.3588850174216028,-0.47038327526132406,0.156794425087108,-0.5156794425087108,0.23693379790940766,-0.7212543554006968,0.289198606271777,-0.8432055749128919,0.3310104529616725,-0.9581881533101045,0.04878048780487805,-0.5261324041811847,0.09407665505226481,-0.7386759581881533,0.13240418118466898,-0.8780487804878049,0.17073170731707318,-1.0,-0.06620209059233449,-0.4912891986062718,-0.06968641114982578,-0.662020905923345,-0.06620209059233449,-0.7770034843205574,-0.05226480836236934,-0.8815331010452961 +5,0.0,0.0,0.17647058823529413,-0.0726643598615917,0.33217993079584773,-0.21107266435986158,0.41522491349480967,-0.34256055363321797,0.3391003460207612,-0.4429065743944637,0.23875432525951557,-0.46366782006920415,0.314878892733564,-0.6055363321799307,0.34256055363321797,-0.5570934256055363,0.3494809688581315,-0.4740484429065744,0.1453287197231834,-0.5190311418685121,0.22145328719723184,-0.7231833910034602,0.2768166089965398,-0.8477508650519031,0.32525951557093424,-0.9619377162629758,0.04152249134948097,-0.5259515570934256,0.08304498269896193,-0.7370242214532872,0.12802768166089964,-0.8788927335640139,0.1695501730103806,-1.0,-0.0657439446366782,-0.48788927335640137,-0.06920415224913495,-0.6608996539792388,-0.06920415224913495,-0.7785467128027682,-0.058823529411764705,-0.8823529411764706 +5,0.0,0.0,0.18118466898954705,-0.07317073170731707,0.33797909407665505,-0.21951219512195122,0.4250871080139373,-0.34843205574912894,0.34494773519163763,-0.445993031358885,0.23693379790940766,-0.47038327526132406,0.3170731707317073,-0.6097560975609756,0.34843205574912894,-0.5470383275261324,0.3588850174216028,-0.4564459930313589,0.14634146341463414,-0.5226480836236934,0.21602787456445993,-0.7282229965156795,0.27177700348432055,-0.8536585365853658,0.3240418118466899,-0.9721254355400697,0.04529616724738676,-0.5261324041811847,0.08362369337979095,-0.7421602787456446,0.1289198606271777,-0.8815331010452961,0.17770034843205576,-1.0,-0.0627177700348432,-0.4878048780487805,-0.06620209059233449,-0.662020905923345,-0.0627177700348432,-0.7804878048780488,-0.04878048780487805,-0.8850174216027874 +5,0.0,0.0,0.17770034843205576,-0.07665505226480836,0.3310104529616725,-0.23344947735191637,0.42160278745644597,-0.3588850174216028,0.34843205574912894,-0.44947735191637633,0.21602787456445993,-0.4808362369337979,0.29965156794425085,-0.6167247386759582,0.3344947735191638,-0.5400696864111498,0.33797909407665505,-0.43902439024390244,0.13240418118466898,-0.5296167247386759,0.20209059233449478,-0.7317073170731707,0.25435540069686413,-0.8606271777003485,0.2961672473867596,-0.9860627177700348,0.03832752613240418,-0.5261324041811847,0.08013937282229965,-0.735191637630662,0.12195121951219512,-0.8745644599303136,0.1602787456445993,-1.0,-0.059233449477351915,-0.4843205574912892,-0.0627177700348432,-0.6515679442508711,-0.059233449477351915,-0.7665505226480837,-0.04878048780487805,-0.8780487804878049 +5,0.0,0.0,0.1793103448275862,-0.0896551724137931,0.32068965517241377,-0.2517241379310345,0.40344827586206894,-0.3793103448275862,0.3310344827586207,-0.4689655172413793,0.21724137931034482,-0.4896551724137931,0.29310344827586204,-0.6275862068965518,0.32068965517241377,-0.5482758620689655,0.32413793103448274,-0.44482758620689655,0.13448275862068965,-0.5344827586206896,0.2,-0.7448275862068966,0.24482758620689654,-0.8758620689655172,0.2827586206896552,-0.993103448275862,0.041379310344827586,-0.5275862068965518,0.07931034482758621,-0.7379310344827587,0.11724137931034483,-0.8793103448275862,0.15862068965517243,-1.0,-0.05172413793103448,-0.4827586206896552,-0.05517241379310345,-0.6517241379310345,-0.04827586206896552,-0.7689655172413793,-0.03103448275862069,-0.8724137931034482 +5,0.0,0.0,0.1780821917808219,-0.0958904109589041,0.3116438356164384,-0.2602739726027397,0.3904109589041096,-0.3904109589041096,0.3253424657534247,-0.4863013698630137,0.20205479452054795,-0.4897260273972603,0.2773972602739726,-0.6267123287671232,0.3184931506849315,-0.5342465753424658,0.3321917808219178,-0.4246575342465753,0.1232876712328767,-0.5308219178082192,0.18493150684931506,-0.7431506849315068,0.2328767123287671,-0.8732876712328768,0.2773972602739726,-0.9931506849315068,0.0410958904109589,-0.523972602739726,0.07534246575342465,-0.7363013698630136,0.11301369863013698,-0.8767123287671232,0.1506849315068493,-1.0,-0.04452054794520548,-0.476027397260274,-0.05136986301369863,-0.6472602739726028,-0.04452054794520548,-0.7636986301369864,-0.030821917808219176,-0.8698630136986302 +5,0.0,0.0,0.1718213058419244,-0.09965635738831616,0.30584192439862545,-0.2646048109965636,0.3848797250859107,-0.3917525773195876,0.32646048109965636,-0.4845360824742268,0.1958762886597938,-0.49828178694158076,0.26804123711340205,-0.6357388316151202,0.3127147766323024,-0.5429553264604811,0.32646048109965636,-0.4261168384879725,0.12714776632302405,-0.5360824742268041,0.18556701030927836,-0.7491408934707904,0.23024054982817868,-0.8797250859106529,0.2646048109965636,-1.0,0.05154639175257732,-0.5326460481099656,0.0859106529209622,-0.738831615120275,0.12371134020618557,-0.8762886597938144,0.15463917525773196,-0.993127147766323,-0.027491408934707903,-0.4879725085910653,-0.030927835051546393,-0.6563573883161512,-0.024054982817869417,-0.7697594501718213,-0.013745704467353952,-0.8762886597938144 +5,0.0,0.0,0.16896551724137931,-0.09655172413793103,0.29310344827586204,-0.2620689655172414,0.3793103448275862,-0.38620689655172413,0.32413793103448274,-0.47586206896551725,0.1724137931034483,-0.5,0.25517241379310346,-0.6413793103448275,0.30689655172413793,-0.5586206896551724,0.32413793103448274,-0.4517241379310345,0.11379310344827587,-0.5413793103448276,0.1724137931034483,-0.7517241379310344,0.22413793103448276,-0.8827586206896552,0.25862068965517243,-0.996551724137931,0.041379310344827586,-0.5344827586206896,0.07931034482758621,-0.7482758620689656,0.1206896551724138,-0.8862068965517241,0.15862068965517243,-1.0,-0.03103448275862069,-0.49310344827586206,-0.034482758620689655,-0.6620689655172414,-0.02413793103448276,-0.7827586206896552,-0.013793103448275862,-0.8862068965517241 +5,0.0,0.0,0.1718213058419244,-0.09965635738831616,0.29553264604810997,-0.2646048109965636,0.3745704467353952,-0.38831615120274915,0.32646048109965636,-0.48109965635738833,0.1718213058419244,-0.5017182130584192,0.2508591065292096,-0.6391752577319587,0.30584192439862545,-0.5532646048109966,0.3230240549828179,-0.43986254295532645,0.10996563573883161,-0.5395189003436426,0.16838487972508592,-0.7525773195876289,0.21993127147766323,-0.8831615120274914,0.25773195876288657,-0.9965635738831615,0.037800687285223365,-0.5326460481099656,0.07903780068728522,-0.7457044673539519,0.12371134020618557,-0.8831615120274914,0.15807560137457044,-1.0,-0.030927835051546393,-0.49140893470790376,-0.03436426116838488,-0.6597938144329897,-0.024054982817869417,-0.7800687285223368,-0.010309278350515464,-0.8865979381443299 +5,0.0,0.0,0.1701388888888889,-0.09375,0.2986111111111111,-0.2604166666666667,0.3819444444444444,-0.3888888888888889,0.3263888888888889,-0.4791666666666667,0.18055555555555555,-0.5,0.2604166666666667,-0.6388888888888888,0.3090277777777778,-0.5451388888888888,0.3263888888888889,-0.4340277777777778,0.11458333333333333,-0.5416666666666666,0.1736111111111111,-0.75,0.2222222222222222,-0.8819444444444444,0.2638888888888889,-1.0,0.041666666666666664,-0.5347222222222222,0.0798611111111111,-0.7430555555555556,0.125,-0.8819444444444444,0.16319444444444445,-1.0,-0.03125,-0.4930555555555556,-0.03125,-0.6597222222222222,-0.024305555555555556,-0.7777777777777778,-0.010416666666666666,-0.8819444444444444 +5,0.0,0.0,0.16783216783216784,-0.09090909090909091,0.3006993006993007,-0.24825174825174826,0.3881118881118881,-0.3741258741258741,0.33916083916083917,-0.46853146853146854,0.17832167832167833,-0.479020979020979,0.26573426573426573,-0.6188811188811189,0.3146853146853147,-0.534965034965035,0.32167832167832167,-0.43356643356643354,0.11188811188811189,-0.5244755244755245,0.17482517482517482,-0.7342657342657343,0.22727272727272727,-0.8671328671328671,0.26573426573426573,-0.993006993006993,0.038461538461538464,-0.5244755244755245,0.07692307692307693,-0.7377622377622378,0.11888111888111888,-0.8776223776223776,0.15734265734265734,-1.0,-0.038461538461538464,-0.4825174825174825,-0.04195804195804196,-0.6573426573426573,-0.03496503496503497,-0.7727272727272727,-0.02097902097902098,-0.8776223776223776 +5,0.0,0.0,0.1696113074204947,-0.0812720848056537,0.303886925795053,-0.23674911660777384,0.392226148409894,-0.36042402826855124,0.3462897526501767,-0.4558303886925795,0.19081272084805653,-0.4664310954063604,0.2826855123674912,-0.6148409893992933,0.3286219081272085,-0.5335689045936396,0.33568904593639576,-0.4381625441696113,0.12014134275618374,-0.5159010600706714,0.18374558303886926,-0.7279151943462897,0.23674911660777384,-0.8586572438162544,0.2756183745583039,-0.9787985865724381,0.045936395759717315,-0.519434628975265,0.0812720848056537,-0.7314487632508834,0.127208480565371,-0.8763250883392226,0.1625441696113074,-1.0,-0.038869257950530034,-0.4840989399293286,-0.04240282685512368,-0.657243816254417,-0.03180212014134275,-0.773851590106007,-0.02120141342756184,-0.8763250883392226 +5,0.0,0.0,0.175,-0.07857142857142857,0.31785714285714284,-0.23214285714285715,0.40714285714285714,-0.3607142857142857,0.34285714285714286,-0.45,0.20357142857142857,-0.4785714285714286,0.29642857142857143,-0.6178571428571429,0.3392857142857143,-0.5285714285714286,0.35,-0.42142857142857143,0.125,-0.525,0.19285714285714287,-0.7357142857142858,0.24642857142857144,-0.8642857142857143,0.2892857142857143,-0.9892857142857143,0.04285714285714286,-0.525,0.08571428571428572,-0.7357142857142858,0.12857142857142856,-0.8785714285714286,0.17142857142857143,-1.0,-0.04642857142857143,-0.4857142857142857,-0.04642857142857143,-0.6607142857142857,-0.039285714285714285,-0.775,-0.025,-0.8785714285714286 +5,0.0,0.0,0.17921146953405018,-0.07885304659498207,0.32616487455197135,-0.22939068100358423,0.40860215053763443,-0.3548387096774194,0.34408602150537637,-0.4444444444444444,0.2007168458781362,-0.4767025089605735,0.2903225806451613,-0.6164874551971327,0.34050179211469533,-0.5483870967741935,0.3548387096774194,-0.4551971326164875,0.12186379928315412,-0.5268817204301075,0.18996415770609318,-0.7311827956989247,0.24372759856630824,-0.8602150537634409,0.2867383512544803,-0.982078853046595,0.035842293906810034,-0.5304659498207885,0.07885304659498207,-0.7383512544802867,0.12186379928315412,-0.8781362007168458,0.16487455197132617,-1.0,-0.05734767025089606,-0.4982078853046595,-0.05734767025089606,-0.6666666666666666,-0.053763440860215055,-0.7813620071684588,-0.043010752688172046,-0.8781362007168458 +5,0.0,0.0,0.18115942028985507,-0.07971014492753623,0.32971014492753625,-0.2210144927536232,0.40942028985507245,-0.34782608695652173,0.3442028985507246,-0.4420289855072464,0.2210144927536232,-0.4782608695652174,0.3007246376811594,-0.6231884057971014,0.33695652173913043,-0.5652173913043478,0.34782608695652173,-0.48188405797101447,0.13405797101449277,-0.5253623188405797,0.19927536231884058,-0.7355072463768116,0.2463768115942029,-0.8623188405797102,0.286231884057971,-0.9818840579710145,0.03985507246376811,-0.5289855072463768,0.08695652173913043,-0.7427536231884058,0.12681159420289856,-0.8804347826086957,0.16666666666666666,-1.0,-0.06159420289855073,-0.4963768115942029,-0.06521739130434782,-0.6666666666666666,-0.06159420289855073,-0.7789855072463768,-0.050724637681159424,-0.8768115942028986 +5,0.0,0.0,0.17985611510791366,-0.07194244604316546,0.3237410071942446,-0.2158273381294964,0.4064748201438849,-0.3489208633093525,0.3489208633093525,-0.44964028776978415,0.23381294964028776,-0.4712230215827338,0.30935251798561153,-0.6223021582733813,0.34532374100719426,-0.579136690647482,0.3597122302158273,-0.49280575539568344,0.1474820143884892,-0.5215827338129496,0.20863309352517986,-0.737410071942446,0.25539568345323743,-0.8669064748201439,0.2949640287769784,-0.9820143884892086,0.0539568345323741,-0.5251798561151079,0.08992805755395683,-0.7410071942446043,0.12949640287769784,-0.8812949640287769,0.16546762589928057,-1.0,-0.050359712230215826,-0.4892086330935252,-0.05755395683453238,-0.6654676258992805,-0.05755395683453238,-0.7841726618705036,-0.050359712230215826,-0.8884892086330936 +5,0.0,0.0,0.17921146953405018,-0.07885304659498207,0.32974910394265233,-0.2114695340501792,0.40860215053763443,-0.34050179211469533,0.35842293906810035,-0.45161290322580644,0.24372759856630824,-0.46236559139784944,0.31899641577060933,-0.6164874551971327,0.35125448028673834,-0.5734767025089605,0.36200716845878134,-0.4910394265232975,0.15053763440860216,-0.5125448028673835,0.2078853046594982,-0.7275985663082437,0.25448028673835127,-0.8566308243727598,0.2939068100358423,-0.9713261648745519,0.05017921146953405,-0.5197132616487455,0.08602150537634409,-0.7347670250896058,0.12186379928315412,-0.8781362007168458,0.16129032258064516,-1.0,-0.05734767025089606,-0.4874551971326165,-0.06451612903225806,-0.6630824372759857,-0.06451612903225806,-0.7813620071684588,-0.05734767025089606,-0.8817204301075269 +5,0.0,0.0,0.17625899280575538,-0.07553956834532374,0.3345323741007194,-0.20863309352517986,0.4064748201438849,-0.34532374100719426,0.3273381294964029,-0.44244604316546765,0.24820143884892087,-0.4568345323741007,0.3237410071942446,-0.6151079136690647,0.3597122302158273,-0.5827338129496403,0.37050359712230213,-0.5035971223021583,0.1474820143884892,-0.5107913669064749,0.20863309352517986,-0.7302158273381295,0.24820143884892087,-0.8597122302158273,0.2805755395683453,-0.9712230215827338,0.046762589928057555,-0.5215827338129496,0.08273381294964029,-0.7410071942446043,0.11510791366906475,-0.8812949640287769,0.1474820143884892,-1.0,-0.07194244604316546,-0.4892086330935252,-0.07913669064748201,-0.6654676258992805,-0.08273381294964029,-0.7805755395683454,-0.07553956834532374,-0.8812949640287769 +5,0.0,0.0,0.17562724014336917,-0.07526881720430108,0.33691756272401435,-0.21505376344086022,0.4050179211469534,-0.35125448028673834,0.3225806451612903,-0.44802867383512546,0.25089605734767023,-0.4551971326164875,0.3225806451612903,-0.6093189964157706,0.35125448028673834,-0.5806451612903226,0.3548387096774194,-0.5053763440860215,0.15053763440860216,-0.5053763440860215,0.20430107526881722,-0.7240143369175627,0.24372759856630824,-0.8566308243727598,0.27598566308243727,-0.974910394265233,0.04659498207885305,-0.5125448028673835,0.08243727598566308,-0.7347670250896058,0.11469534050179211,-0.8781362007168458,0.14336917562724014,-1.0,-0.06810035842293907,-0.48028673835125446,-0.08243727598566308,-0.6559139784946236,-0.08960573476702509,-0.7777777777777778,-0.08602150537634409,-0.8817204301075269 +5,0.0,0.0,0.17921146953405018,-0.07526881720430108,0.34050179211469533,-0.21505376344086022,0.4121863799283154,-0.35842293906810035,0.31899641577060933,-0.45161290322580644,0.25806451612903225,-0.45878136200716846,0.3333333333333333,-0.6129032258064516,0.3548387096774194,-0.5842293906810035,0.35125448028673834,-0.5089605734767025,0.15412186379928317,-0.5125448028673835,0.2114695340501792,-0.7275985663082437,0.24731182795698925,-0.8566308243727598,0.27956989247311825,-0.974910394265233,0.04659498207885305,-0.5197132616487455,0.08243727598566308,-0.7383512544802867,0.1111111111111111,-0.8781362007168458,0.14336917562724014,-1.0,-0.07526881720430108,-0.4874551971326165,-0.08602150537634409,-0.6630824372759857,-0.08960573476702509,-0.7813620071684588,-0.08602150537634409,-0.8853046594982079 +5,0.0,0.0,0.18021201413427562,-0.07773851590106007,0.3392226148409894,-0.2226148409893993,0.4098939929328622,-0.36042402826855124,0.3250883392226148,-0.45229681978798586,0.254416961130742,-0.4628975265017668,0.3215547703180212,-0.6113074204946997,0.3498233215547703,-0.5830388692579506,0.3568904593639576,-0.508833922261484,0.15547703180212014,-0.5123674911660777,0.2049469964664311,-0.7279151943462897,0.24381625441696114,-0.8551236749116607,0.2756183745583039,-0.9717314487632509,0.04946996466431095,-0.519434628975265,0.0812720848056537,-0.734982332155477,0.10954063604240283,-0.8763250883392226,0.1413427561837456,-1.0,-0.06713780918727916,-0.4840989399293286,-0.07773851590106007,-0.657243816254417,-0.08480565371024736,-0.773851590106007,-0.0812720848056537,-0.8833922261484098 +5,0.0,0.0,0.1795774647887324,-0.07746478873239436,0.33098591549295775,-0.22535211267605634,0.40492957746478875,-0.3591549295774648,0.3274647887323944,-0.45422535211267606,0.2535211267605634,-0.46830985915492956,0.31690140845070425,-0.6126760563380281,0.3415492957746479,-0.573943661971831,0.34507042253521125,-0.4964788732394366,0.15140845070422534,-0.5176056338028169,0.2007042253521127,-0.7288732394366197,0.24295774647887325,-0.852112676056338,0.27816901408450706,-0.971830985915493,0.04929577464788732,-0.5211267605633803,0.07394366197183098,-0.7359154929577465,0.1056338028169014,-0.8767605633802817,0.13732394366197184,-1.0,-0.06338028169014084,-0.4859154929577465,-0.07746478873239436,-0.6549295774647887,-0.08098591549295775,-0.7746478873239436,-0.07746478873239436,-0.8802816901408451 +5,0.0,0.0,0.17543859649122806,-0.07719298245614035,0.3263157894736842,-0.22105263157894736,0.4,-0.3543859649122807,0.3333333333333333,-0.44912280701754387,0.24210526315789474,-0.4631578947368421,0.3017543859649123,-0.6140350877192983,0.3298245614035088,-0.5754385964912281,0.34035087719298246,-0.49473684210526314,0.14385964912280702,-0.512280701754386,0.19649122807017544,-0.7298245614035088,0.23859649122807017,-0.856140350877193,0.2736842105263158,-0.9719298245614035,0.042105263157894736,-0.519298245614035,0.07017543859649122,-0.7333333333333333,0.10526315789473684,-0.8771929824561403,0.1368421052631579,-1.0,-0.06666666666666667,-0.4842105263157895,-0.08070175438596491,-0.6596491228070176,-0.08421052631578947,-0.775438596491228,-0.08070175438596491,-0.8807017543859649 +5,0.0,0.0,0.17832167832167833,-0.07692307692307693,0.32517482517482516,-0.22727272727272727,0.40559440559440557,-0.36013986013986016,0.32867132867132864,-0.44405594405594406,0.23076923076923078,-0.47202797202797203,0.3006993006993007,-0.6223776223776224,0.3321678321678322,-0.583916083916084,0.34265734265734266,-0.5,0.13986013986013987,-0.5209790209790209,0.1888111888111888,-0.7342657342657343,0.23426573426573427,-0.8601398601398601,0.2727272727272727,-0.9755244755244755,0.038461538461538464,-0.5244755244755245,0.06993006993006994,-0.7377622377622378,0.1048951048951049,-0.8811188811188811,0.14335664335664336,-1.0,-0.06643356643356643,-0.486013986013986,-0.07692307692307693,-0.6608391608391608,-0.08391608391608392,-0.7797202797202797,-0.08041958041958042,-0.8811188811188811 +5,0.0,0.0,0.176056338028169,-0.07746478873239436,0.323943661971831,-0.22535211267605634,0.4084507042253521,-0.35563380281690143,0.3345070422535211,-0.4471830985915493,0.21830985915492956,-0.46830985915492956,0.2887323943661972,-0.6197183098591549,0.323943661971831,-0.5633802816901409,0.3380281690140845,-0.47183098591549294,0.1267605633802817,-0.5211267605633803,0.18309859154929578,-0.7323943661971831,0.22535211267605634,-0.8591549295774648,0.2676056338028169,-0.9788732394366197,0.028169014084507043,-0.5211267605633803,0.06338028169014084,-0.7394366197183099,0.10211267605633803,-0.8802816901408451,0.14084507042253522,-1.0,-0.07394366197183098,-0.4859154929577465,-0.08098591549295775,-0.6619718309859155,-0.08450704225352113,-0.778169014084507,-0.08098591549295775,-0.8838028169014085 +5,0.0,0.0,0.17832167832167833,-0.08041958041958042,0.32517482517482516,-0.24475524475524477,0.4090909090909091,-0.38461538461538464,0.32167832167832167,-0.46853146853146854,0.2097902097902098,-0.479020979020979,0.27972027972027974,-0.6223776223776224,0.3146853146853147,-0.5629370629370629,0.32167832167832167,-0.47202797202797203,0.1258741258741259,-0.527972027972028,0.17832167832167833,-0.7377622377622378,0.22377622377622378,-0.8671328671328671,0.25874125874125875,-0.986013986013986,0.03146853146853147,-0.5314685314685315,0.05944055944055944,-0.7412587412587412,0.0944055944055944,-0.8776223776223776,0.1258741258741259,-1.0,-0.06643356643356643,-0.493006993006993,-0.07342657342657342,-0.6608391608391608,-0.08041958041958042,-0.7762237762237763,-0.07692307692307693,-0.8811188811188811 +5,0.0,0.0,0.17770034843205576,-0.08362369337979095,0.313588850174216,-0.24390243902439024,0.39372822299651566,-0.37282229965156793,0.32752613240418116,-0.46689895470383275,0.1986062717770035,-0.47735191637630664,0.27177700348432055,-0.6167247386759582,0.31010452961672474,-0.5470383275261324,0.3205574912891986,-0.44947735191637633,0.11498257839721254,-0.5261324041811847,0.17421602787456447,-0.7386759581881533,0.21951219512195122,-0.867595818815331,0.25435540069686413,-0.9895470383275261,0.024390243902439025,-0.5261324041811847,0.05226480836236934,-0.7386759581881533,0.08710801393728224,-0.8780487804878049,0.11846689895470383,-1.0,-0.06968641114982578,-0.4843205574912892,-0.08013937282229965,-0.6550522648083623,-0.08362369337979095,-0.7700348432055749,-0.08013937282229965,-0.8745644599303136 +5,0.0,0.0,0.1736111111111111,-0.09722222222222222,0.3090277777777778,-0.2534722222222222,0.3923611111111111,-0.3819444444444444,0.3229166666666667,-0.46875,0.18055555555555555,-0.4895833333333333,0.2638888888888889,-0.6284722222222222,0.3125,-0.5520833333333334,0.3263888888888889,-0.4479166666666667,0.10069444444444445,-0.53125,0.16666666666666666,-0.7395833333333334,0.20833333333333334,-0.875,0.24305555555555555,-1.0,0.013888888888888888,-0.5277777777777778,0.04513888888888889,-0.7395833333333334,0.0798611111111111,-0.8784722222222222,0.11458333333333333,-1.0,-0.0763888888888889,-0.4826388888888889,-0.08680555555555555,-0.6527777777777778,-0.08680555555555555,-0.7708333333333334,-0.0798611111111111,-0.8715277777777778 +5,0.0,0.0,0.1736111111111111,-0.09722222222222222,0.3090277777777778,-0.2534722222222222,0.3923611111111111,-0.3819444444444444,0.3263888888888889,-0.4791666666666667,0.1840277777777778,-0.4861111111111111,0.2604166666666667,-0.6284722222222222,0.3090277777777778,-0.5555555555555556,0.3263888888888889,-0.4548611111111111,0.10416666666666667,-0.53125,0.16666666666666666,-0.7395833333333334,0.21180555555555555,-0.875,0.25,-1.0,0.017361111111111112,-0.5243055555555556,0.052083333333333336,-0.7326388888888888,0.09027777777777778,-0.875,0.125,-1.0,-0.07291666666666667,-0.4826388888888889,-0.0798611111111111,-0.6527777777777778,-0.0798611111111111,-0.7708333333333334,-0.06944444444444445,-0.8784722222222222 +5,0.0,0.0,0.1695501730103806,-0.10034602076124567,0.2975778546712803,-0.2664359861591695,0.370242214532872,-0.39100346020761245,0.3079584775086505,-0.47750865051903113,0.17647058823529413,-0.4913494809688581,0.24567474048442905,-0.629757785467128,0.29411764705882354,-0.532871972318339,0.31141868512110726,-0.41522491349480967,0.09688581314878893,-0.532871972318339,0.1522491349480969,-0.7439446366782007,0.19377162629757785,-0.8754325259515571,0.22491349480968859,-1.0,0.010380622837370242,-0.5259515570934256,0.04152249134948097,-0.7335640138408305,0.07612456747404844,-0.8719723183391004,0.10726643598615918,-0.9896193771626297,-0.07612456747404844,-0.4844290657439446,-0.08650519031141868,-0.6505190311418685,-0.08304498269896193,-0.7647058823529411,-0.0726643598615917,-0.8650519031141869 +5,0.0,0.0,0.16262975778546712,-0.10726643598615918,0.28027681660899656,-0.2768166089965398,0.35294117647058826,-0.4013840830449827,0.2975778546712803,-0.4913494809688581,0.1522491349480969,-0.4982698961937716,0.22491349480968859,-0.6366782006920415,0.27335640138408307,-0.5570934256055363,0.2906574394463668,-0.4532871972318339,0.07958477508650519,-0.5363321799307958,0.1384083044982699,-0.7474048442906575,0.17993079584775087,-0.8754325259515571,0.21453287197231835,-0.9965397923875432,0.0,-0.5259515570934256,0.031141868512110725,-0.7370242214532872,0.06920415224913495,-0.8754325259515571,0.10034602076124567,-1.0,-0.07612456747404844,-0.4809688581314879,-0.08996539792387544,-0.6505190311418685,-0.08650519031141868,-0.7647058823529411,-0.07612456747404844,-0.8719723183391004 +5,0.0,0.0,0.16206896551724137,-0.1103448275862069,0.2793103448275862,-0.2689655172413793,0.35172413793103446,-0.3896551724137931,0.29310344827586204,-0.4793103448275862,0.14482758620689656,-0.5,0.22413793103448276,-0.6310344827586207,0.27241379310344827,-0.5413793103448276,0.2896551724137931,-0.43103448275862066,0.07586206896551724,-0.5413793103448276,0.13793103448275862,-0.7448275862068966,0.18275862068965518,-0.8689655172413793,0.21724137931034482,-0.9827586206896551,0.0034482758620689655,-0.5310344827586206,0.03793103448275862,-0.7413793103448276,0.07586206896551724,-0.8793103448275862,0.10689655172413794,-1.0,-0.07241379310344828,-0.4793103448275862,-0.08275862068965517,-0.6448275862068965,-0.07931034482758621,-0.7586206896551724,-0.06896551724137931,-0.8620689655172413 +5,0.0,0.0,0.1678082191780822,-0.09246575342465753,0.3013698630136986,-0.2568493150684932,0.3835616438356164,-0.3835616438356164,0.3184931506849315,-0.4554794520547945,0.1541095890410959,-0.4863013698630137,0.2328767123287671,-0.6267123287671232,0.2910958904109589,-0.541095890410959,0.3150684931506849,-0.4315068493150685,0.08904109589041095,-0.5308219178082192,0.14726027397260275,-0.7397260273972602,0.1952054794520548,-0.8698630136986302,0.2328767123287671,-0.9931506849315068,0.017123287671232876,-0.5308219178082192,0.05821917808219178,-0.7397260273972602,0.09246575342465753,-0.8767123287671232,0.1267123287671233,-1.0,-0.0547945205479452,-0.4965753424657534,-0.06164383561643835,-0.660958904109589,-0.0547945205479452,-0.7705479452054794,-0.03767123287671233,-0.8698630136986302 +5,0.0,0.0,0.17006802721088435,-0.08843537414965986,0.2925170068027211,-0.2619047619047619,0.3707482993197279,-0.38095238095238093,0.3163265306122449,-0.445578231292517,0.1564625850340136,-0.4931972789115646,0.24149659863945577,-0.6258503401360545,0.30612244897959184,-0.5340136054421769,0.3231292517006803,-0.42517006802721086,0.09523809523809523,-0.5340136054421769,0.15306122448979592,-0.7346938775510204,0.19727891156462585,-0.8605442176870748,0.23129251700680273,-0.9761904761904762,0.023809523809523808,-0.5340136054421769,0.061224489795918366,-0.7414965986394558,0.09523809523809523,-0.8775510204081632,0.12585034013605442,-1.0,-0.047619047619047616,-0.4931972789115646,-0.05442176870748299,-0.6564625850340136,-0.05442176870748299,-0.7687074829931972,-0.047619047619047616,-0.8673469387755102 +5,0.0,0.0,0.17064846416382254,-0.09215017064846416,0.2935153583617747,-0.2627986348122867,0.3822525597269625,-0.3890784982935154,0.32764505119453924,-0.4641638225255973,0.17064846416382254,-0.5085324232081911,0.23890784982935154,-0.6450511945392492,0.2901023890784983,-0.552901023890785,0.3003412969283277,-0.43686006825938567,0.10580204778156997,-0.5494880546075085,0.16040955631399317,-0.7610921501706485,0.20819112627986347,-0.8805460750853242,0.24232081911262798,-0.9897610921501706,0.034129692832764506,-0.5460750853242321,0.07167235494880546,-0.757679180887372,0.11262798634812286,-0.8873720136518771,0.14675767918088736,-1.0,-0.040955631399317405,-0.5085324232081911,-0.04778156996587031,-0.6723549488054608,-0.040955631399317405,-0.7815699658703071,-0.027303754266211604,-0.8839590443686007 +5,0.0,0.0,0.16554054054054054,-0.10135135135135136,0.28378378378378377,-0.2702702702702703,0.375,-0.38175675675675674,0.3344594594594595,-0.4594594594594595,0.14189189189189189,-0.5135135135135135,0.22635135135135134,-0.6385135135135135,0.2905405405405405,-0.5371621621621622,0.31756756756756754,-0.4189189189189189,0.08783783783783784,-0.5506756756756757,0.14527027027027026,-0.7533783783783784,0.19932432432432431,-0.875,0.23648648648648649,-0.9831081081081081,0.02364864864864865,-0.543918918918919,0.060810810810810814,-0.7567567567567568,0.10135135135135136,-0.8885135135135135,0.13513513513513514,-1.0,-0.04054054054054054,-0.5,-0.05067567567567568,-0.6655405405405406,-0.04391891891891892,-0.7804054054054054,-0.02702702702702703,-0.8817567567567568 +5,0.0,0.0,0.17006802721088435,-0.11224489795918367,0.2789115646258503,-0.2653061224489796,0.3673469387755102,-0.38095238095238093,0.3333333333333333,-0.47619047619047616,0.14625850340136054,-0.5068027210884354,0.22448979591836735,-0.6360544217687075,0.2925170068027211,-0.5510204081632653,0.3163265306122449,-0.4421768707482993,0.09523809523809523,-0.5408163265306123,0.14965986394557823,-0.7585034013605442,0.19727891156462585,-0.8843537414965986,0.22789115646258504,-0.9931972789115646,0.034013605442176874,-0.5340136054421769,0.06462585034013606,-0.7517006802721088,0.10204081632653061,-0.8877551020408163,0.1326530612244898,-1.0,-0.034013605442176874,-0.4897959183673469,-0.04081632653061224,-0.6666666666666666,-0.030612244897959183,-0.7857142857142857,-0.013605442176870748,-0.8843537414965986 +5,0.0,0.0,0.14447592067988668,-0.11898016997167139,0.23512747875354106,-0.3059490084985836,0.3059490084985836,-0.4447592067988669,0.23796033994334279,-0.5184135977337111,0.059490084985835696,-0.509915014164306,0.11614730878186968,-0.6685552407932012,0.18696883852691218,-0.6118980169971672,0.22096317280453256,-0.5212464589235127,0.0,-0.5240793201133145,0.028328611898016998,-0.7422096317280453,0.06515580736543909,-0.8781869688385269,0.0906515580736544,-0.9943342776203966,-0.056657223796033995,-0.49575070821529743,-0.025495750708215296,-0.7110481586402266,0.0084985835694051,-0.8668555240793201,0.0339943342776204,-1.0,-0.11048158640226628,-0.43626062322946174,-0.08498583569405099,-0.6203966005665722,-0.06515580736543909,-0.7507082152974505,-0.039660056657223795,-0.8640226628895185 +5,0.0,0.0,0.1452991452991453,-0.12535612535612536,0.23076923076923078,-0.3076923076923077,0.29914529914529914,-0.4415954415954416,0.23076923076923078,-0.5156695156695157,0.05128205128205128,-0.5128205128205128,0.10256410256410256,-0.6723646723646723,0.17663817663817663,-0.6153846153846154,0.21082621082621084,-0.5270655270655271,-0.008547008547008548,-0.5270655270655271,0.017094017094017096,-0.7435897435897436,0.05128205128205128,-0.8803418803418803,0.07407407407407407,-1.0,-0.06552706552706553,-0.4928774928774929,-0.037037037037037035,-0.7122507122507122,-0.005698005698005698,-0.8689458689458689,0.019943019943019943,-1.0,-0.11965811965811966,-0.43304843304843305,-0.09686609686609686,-0.6182336182336182,-0.07692307692307693,-0.7492877492877493,-0.05128205128205128,-0.8660968660968661 +5,0.0,0.0,0.1440677966101695,-0.12429378531073447,0.23163841807909605,-0.3050847457627119,0.3022598870056497,-0.4435028248587571,0.23163841807909605,-0.5028248587570622,0.05367231638418079,-0.5112994350282486,0.11581920903954802,-0.6666666666666666,0.18361581920903955,-0.6073446327683616,0.21468926553672316,-0.5141242937853108,-0.005649717514124294,-0.5225988700564972,0.022598870056497175,-0.7401129943502824,0.05649717514124294,-0.8785310734463276,0.07627118644067797,-1.0,-0.062146892655367235,-0.4887005649717514,-0.03389830508474576,-0.7033898305084746,0.0,-0.8615819209039548,0.022598870056497175,-0.9943502824858758,-0.11016949152542373,-0.4293785310734463,-0.0847457627118644,-0.6129943502824858,-0.06497175141242938,-0.7429378531073446,-0.03954802259887006,-0.8559322033898306 +5,0.0,0.0,0.1484593837535014,-0.14285714285714285,0.23529411764705882,-0.3165266106442577,0.3081232492997199,-0.45098039215686275,0.25210084033613445,-0.5294117647058824,0.058823529411764705,-0.5042016806722689,0.11764705882352941,-0.6666666666666666,0.1876750700280112,-0.6078431372549019,0.22128851540616246,-0.5210084033613446,0.0028011204481792717,-0.5182072829131653,0.03081232492997199,-0.7450980392156863,0.06442577030812324,-0.8851540616246498,0.0896358543417367,-1.0,-0.047619047619047616,-0.48179271708683474,-0.0196078431372549,-0.7030812324929971,0.0056022408963585435,-0.8627450980392157,0.025210084033613446,-0.9915966386554622,-0.0896358543417367,-0.42016806722689076,-0.06722689075630252,-0.6106442577030813,-0.047619047619047616,-0.742296918767507,-0.028011204481792718,-0.8543417366946778 +5,0.0,0.0,0.14772727272727273,-0.13636363636363635,0.23011363636363635,-0.3068181818181818,0.30113636363636365,-0.4403409090909091,0.2471590909090909,-0.5227272727272727,0.045454545454545456,-0.4971590909090909,0.10511363636363637,-0.6619318181818182,0.18181818181818182,-0.6051136363636364,0.2159090909090909,-0.5170454545454546,-0.005681818181818182,-0.5142045454545454,0.02556818181818182,-0.7414772727272727,0.0625,-0.8806818181818182,0.08806818181818182,-0.9971590909090909,-0.05397727272727273,-0.48295454545454547,-0.02556818181818182,-0.7045454545454546,0.002840909090909091,-0.8664772727272727,0.02556818181818182,-1.0,-0.09943181818181818,-0.42613636363636365,-0.07954545454545454,-0.6164772727272727,-0.05965909090909091,-0.7528409090909091,-0.03409090909090909,-0.8636363636363636 +5,0.0,0.0,0.14447592067988668,-0.1388101983002833,0.2237960339943343,-0.3087818696883853,0.29178470254957506,-0.43626062322946174,0.24929178470254956,-0.5297450424929179,0.042492917847025496,-0.4985835694050991,0.10198300283286119,-0.6628895184135978,0.17847025495750707,-0.603399433427762,0.2096317280453258,-0.5127478753541076,-0.0056657223796034,-0.5127478753541076,0.0226628895184136,-0.7393767705382436,0.056657223796033995,-0.8810198300283286,0.0764872521246459,-1.0,-0.056657223796033995,-0.48158640226628896,-0.028328611898016998,-0.7025495750708215,-0.0028328611898017,-0.8640226628895185,0.0169971671388102,-0.9943342776203966,-0.09915014164305949,-0.42209631728045327,-0.0821529745042493,-0.6090651558073654,-0.06232294617563739,-0.7450424929178471,-0.039660056657223795,-0.8583569405099151 +5,0.0,0.0,0.14689265536723164,-0.14689265536723164,0.2231638418079096,-0.3107344632768362,0.2909604519774011,-0.4350282485875706,0.2542372881355932,-0.5282485875706214,0.03389830508474576,-0.4943502824858757,0.1016949152542373,-0.655367231638418,0.1751412429378531,-0.6016949152542372,0.211864406779661,-0.5141242937853108,-0.014124293785310734,-0.5112994350282486,0.01977401129943503,-0.7401129943502824,0.05649717514124294,-0.884180790960452,0.0847457627118644,-0.9971751412429378,-0.059322033898305086,-0.480225988700565,-0.02824858757062147,-0.7090395480225988,0.0,-0.8700564971751412,0.022598870056497175,-1.0,-0.09887005649717515,-0.4265536723163842,-0.07627118644067797,-0.6186440677966102,-0.05649717514124294,-0.7570621468926554,-0.03389830508474576,-0.8728813559322034 +5,0.0,0.0,0.14887640449438203,-0.14325842696629212,0.22191011235955055,-0.31179775280898875,0.2893258426966292,-0.4353932584269663,0.25,-0.5280898876404494,0.042134831460674156,-0.5028089887640449,0.10674157303370786,-0.6573033707865169,0.18258426966292135,-0.598314606741573,0.21910112359550563,-0.5084269662921348,-0.011235955056179775,-0.5140449438202247,0.019662921348314606,-0.7387640449438202,0.05898876404494382,-0.8820224719101124,0.08707865168539326,-1.0,-0.06179775280898876,-0.4803370786516854,-0.028089887640449437,-0.702247191011236,0.0028089887640449437,-0.8651685393258427,0.025280898876404494,-0.9943820224719101,-0.10112359550561797,-0.42134831460674155,-0.07865168539325842,-0.6095505617977528,-0.056179775280898875,-0.7471910112359551,-0.033707865168539325,-0.8651685393258427 +5,0.0,0.0,0.13764044943820225,-0.13202247191011235,0.21629213483146068,-0.3146067415730337,0.28651685393258425,-0.43820224719101125,0.24719101123595505,-0.5337078651685393,0.03932584269662921,-0.5140449438202247,0.10393258426966293,-0.6685393258426966,0.1797752808988764,-0.6123595505617978,0.21629213483146068,-0.5224719101123596,-0.014044943820224719,-0.5224719101123596,0.014044943820224719,-0.7443820224719101,0.056179775280898875,-0.8876404494382022,0.08707865168539326,-1.0,-0.06460674157303371,-0.4859550561797753,-0.033707865168539325,-0.7078651685393258,-0.0028089887640449437,-0.8651685393258427,0.02247191011235955,-0.9915730337078652,-0.10393258426966293,-0.42696629213483145,-0.07865168539325842,-0.6067415730337079,-0.05898876404494382,-0.7443820224719101,-0.033707865168539325,-0.8623595505617978 +5,0.0,0.0,0.14488636363636365,-0.13352272727272727,0.2215909090909091,-0.3153409090909091,0.29261363636363635,-0.4431818181818182,0.2471590909090909,-0.5284090909090909,0.05113636363636364,-0.5113636363636364,0.11079545454545454,-0.6732954545454546,0.1846590909090909,-0.6164772727272727,0.21875,-0.5255681818181818,-0.002840909090909091,-0.5227272727272727,0.022727272727272728,-0.7443181818181818,0.06534090909090909,-0.8863636363636364,0.09659090909090909,-1.0,-0.05397727272727273,-0.48863636363636365,-0.022727272727272728,-0.7159090909090909,0.017045454545454544,-0.8721590909090909,0.045454545454545456,-0.9971590909090909,-0.09659090909090909,-0.4318181818181818,-0.07670454545454546,-0.6136363636363636,-0.05397727272727273,-0.7471590909090909,-0.028409090909090908,-0.8607954545454546 +5,0.0,0.0,0.14772727272727273,-0.14204545454545456,0.2215909090909091,-0.3125,0.29545454545454547,-0.4403409090909091,0.2556818181818182,-0.5255681818181818,0.036931818181818184,-0.4971590909090909,0.11079545454545454,-0.6647727272727273,0.1875,-0.6051136363636364,0.22443181818181818,-0.5113636363636364,-0.014204545454545454,-0.5113636363636364,0.02556818181818182,-0.7443181818181818,0.06818181818181818,-0.8863636363636364,0.10227272727272728,-1.0,-0.05965909090909091,-0.4772727272727273,-0.022727272727272728,-0.7073863636363636,0.008522727272727272,-0.8693181818181818,0.03409090909090909,-0.9943181818181818,-0.09375,-0.42329545454545453,-0.06534090909090909,-0.6164772727272727,-0.04261363636363636,-0.7528409090909091,-0.019886363636363636,-0.8664772727272727 +5,0.0,0.0,0.14857142857142858,-0.13714285714285715,0.22285714285714286,-0.31142857142857144,0.29428571428571426,-0.43714285714285717,0.2571428571428571,-0.5342857142857143,0.04285714285714286,-0.49714285714285716,0.11142857142857143,-0.6628571428571428,0.18571428571428572,-0.6085714285714285,0.22,-0.52,-0.008571428571428572,-0.5114285714285715,0.025714285714285714,-0.74,0.06857142857142857,-0.8857142857142857,0.10285714285714286,-1.0,-0.05714285714285714,-0.47714285714285715,-0.017142857142857144,-0.7028571428571428,0.02,-0.8685714285714285,0.05142857142857143,-0.9971428571428571,-0.09428571428571429,-0.4228571428571429,-0.06857142857142857,-0.6114285714285714,-0.04,-0.7485714285714286,-0.008571428571428572,-0.8685714285714285 +5,0.0,0.0,0.14857142857142858,-0.13428571428571429,0.22857142857142856,-0.31142857142857144,0.29714285714285715,-0.43714285714285717,0.2571428571428571,-0.5342857142857143,0.04857142857142857,-0.49714285714285716,0.12,-0.66,0.19428571428571428,-0.6028571428571429,0.22857142857142856,-0.5114285714285715,0.0,-0.5142857142857142,0.04,-0.74,0.08,-0.8857142857142857,0.10857142857142857,-1.0,-0.045714285714285714,-0.48857142857142855,-0.002857142857142857,-0.7171428571428572,0.037142857142857144,-0.8742857142857143,0.06571428571428571,-0.9971428571428571,-0.08,-0.43714285714285717,-0.05142857142857143,-0.6228571428571429,-0.02857142857142857,-0.76,-0.005714285714285714,-0.8742857142857143 +5,0.0,0.0,0.15819209039548024,-0.1440677966101695,0.23163841807909605,-0.3135593220338983,0.2994350282485876,-0.4406779661016949,0.2627118644067797,-0.536723163841808,0.05084745762711865,-0.4915254237288136,0.1327683615819209,-0.652542372881356,0.2062146892655367,-0.6016949152542372,0.23728813559322035,-0.5169491525423728,0.005649717514124294,-0.5112994350282486,0.05084745762711865,-0.7401129943502824,0.09322033898305085,-0.884180790960452,0.1271186440677966,-0.9971751412429378,-0.03672316384180791,-0.4830508474576271,0.00847457627118644,-0.7090395480225988,0.04519774011299435,-0.8728813559322034,0.07344632768361582,-1.0,-0.06497175141242938,-0.4350282485875706,-0.03672316384180791,-0.6271186440677966,-0.011299435028248588,-0.7655367231638418,0.011299435028248588,-0.8813559322033898 +5,0.0,0.0,0.15056818181818182,-0.1278409090909091,0.23863636363636365,-0.30113636363636365,0.3153409090909091,-0.4289772727272727,0.26988636363636365,-0.5227272727272727,0.07386363636363637,-0.5,0.14488636363636365,-0.6534090909090909,0.21306818181818182,-0.5965909090909091,0.24147727272727273,-0.5113636363636364,0.022727272727272728,-0.5198863636363636,0.0625,-0.7357954545454546,0.10511363636363637,-0.8806818181818182,0.13352272727272727,-1.0,-0.028409090909090908,-0.4943181818181818,0.014204545454545454,-0.7102272727272727,0.05113636363636364,-0.8664772727272727,0.07670454545454546,-0.9914772727272727,-0.06818181818181818,-0.4460227272727273,-0.03409090909090909,-0.6278409090909091,-0.008522727272727272,-0.7613636363636364,0.022727272727272728,-0.875 +5,0.0,0.0,0.15669515669515668,-0.1168091168091168,0.245014245014245,-0.2962962962962963,0.3247863247863248,-0.42735042735042733,0.2792022792022792,-0.5185185185185185,0.07692307692307693,-0.4985754985754986,0.150997150997151,-0.6552706552706553,0.2222222222222222,-0.5982905982905983,0.2564102564102564,-0.5071225071225072,0.02849002849002849,-0.5185185185185185,0.06837606837606838,-0.7378917378917379,0.1111111111111111,-0.8831908831908832,0.14245014245014245,-1.0,-0.019943019943019943,-0.4928774928774929,0.022792022792022793,-0.7094017094017094,0.06267806267806268,-0.8717948717948718,0.09401709401709402,-1.0,-0.06267806267806268,-0.4415954415954416,-0.022792022792022793,-0.6267806267806267,0.002849002849002849,-0.7606837606837606,0.02849002849002849,-0.8746438746438746 +5,0.0,0.0,0.1558073654390935,-0.12464589235127478,0.24645892351274787,-0.3031161473087819,0.32011331444759206,-0.43626062322946174,0.2747875354107649,-0.5354107648725213,0.08498583569405099,-0.49575070821529743,0.1501416430594901,-0.6572237960339944,0.21813031161473087,-0.6005665722379604,0.24645892351274787,-0.5184135977337111,0.028328611898016998,-0.5127478753541076,0.06515580736543909,-0.7393767705382436,0.1048158640226629,-0.8838526912181303,0.1359773371104816,-1.0,-0.0226628895184136,-0.48441926345609065,0.014164305949008499,-0.6968838526912181,0.05099150141643059,-0.8583569405099151,0.0821529745042493,-0.9886685552407932,-0.0679886685552408,-0.43059490084985835,-0.025495750708215296,-0.6175637393767706,0.0,-0.7507082152974505,0.028328611898016998,-0.8640226628895185 +5,0.0,0.0,0.16056338028169015,-0.1267605633802817,0.24507042253521127,-0.29577464788732394,0.3211267605633803,-0.4253521126760563,0.28450704225352114,-0.523943661971831,0.08169014084507042,-0.49577464788732395,0.15774647887323945,-0.6507042253521127,0.23098591549295774,-0.5943661971830986,0.2619718309859155,-0.5070422535211268,0.03380281690140845,-0.5211267605633803,0.08169014084507042,-0.7408450704225352,0.12394366197183099,-0.8816901408450705,0.15774647887323945,-0.9915492957746479,-0.011267605633802818,-0.49295774647887325,0.03380281690140845,-0.7098591549295775,0.07042253521126761,-0.8732394366197183,0.10140845070422536,-1.0,-0.05070422535211268,-0.4394366197183099,-0.011267605633802818,-0.6253521126760564,0.011267605633802818,-0.7605633802816901,0.03943661971830986,-0.8760563380281691 +5,0.0,0.0,0.15819209039548024,-0.12994350282485875,0.24293785310734464,-0.3022598870056497,0.3163841807909605,-0.4265536723163842,0.288135593220339,-0.5282485875706214,0.06779661016949153,-0.4915254237288136,0.14689265536723164,-0.652542372881356,0.22598870056497175,-0.596045197740113,0.2598870056497175,-0.5056497175141242,0.022598870056497175,-0.5112994350282486,0.06779661016949153,-0.7401129943502824,0.11581920903954802,-0.8813559322033898,0.14689265536723164,-0.9971751412429378,-0.022598870056497175,-0.4830508474576271,0.02824858757062147,-0.7033898305084746,0.06779661016949153,-0.8700564971751412,0.09887005649717515,-1.0,-0.059322033898305086,-0.4350282485875706,-0.01694915254237288,-0.6214689265536724,0.011299435028248588,-0.7570621468926554,0.03672316384180791,-0.8728813559322034 +5,0.0,0.0,0.1558073654390935,-0.13031161473087818,0.24362606232294617,-0.3059490084985836,0.3059490084985836,-0.43626062322946174,0.26062322946175637,-0.5382436260623229,0.07932011331444759,-0.5042492917847026,0.1501416430594901,-0.6543909348441926,0.2237960339943343,-0.5977337110481586,0.254957507082153,-0.5127478753541076,0.025495750708215296,-0.5240793201133145,0.07365439093484419,-0.7450424929178471,0.11614730878186968,-0.8838526912181303,0.14730878186968838,-1.0,-0.028328611898016998,-0.49291784702549574,0.0226628895184136,-0.7138810198300283,0.059490084985835696,-0.8725212464589235,0.08781869688385269,-1.0,-0.07365439093484419,-0.43342776203966005,-0.031161473087818695,-0.6147308781869688,-0.0028328611898017,-0.7478753541076487,0.0226628895184136,-0.8668555240793201 +5,0.0,0.0,0.1568627450980392,-0.11764705882352941,0.24929971988795518,-0.2857142857142857,0.3165266106442577,-0.40896358543417366,0.2857142857142857,-0.5182072829131653,0.08403361344537816,-0.5042016806722689,0.15966386554621848,-0.6498599439775911,0.23249299719887956,-0.5938375350140056,0.26330532212885155,-0.5070028011204482,0.0392156862745098,-0.5294117647058824,0.0896358543417367,-0.7450980392156863,0.12885154061624648,-0.8823529411764706,0.15966386554621848,-0.9915966386554622,-0.011204481792717087,-0.5070028011204482,0.0392156862745098,-0.7254901960784313,0.07563025210084033,-0.876750700280112,0.10084033613445378,-1.0,-0.06442577030812324,-0.4565826330532213,-0.025210084033613446,-0.6330532212885154,-0.0028011204481792717,-0.7619047619047619,0.0196078431372549,-0.876750700280112 +5,0.0,0.0,0.15041782729805014,-0.10584958217270195,0.2479108635097493,-0.28133704735376047,0.3231197771587744,-0.4011142061281337,0.2841225626740947,-0.5097493036211699,0.08913649025069638,-0.5097493036211699,0.1615598885793872,-0.6545961002785515,0.22841225626740946,-0.5933147632311978,0.25069637883008355,-0.5041782729805014,0.03899721448467967,-0.5348189415041783,0.08913649025069638,-0.7437325905292479,0.1309192200557103,-0.8774373259052924,0.15877437325905291,-0.9860724233983287,-0.019498607242339833,-0.5153203342618384,0.033426183844011144,-0.7325905292479109,0.07242339832869081,-0.8774373259052924,0.10027855153203342,-1.0,-0.07520891364902507,-0.467966573816156,-0.033426183844011144,-0.6434540389972145,-0.011142061281337047,-0.766016713091922,0.013927576601671309,-0.8774373259052924 +5,0.0,0.0,0.1527777777777778,-0.10833333333333334,0.25277777777777777,-0.2722222222222222,0.3333333333333333,-0.39166666666666666,0.3,-0.5027777777777778,0.09722222222222222,-0.5111111111111111,0.16944444444444445,-0.6555555555555556,0.23055555555555557,-0.6,0.25555555555555554,-0.5111111111111111,0.04722222222222222,-0.5361111111111111,0.09722222222222222,-0.7472222222222222,0.1361111111111111,-0.8805555555555555,0.16944444444444445,-0.9916666666666667,-0.011111111111111112,-0.5166666666666667,0.044444444444444446,-0.7305555555555555,0.08055555555555556,-0.8777777777777778,0.1111111111111111,-1.0,-0.06944444444444445,-0.4638888888888889,-0.027777777777777776,-0.6361111111111111,-0.005555555555555556,-0.7611111111111111,0.019444444444444445,-0.8694444444444445 +5,0.0,0.0,0.15193370165745856,-0.10773480662983426,0.2541436464088398,-0.27348066298342544,0.3370165745856354,-0.38950276243093923,0.31767955801104975,-0.5027624309392266,0.10497237569060773,-0.5082872928176796,0.17403314917127072,-0.6546961325966851,0.23756906077348067,-0.5994475138121547,0.26243093922651933,-0.5138121546961326,0.055248618784530384,-0.5331491712707183,0.10220994475138122,-0.7458563535911602,0.143646408839779,-0.8756906077348067,0.17679558011049723,-0.9861878453038674,-0.0027624309392265192,-0.5138121546961326,0.049723756906077346,-0.7292817679558011,0.09116022099447514,-0.8784530386740331,0.12154696132596685,-1.0,-0.06077348066298342,-0.46408839779005523,-0.022099447513812154,-0.638121546961326,0.0027624309392265192,-0.7624309392265194,0.024861878453038673,-0.8701657458563536 +5,0.0,0.0,0.1564245810055866,-0.10893854748603352,0.2569832402234637,-0.2737430167597765,0.33519553072625696,-0.39106145251396646,0.3240223463687151,-0.5111731843575419,0.10893854748603352,-0.505586592178771,0.18435754189944134,-0.6536312849162011,0.24581005586592178,-0.5949720670391061,0.2681564245810056,-0.5083798882681564,0.05865921787709497,-0.5335195530726257,0.11452513966480447,-0.7458100558659218,0.1564245810055866,-0.8770949720670391,0.18435754189944134,-0.9888268156424581,0.002793296089385475,-0.5167597765363129,0.05865921787709497,-0.7318435754189944,0.09497206703910614,-0.8770949720670391,0.12569832402234637,-1.0,-0.05865921787709497,-0.4692737430167598,-0.019553072625698324,-0.6424581005586593,0.00558659217877095,-0.7653631284916201,0.0335195530726257,-0.8770949720670391 +5,0.0,0.0,0.15168539325842698,-0.10955056179775281,0.25,-0.2752808988764045,0.3258426966292135,-0.3904494382022472,0.31179775280898875,-0.5112359550561798,0.10112359550561797,-0.5084269662921348,0.18258426966292135,-0.648876404494382,0.25,-0.5870786516853933,0.2808988764044944,-0.49719101123595505,0.05337078651685393,-0.5337078651685393,0.10674157303370786,-0.7471910112359551,0.14887640449438203,-0.8792134831460674,0.1797752808988764,-0.9887640449438202,-0.0028089887640449437,-0.5168539325842697,0.047752808988764044,-0.7331460674157303,0.08707865168539326,-0.8792134831460674,0.1151685393258427,-1.0,-0.06460674157303371,-0.46629213483146065,-0.025280898876404494,-0.6404494382022472,0.0,-0.7640449438202247,0.025280898876404494,-0.8735955056179775 +5,0.0,0.0,0.15561959654178675,-0.11527377521613832,0.2507204610951009,-0.2910662824207493,0.31988472622478387,-0.3976945244956772,0.3025936599423631,-0.49855907780979825,0.10086455331412104,-0.5187319884726225,0.1786743515850144,-0.6570605187319885,0.2478386167146974,-0.5821325648414986,0.2737752161383285,-0.484149855907781,0.04899135446685879,-0.5360230547550432,0.09798270893371758,-0.7492795389048992,0.1440922190201729,-0.8847262247838616,0.1786743515850144,-1.0,-0.002881844380403458,-0.5072046109510087,0.04610951008645533,-0.7262247838616714,0.09221902017291066,-0.8731988472622478,0.1239193083573487,-0.9971181556195965,-0.05187319884726225,-0.4495677233429395,-0.011527377521613832,-0.622478386167147,0.01729106628242075,-0.7521613832853026,0.04610951008645533,-0.8703170028818443 +5,0.0,0.0,0.17630057803468208,-0.1329479768786127,0.2774566473988439,-0.2745664739884393,0.37283236994219654,-0.3815028901734104,0.36127167630057805,-0.48265895953757226,0.0953757225433526,-0.4913294797687861,0.20520231213872833,-0.6271676300578035,0.28034682080924855,-0.5520231213872833,0.2976878612716763,-0.44508670520231214,0.05202312138728324,-0.5202312138728323,0.12427745664739884,-0.7398843930635838,0.17341040462427745,-0.8757225433526011,0.20809248554913296,-0.9855491329479769,0.011560693641618497,-0.49710982658959535,0.07225433526011561,-0.7225433526011561,0.11560693641618497,-0.8786127167630058,0.14739884393063585,-1.0,-0.023121387283236993,-0.44508670520231214,0.02023121387283237,-0.630057803468208,0.049132947976878616,-0.7630057803468208,0.08092485549132948,-0.8757225433526011 +5,0.0,0.0,0.15743440233236153,-0.10495626822157435,0.2478134110787172,-0.2915451895043732,0.32653061224489793,-0.40816326530612246,0.2944606413994169,-0.49854227405247814,0.10204081632653061,-0.5189504373177842,0.17201166180758018,-0.6647230320699709,0.23615160349854228,-0.5801749271137027,0.2536443148688047,-0.4752186588921283,0.052478134110787174,-0.5364431486880467,0.09329446064139942,-0.749271137026239,0.14285714285714285,-0.8833819241982507,0.17201166180758018,-1.0,0.0,-0.5131195335276968,0.04664723032069971,-0.7317784256559767,0.09329446064139942,-0.880466472303207,0.12536443148688048,-1.0,-0.04664723032069971,-0.46355685131195334,-0.0058309037900874635,-0.641399416909621,0.02040816326530612,-0.7755102040816326,0.04664723032069971,-0.892128279883382 +5,0.0,0.0,0.15384615384615385,-0.10541310541310542,0.25071225071225073,-0.2905982905982906,0.33048433048433046,-0.4045584045584046,0.30484330484330485,-0.4928774928774929,0.10826210826210826,-0.5242165242165242,0.18518518518518517,-0.6695156695156695,0.25071225071225073,-0.5925925925925926,0.26495726495726496,-0.4928774928774929,0.06552706552706553,-0.5441595441595442,0.11965811965811966,-0.7549857549857549,0.16524216524216523,-0.886039886039886,0.19373219373219372,-0.9914529914529915,0.017094017094017096,-0.5242165242165242,0.07122507122507123,-0.7407407407407407,0.1168091168091168,-0.8831908831908832,0.1452991452991453,-1.0,-0.02849002849002849,-0.47293447293447294,0.011396011396011397,-0.6467236467236467,0.039886039886039885,-0.7749287749287749,0.06837606837606838,-0.8888888888888888 +5,0.0,0.0,0.17663817663817663,-0.1168091168091168,0.2706552706552707,-0.2849002849002849,0.358974358974359,-0.4017094017094017,0.33048433048433046,-0.4757834757834758,0.09686609686609686,-0.4985754985754986,0.1908831908831909,-0.6410256410256411,0.2678062678062678,-0.5584045584045584,0.2905982905982906,-0.4586894586894587,0.05982905982905983,-0.5213675213675214,0.1225071225071225,-0.7407407407407407,0.1794871794871795,-0.8831908831908832,0.21082621082621084,-1.0,0.022792022792022793,-0.49572649572649574,0.07407407407407407,-0.7236467236467237,0.1225071225071225,-0.8717948717948718,0.150997150997151,-0.9943019943019943,-0.005698005698005698,-0.4444444444444444,0.03133903133903134,-0.6296296296296297,0.05698005698005698,-0.7606837606837606,0.08547008547008547,-0.8774928774928775 +5,0.0,0.0,0.18803418803418803,-0.1339031339031339,0.27350427350427353,-0.28774928774928776,0.3561253561253561,-0.396011396011396,0.33618233618233617,-0.4843304843304843,0.09401709401709402,-0.5042735042735043,0.19658119658119658,-0.6495726495726496,0.2706552706552707,-0.5783475783475783,0.28774928774928776,-0.48148148148148145,0.05128205128205128,-0.5299145299145299,0.1339031339031339,-0.7521367521367521,0.1908831908831909,-0.8917378917378918,0.22507122507122507,-1.0,0.014245014245014245,-0.5042735042735043,0.08831908831908832,-0.7350427350427351,0.13675213675213677,-0.8803418803418803,0.16809116809116809,-1.0,-0.008547008547008548,-0.4472934472934473,0.039886039886039885,-0.6410256410256411,0.07407407407407407,-0.7749287749287749,0.10826210826210826,-0.8945868945868946 +5,0.0,0.0,0.19428571428571428,-0.12857142857142856,0.2857142857142857,-0.2914285714285714,0.37714285714285717,-0.4057142857142857,0.3485714285714286,-0.4828571428571429,0.10571428571428572,-0.5028571428571429,0.22,-0.6485714285714286,0.2914285714285714,-0.5742857142857143,0.3028571428571429,-0.48,0.06285714285714286,-0.5285714285714286,0.1457142857142857,-0.7485714285714286,0.20285714285714285,-0.8857142857142857,0.23714285714285716,-0.9942857142857143,0.02857142857142857,-0.5,0.1,-0.7285714285714285,0.14857142857142858,-0.88,0.18571428571428572,-1.0,0.008571428571428572,-0.44857142857142857,0.06571428571428571,-0.6428571428571429,0.10571428571428572,-0.7742857142857142,0.14,-0.8885714285714286 +5,0.0,0.0,0.19602272727272727,-0.1278409090909091,0.2869318181818182,-0.29261363636363635,0.3693181818181818,-0.4034090909090909,0.3522727272727273,-0.4715909090909091,0.11647727272727272,-0.5085227272727273,0.2159090909090909,-0.65625,0.2869318181818182,-0.5823863636363636,0.30113636363636365,-0.48295454545454547,0.07102272727272728,-0.5369318181818182,0.14772727272727273,-0.7528409090909091,0.20454545454545456,-0.8892045454545454,0.23579545454545456,-0.9943181818181818,0.03409090909090909,-0.5085227272727273,0.10795454545454546,-0.7357954545454546,0.16477272727272727,-0.8778409090909091,0.20454545454545456,-1.0,0.017045454545454544,-0.45454545454545453,0.07102272727272728,-0.6448863636363636,0.11079545454545454,-0.7727272727272727,0.14488636363636365,-0.8892045454545454 +5,0.0,0.0,0.2023121387283237,-0.1416184971098266,0.29190751445086704,-0.30057803468208094,0.3786127167630058,-0.41329479768786126,0.36127167630057805,-0.48554913294797686,0.11271676300578035,-0.5115606936416185,0.21965317919075145,-0.661849710982659,0.29190751445086704,-0.5895953757225434,0.3063583815028902,-0.49421965317919075,0.06647398843930635,-0.5317919075144508,0.1531791907514451,-0.7543352601156069,0.21676300578034682,-0.8930635838150289,0.25722543352601157,-1.0,0.028901734104046242,-0.5,0.11271676300578035,-0.7312138728323699,0.17630057803468208,-0.8757225433526011,0.21676300578034682,-1.0,0.014450867052023121,-0.4421965317919075,0.06936416184971098,-0.6358381502890174,0.10982658959537572,-0.7658959537572254,0.14450867052023122,-0.8872832369942196 +5,0.0,0.0,0.20113314447592068,-0.17847025495750707,0.2776203966005666,-0.31728045325779036,0.36827195467422097,-0.42209631728045327,0.35694050991501414,-0.49575070821529743,0.0764872521246459,-0.5184135977337111,0.20679886685552407,-0.6628895184135978,0.28328611898017,-0.5977337110481586,0.3031161473087819,-0.5042492917847026,0.019830028328611898,-0.5212464589235127,0.13314447592067988,-0.7563739376770539,0.20396600566572237,-0.8951841359773371,0.24929178470254956,-1.0,0.0028328611898017,-0.4702549575070821,0.09631728045325778,-0.7308781869688386,0.1558073654390935,-0.8838526912181303,0.19263456090651557,-1.0,0.031161473087818695,-0.4192634560906516,0.0906515580736544,-0.6288951841359773,0.1274787535410765,-0.7563739376770539,0.14730878186968838,-0.8838526912181303 +5,0.0,0.0,0.20679886685552407,-0.1813031161473088,0.2776203966005666,-0.3087818696883853,0.36827195467422097,-0.4164305949008499,0.35694050991501414,-0.49291784702549574,0.0821529745042493,-0.4985835694050991,0.2096317280453258,-0.6515580736543909,0.28611898016997167,-0.5920679886685553,0.3087818696883853,-0.5014164305949008,0.031161473087818695,-0.5070821529745042,0.13314447592067988,-0.7450424929178471,0.19830028328611898,-0.8895184135977338,0.24362606232294617,-0.9943342776203966,0.014164305949008499,-0.46742209631728043,0.09631728045325778,-0.7252124645892352,0.1529745042492918,-0.8781869688385269,0.18980169971671387,-1.0,0.031161473087818695,-0.42209631728045327,0.0821529745042493,-0.6288951841359773,0.11898016997167139,-0.7592067988668555,0.141643059490085,-0.8810198300283286 +5,0.0,0.0,0.21264367816091953,-0.1896551724137931,0.27586206896551724,-0.3160919540229885,0.3706896551724138,-0.41954022988505746,0.35919540229885055,-0.4942528735632184,0.08333333333333333,-0.4942528735632184,0.20977011494252873,-0.6522988505747126,0.28735632183908044,-0.5977011494252874,0.3103448275862069,-0.5086206896551724,0.034482758620689655,-0.5057471264367817,0.13793103448275862,-0.7471264367816092,0.20402298850574713,-0.8908045977011494,0.25,-1.0,0.014367816091954023,-0.46551724137931033,0.09482758620689655,-0.7212643678160919,0.14942528735632185,-0.8793103448275862,0.1781609195402299,-1.0,0.03735632183908046,-0.4166666666666667,0.09195402298850575,-0.6264367816091954,0.12643678160919541,-0.7586206896551724,0.14655172413793102,-0.8793103448275862 +5,0.0,0.0,0.19420289855072465,-0.1536231884057971,0.2753623188405797,-0.2956521739130435,0.36231884057971014,-0.4057971014492754,0.34492753623188405,-0.4927536231884058,0.08405797101449275,-0.4927536231884058,0.18840579710144928,-0.6492753623188405,0.27246376811594203,-0.6,0.30434782608695654,-0.5101449275362319,0.043478260869565216,-0.5101449275362319,0.11594202898550725,-0.7478260869565218,0.17681159420289855,-0.8956521739130435,0.21739130434782608,-1.0,0.020289855072463767,-0.48405797101449277,0.0782608695652174,-0.7159420289855073,0.1246376811594203,-0.8753623188405797,0.16231884057971013,-1.0,0.008695652173913044,-0.43768115942028984,0.04927536231884058,-0.6318840579710145,0.07536231884057971,-0.7652173913043478,0.10144927536231885,-0.8782608695652174 +5,0.0,0.0,0.19886363636363635,-0.16193181818181818,0.2869318181818182,-0.29545454545454547,0.3806818181818182,-0.4090909090909091,0.3522727272727273,-0.4943181818181818,0.09943181818181818,-0.4943181818181818,0.20738636363636365,-0.6420454545454546,0.2840909090909091,-0.5909090909090909,0.3125,-0.5056818181818182,0.05397727272727273,-0.5170454545454546,0.13636363636363635,-0.7471590909090909,0.19602272727272727,-0.8948863636363636,0.23863636363636365,-1.0,0.019886363636363636,-0.48863636363636365,0.08238636363636363,-0.7102272727272727,0.1278409090909091,-0.8721590909090909,0.16477272727272727,-0.9971590909090909,0.0,-0.4375,0.04261363636363636,-0.6363636363636364,0.07386363636363637,-0.7670454545454546,0.09943181818181818,-0.8806818181818182 +5,0.0,0.0,0.18384401114206128,-0.12534818941504178,0.28133704735376047,-0.26740947075208915,0.37047353760445684,-0.3871866295264624,0.3370473537604457,-0.48467966573816157,0.10863509749303621,-0.48746518105849584,0.20055710306406685,-0.6323119777158774,0.27019498607242337,-0.5738161559888579,0.2924791086350975,-0.479108635097493,0.06685236768802229,-0.5153203342618384,0.13649025069637882,-0.7381615598885793,0.19220055710306408,-0.8774373259052924,0.233983286908078,-0.9832869080779945,0.019498607242339833,-0.4958217270194986,0.07799442896935933,-0.7214484679665738,0.12534818941504178,-0.8774373259052924,0.16434540389972144,-1.0,-0.033426183844011144,-0.45125348189415043,0.008356545961002786,-0.637883008356546,0.03899721448467967,-0.7688022284122563,0.07242339832869081,-0.8802228412256268 +5,0.0,0.0,0.19230769230769232,-0.1401098901098901,0.2857142857142857,-0.27472527472527475,0.3791208791208791,-0.3983516483516483,0.33516483516483514,-0.4835164835164835,0.10989010989010989,-0.489010989010989,0.1978021978021978,-0.6373626373626373,0.27197802197802196,-0.5851648351648352,0.29945054945054944,-0.49175824175824173,0.07142857142857142,-0.521978021978022,0.14285714285714285,-0.7417582417582418,0.2032967032967033,-0.8791208791208791,0.25274725274725274,-0.978021978021978,0.024725274725274724,-0.5027472527472527,0.08516483516483517,-0.7307692307692307,0.13186813186813187,-0.8846153846153846,0.17307692307692307,-1.0,-0.024725274725274724,-0.4532967032967033,0.019230769230769232,-0.6483516483516484,0.046703296703296704,-0.7774725274725275,0.07692307692307693,-0.8873626373626373 +5,0.0,0.0,0.17403314917127072,-0.1298342541436464,0.26519337016574585,-0.2845303867403315,0.3425414364640884,-0.4088397790055249,0.2983425414364641,-0.49171270718232046,0.08011049723756906,-0.494475138121547,0.16022099447513813,-0.643646408839779,0.24033149171270718,-0.5883977900552486,0.27071823204419887,-0.4972375690607735,0.04419889502762431,-0.5193370165745856,0.10773480662983426,-0.7403314917127072,0.16022099447513813,-0.8784530386740331,0.19889502762430938,-0.9834254143646409,-0.0027624309392265192,-0.5,0.049723756906077346,-0.7265193370165746,0.09116022099447514,-0.8812154696132597,0.1270718232044199,-1.0,-0.058011049723756904,-0.4558011049723757,-0.022099447513812154,-0.643646408839779,0.0055248618784530384,-0.7734806629834254,0.03591160220994475,-0.8867403314917127 +5,0.0,0.0,0.18282548476454294,-0.15512465373961218,0.24930747922437674,-0.30193905817174516,0.32409972299168976,-0.4182825484764543,0.30193905817174516,-0.5041551246537396,0.0664819944598338,-0.49584487534626037,0.1523545706371191,-0.6509695290858726,0.23822714681440443,-0.6038781163434903,0.2770083102493075,-0.5207756232686981,0.027700831024930747,-0.5235457063711911,0.09141274238227147,-0.7479224376731302,0.1440443213296399,-0.8919667590027701,0.18559556786703602,-0.9944598337950139,-0.00554016620498615,-0.4986149584487535,0.036011080332409975,-0.7229916897506925,0.07202216066481995,-0.8808864265927978,0.10526315789473684,-1.0,-0.0332409972299169,-0.4487534626038781,-0.008310249307479225,-0.6426592797783933,0.01662049861495845,-0.7728531855955678,0.04155124653739612,-0.8864265927977839 +5,0.0,0.0,0.18309859154929578,-0.21971830985915494,0.22253521126760564,-0.3464788732394366,0.29295774647887324,-0.447887323943662,0.30704225352112674,-0.5295774647887324,0.028169014084507043,-0.5154929577464789,0.14366197183098592,-0.6704225352112676,0.21971830985915494,-0.6394366197183099,0.24788732394366197,-0.5746478873239437,-0.022535211267605635,-0.5098591549295775,0.0647887323943662,-0.7577464788732394,0.12112676056338029,-0.895774647887324,0.15211267605633802,-1.0,-0.03380281690140845,-0.4619718309859155,0.02535211267605634,-0.723943661971831,0.0676056338028169,-0.8760563380281691,0.09014084507042254,-0.9915492957746479,0.011267605633802818,-0.4225352112676056,0.04507042253521127,-0.6338028169014085,0.0647887323943662,-0.7605633802816901,0.0676056338028169,-0.8760563380281691 +5,0.0,0.0,0.1531791907514451,-0.2398843930635838,0.16473988439306358,-0.3670520231213873,0.22254335260115607,-0.47398843930635837,0.28034682080924855,-0.5549132947976878,-0.07225433526011561,-0.5173410404624278,0.08670520231213873,-0.6878612716763006,0.1907514450867052,-0.6445086705202312,0.23699421965317918,-0.5751445086705202,-0.11271676300578035,-0.4913294797687861,0.02601156069364162,-0.7572254335260116,0.10982658959537572,-0.8959537572254336,0.15606936416184972,-0.9884393063583815,-0.0838150289017341,-0.43641618497109824,-0.008670520231213872,-0.7312138728323699,0.05491329479768786,-0.884393063583815,0.07803468208092486,-1.0,-0.002890173410404624,-0.40173410404624277,0.03468208092485549,-0.6271676300578035,0.06069364161849711,-0.7572254335260116,0.07514450867052024,-0.8757225433526011 +5,0.0,0.0,0.04559270516717325,-0.2188449848024316,0.06990881458966565,-0.40425531914893614,0.1641337386018237,-0.513677811550152,0.2735562310030395,-0.5927051671732523,-0.1276595744680851,-0.5319148936170213,0.0243161094224924,-0.7446808510638298,0.11854103343465046,-0.8389057750759878,0.1884498480243161,-0.9118541033434651,-0.11246200607902736,-0.49544072948328266,0.03951367781155015,-0.7477203647416414,0.1337386018237082,-0.8814589665653495,0.20972644376899696,-0.9969604863221885,-0.05167173252279635,-0.43465045592705165,0.05167173252279635,-0.7173252279635258,0.1276595744680851,-0.8693009118541033,0.17933130699088146,-1.0,0.05167173252279635,-0.364741641337386,0.09422492401215805,-0.574468085106383,0.13069908814589665,-0.7021276595744681,0.1641337386018237,-0.8267477203647416 +5,0.0,0.0,-0.08695652173913043,-0.16770186335403728,-0.12422360248447205,-0.35714285714285715,-0.09006211180124224,-0.5031055900621118,-0.015527950310559006,-0.5962732919254659,-0.21428571428571427,-0.453416149068323,-0.043478260869565216,-0.7111801242236024,0.06521739130434782,-0.7329192546583851,0.10869565217391304,-0.7329192546583851,-0.12732919254658384,-0.40993788819875776,0.024844720496894408,-0.7267080745341615,0.12732919254658384,-0.8850931677018633,0.19875776397515527,-1.0,-0.018633540372670808,-0.35093167701863354,0.09316770186335403,-0.65527950310559,0.16770186335403728,-0.8291925465838509,0.2204968944099379,-0.9627329192546584,0.11490683229813664,-0.2857142857142857,0.17080745341614906,-0.5186335403726708,0.20186335403726707,-0.65527950310559,0.2329192546583851,-0.7732919254658385 +5,0.0,0.0,-0.09375,-0.159375,-0.128125,-0.353125,-0.084375,-0.50625,-0.0125,-0.603125,-0.21875,-0.45625,-0.04375,-0.715625,0.071875,-0.74375,0.121875,-0.753125,-0.128125,-0.409375,0.028125,-0.71875,0.128125,-0.878125,0.2,-1.0,-0.01875,-0.35,0.103125,-0.65,0.18125,-0.815625,0.23125,-0.95,0.109375,-0.284375,0.18125,-0.515625,0.215625,-0.65,0.24375,-0.765625 +5,0.0,0.0,-0.10759493670886076,-0.15822784810126583,-0.1518987341772152,-0.3670886075949367,-0.10126582278481013,-0.5316455696202531,-0.028481012658227847,-0.6329113924050633,-0.2563291139240506,-0.4462025316455696,-0.07911392405063292,-0.7056962025316456,0.03481012658227848,-0.7183544303797469,0.07911392405063292,-0.7056962025316456,-0.14873417721518986,-0.38924050632911394,0.006329113924050633,-0.7120253164556962,0.10759493670886076,-0.8765822784810127,0.18354430379746836,-1.0,-0.022151898734177215,-0.3291139240506329,0.0949367088607595,-0.6424050632911392,0.16772151898734178,-0.8164556962025317,0.21835443037974683,-0.9556962025316456,0.11708860759493671,-0.2721518987341772,0.18037974683544303,-0.5,0.20569620253164558,-0.6392405063291139,0.23417721518987342,-0.7626582278481012 +5,0.0,0.0,-0.109717868338558,-0.1536050156739812,-0.15987460815047022,-0.3542319749216301,-0.11912225705329153,-0.5203761755485894,-0.05329153605015674,-0.6144200626959248,-0.25391849529780564,-0.43573667711598746,-0.09090909090909091,-0.7053291536050157,0.018808777429467086,-0.7241379310344828,0.06269592476489028,-0.7178683385579937,-0.14733542319749215,-0.3887147335423197,0.0,-0.7115987460815048,0.09404388714733543,-0.8746081504702194,0.16300940438871472,-1.0,-0.0219435736677116,-0.329153605015674,0.09090909090909091,-0.6426332288401254,0.16614420062695925,-0.8181818181818182,0.21630094043887146,-0.9561128526645768,0.11285266457680251,-0.27586206896551724,0.1724137931034483,-0.5078369905956113,0.2006269592476489,-0.64576802507837,0.22570532915360503,-0.7648902821316614 +5,0.0,0.0,-0.11356466876971609,-0.14826498422712933,-0.167192429022082,-0.35962145110410093,-0.10094637223974763,-0.5331230283911672,0.0,-0.637223974763407,-0.25236593059936907,-0.4195583596214511,-0.10410094637223975,-0.694006309148265,-0.025236593059936908,-0.6561514195583596,-0.006309148264984227,-0.5867507886435331,-0.1167192429022082,-0.36908517350157727,0.015772870662460567,-0.7097791798107256,0.10410094637223975,-0.8706624605678234,0.167192429022082,-1.0,0.022082018927444796,-0.31230283911671924,0.1167192429022082,-0.6309148264984227,0.17665615141955837,-0.8107255520504731,0.21766561514195584,-0.9526813880126183,0.1640378548895899,-0.26498422712933756,0.20504731861198738,-0.501577287066246,0.22397476340694006,-0.6435331230283912,0.24290220820189273,-0.7697160883280757 +5,0.0,0.0,-0.11746031746031746,-0.14603174603174604,-0.1746031746031746,-0.35873015873015873,-0.10158730158730159,-0.5365079365079365,0.006349206349206349,-0.6412698412698413,-0.24444444444444444,-0.4158730158730159,-0.09841269841269841,-0.6888888888888889,-0.025396825396825397,-0.6444444444444445,-0.009523809523809525,-0.5682539682539682,-0.10793650793650794,-0.3746031746031746,0.022222222222222223,-0.7111111111111111,0.10476190476190476,-0.873015873015873,0.16507936507936508,-1.0,0.03492063492063492,-0.32063492063492066,0.12063492063492064,-0.638095238095238,0.17777777777777778,-0.8126984126984127,0.20952380952380953,-0.9492063492063492,0.17142857142857143,-0.2698412698412698,0.20952380952380953,-0.4984126984126984,0.23174603174603176,-0.6412698412698413,0.2507936507936508,-0.7682539682539683 +5,0.0,0.0,-0.12063492063492064,-0.14285714285714285,-0.18095238095238095,-0.3523809523809524,-0.11428571428571428,-0.5301587301587302,-0.006349206349206349,-0.6349206349206349,-0.2507936507936508,-0.40634920634920635,-0.10476190476190476,-0.6825396825396826,-0.03492063492063492,-0.6412698412698413,-0.022222222222222223,-0.5650793650793651,-0.1111111111111111,-0.3619047619047619,0.01904761904761905,-0.7047619047619048,0.10158730158730159,-0.8698412698412699,0.15873015873015872,-1.0,0.031746031746031744,-0.3111111111111111,0.12063492063492064,-0.6285714285714286,0.1746031746031746,-0.8063492063492064,0.20634920634920634,-0.9492063492063492,0.16825396825396827,-0.2634920634920635,0.20634920634920634,-0.49523809523809526,0.23174603174603176,-0.638095238095238,0.2507936507936508,-0.765079365079365 +5,0.0,0.0,-0.12302839116719243,-0.14511041009463724,-0.17981072555205047,-0.35646687697160884,-0.09779179810725552,-0.5331230283911672,0.01892744479495268,-0.6340694006309149,-0.24921135646687698,-0.41324921135646686,-0.09779179810725552,-0.6876971608832808,-0.03785488958990536,-0.6309148264984227,-0.031545741324921134,-0.5394321766561514,-0.10410094637223975,-0.3722397476340694,0.028391167192429023,-0.7066246056782335,0.11041009463722397,-0.8706624605678234,0.17034700315457413,-1.0,0.04100946372239748,-0.3217665615141956,0.12933753943217666,-0.6340694006309149,0.1861198738170347,-0.807570977917981,0.22082018927444794,-0.9400630914826499,0.17981072555205047,-0.2744479495268139,0.22082018927444794,-0.5047318611987381,0.24605678233438485,-0.6435331230283912,0.27129337539432175,-0.7665615141955836 +5,0.0,0.0,-0.12302839116719243,-0.14511041009463724,-0.17981072555205047,-0.35646687697160884,-0.09779179810725552,-0.5299684542586751,0.022082018927444796,-0.6277602523659306,-0.24290220820189273,-0.41009463722397477,-0.0914826498422713,-0.6782334384858044,-0.031545741324921134,-0.6246056782334385,-0.022082018927444796,-0.5362776025236593,-0.09779179810725552,-0.3659305993690852,0.03785488958990536,-0.7003154574132492,0.11987381703470032,-0.8675078864353313,0.17665615141955837,-1.0,0.0473186119873817,-0.31545741324921134,0.138801261829653,-0.6246056782334385,0.19558359621451105,-0.8012618296529969,0.2302839116719243,-0.9400630914826499,0.1892744479495268,-0.26498422712933756,0.22712933753943218,-0.4952681388012618,0.25236593059936907,-0.637223974763407,0.277602523659306,-0.7602523659305994 +5,0.0,0.0,-0.12658227848101267,-0.14873417721518986,-0.18670886075949367,-0.3575949367088608,-0.10443037974683544,-0.5316455696202531,0.012658227848101266,-0.629746835443038,-0.2468354430379747,-0.40822784810126583,-0.08860759493670886,-0.680379746835443,-0.03481012658227848,-0.6265822784810127,-0.03164556962025317,-0.5411392405063291,-0.0981012658227848,-0.3670886075949367,0.0379746835443038,-0.7025316455696202,0.11708860759493671,-0.870253164556962,0.17721518987341772,-1.0,0.04746835443037975,-0.31645569620253167,0.13924050632911392,-0.6329113924050633,0.1962025316455696,-0.8069620253164557,0.2310126582278481,-0.9430379746835443,0.189873417721519,-0.26582278481012656,0.2310126582278481,-0.5,0.2563291139240506,-0.6424050632911392,0.28164556962025317,-0.7658227848101266 +5,0.0,0.0,-0.12302839116719243,-0.14511041009463724,-0.17981072555205047,-0.35646687697160884,-0.10094637223974763,-0.5331230283911672,0.00946372239747634,-0.637223974763407,-0.24921135646687698,-0.4037854889589905,-0.08832807570977919,-0.6750788643533123,-0.03470031545741325,-0.6246056782334385,-0.031545741324921134,-0.5425867507886435,-0.10410094637223975,-0.3627760252365931,0.03785488958990536,-0.6971608832807571,0.1167192429022082,-0.8643533123028391,0.17350157728706625,-1.0,0.04416403785488959,-0.31545741324921134,0.13564668769716087,-0.6277602523659306,0.19242902208201892,-0.8012618296529969,0.22397476340694006,-0.9369085173501577,0.1861198738170347,-0.26498422712933756,0.22397476340694006,-0.4952681388012618,0.25236593059936907,-0.637223974763407,0.277602523659306,-0.7634069400630915 +5,0.0,0.0,-0.12539184952978055,-0.14420062695924765,-0.19122257053291536,-0.34796238244514105,-0.11912225705329153,-0.5172413793103449,-0.01567398119122257,-0.6206896551724138,-0.2507836990595611,-0.4012539184952978,-0.10031347962382445,-0.670846394984326,-0.0438871473354232,-0.6238244514106583,-0.04075235109717868,-0.5391849529780565,-0.109717868338558,-0.36363636363636365,0.02821316614420063,-0.6959247648902821,0.10658307210031348,-0.8683385579937304,0.16300940438871472,-1.0,0.034482758620689655,-0.3166144200626959,0.12539184952978055,-0.6238244514106583,0.18181818181818182,-0.7962382445141066,0.21316614420062696,-0.9310344827586207,0.1755485893416928,-0.2664576802507837,0.21316614420062696,-0.4952978056426332,0.23824451410658307,-0.6332288401253918,0.26332288401253917,-0.7554858934169278 +5,0.0,0.0,-0.12264150943396226,-0.13522012578616352,-0.22012578616352202,-0.34591194968553457,-0.22327044025157233,-0.5314465408805031,-0.1918238993710692,-0.6698113207547169,-0.24842767295597484,-0.39622641509433965,-0.10377358490566038,-0.6666666666666666,-0.05345911949685535,-0.6226415094339622,-0.050314465408805034,-0.5440251572327044,-0.10377358490566038,-0.3553459119496855,0.0220125786163522,-0.6886792452830188,0.09433962264150944,-0.8616352201257862,0.14779874213836477,-1.0,0.040880503144654086,-0.3050314465408805,0.1320754716981132,-0.6194968553459119,0.18238993710691823,-0.7955974842767296,0.21069182389937108,-0.9308176100628931,0.1792452830188679,-0.2610062893081761,0.22327044025157233,-0.48427672955974843,0.24528301886792453,-0.6289308176100629,0.2641509433962264,-0.7515723270440252 +5,0.0,0.0,-0.13291139240506328,-0.13924050632911392,-0.1962025316455696,-0.3512658227848101,-0.11708860759493671,-0.5316455696202531,-0.012658227848101266,-0.6360759493670886,-0.25949367088607594,-0.38924050632911394,-0.11392405063291139,-0.6677215189873418,-0.05063291139240506,-0.620253164556962,-0.04430379746835443,-0.5411392405063291,-0.11708860759493671,-0.3575949367088608,0.00949367088607595,-0.6930379746835443,0.08860759493670886,-0.8639240506329114,0.14873417721518986,-1.0,0.03481012658227848,-0.310126582278481,0.11708860759493671,-0.6234177215189873,0.17405063291139242,-0.8006329113924051,0.2088607594936709,-0.9430379746835443,0.17721518987341772,-0.26582278481012656,0.2120253164556962,-0.49050632911392406,0.23417721518987342,-0.6360759493670886,0.25316455696202533,-0.7658227848101266 +5,0.0,0.0,-0.13333333333333333,-0.1365079365079365,-0.2,-0.35555555555555557,-0.12063492063492064,-0.5365079365079365,-0.015873015873015872,-0.638095238095238,-0.2634920634920635,-0.3968253968253968,-0.1111111111111111,-0.6698412698412698,-0.050793650793650794,-0.6190476190476191,-0.03492063492063492,-0.5365079365079365,-0.12063492063492064,-0.3619047619047619,-0.0031746031746031746,-0.6984126984126984,0.06666666666666667,-0.8698412698412699,0.12380952380952381,-1.0,0.031746031746031744,-0.3142857142857143,0.10476190476190476,-0.6349206349206349,0.15555555555555556,-0.8222222222222222,0.1873015873015873,-0.9682539682539683,0.17777777777777778,-0.2698412698412698,0.20634920634920634,-0.5015873015873016,0.2253968253968254,-0.6476190476190476,0.24444444444444444,-0.7777777777777778 +5,0.0,0.0,-0.13225806451612904,-0.13548387096774195,-0.2032258064516129,-0.34838709677419355,-0.12580645161290321,-0.532258064516129,-0.00967741935483871,-0.635483870967742,-0.26129032258064516,-0.38387096774193546,-0.10967741935483871,-0.6580645161290323,-0.05161290322580645,-0.6129032258064516,-0.03870967741935484,-0.532258064516129,-0.11612903225806452,-0.34516129032258064,0.0,-0.6870967741935484,0.06774193548387097,-0.864516129032258,0.12258064516129032,-1.0,0.03225806451612903,-0.2967741935483871,0.10967741935483871,-0.6258064516129033,0.15483870967741936,-0.8096774193548387,0.18387096774193548,-0.9580645161290322,0.1774193548387097,-0.25806451612903225,0.20967741935483872,-0.49032258064516127,0.22580645161290322,-0.6387096774193548,0.24193548387096775,-0.7709677419354839 +5,0.0,0.0,-0.13099041533546327,-0.14057507987220447,-0.19488817891373802,-0.34824281150159747,-0.12460063897763578,-0.5335463258785943,-0.025559105431309903,-0.6389776357827476,-0.26517571884984026,-0.3801916932907348,-0.11501597444089456,-0.6517571884984026,-0.04153354632587859,-0.6198083067092651,-0.019169329073482427,-0.5527156549520766,-0.12460063897763578,-0.34824281150159747,-0.012779552715654952,-0.6869009584664537,0.05750798722044728,-0.8626198083067093,0.10862619808306709,-1.0,0.022364217252396165,-0.3035143769968051,0.09584664536741214,-0.6293929712460063,0.14376996805111822,-0.8083067092651757,0.17252396166134185,-0.9456869009584664,0.16932907348242812,-0.26517571884984026,0.19488817891373802,-0.5015974440894568,0.2108626198083067,-0.645367412140575,0.2268370607028754,-0.7763578274760383 +5,0.0,0.0,-0.13504823151125403,-0.1382636655948553,-0.20257234726688103,-0.33440514469453375,-0.13504823151125403,-0.5112540192926045,-0.03215434083601286,-0.6077170418006431,-0.26366559485530544,-0.37942122186495175,-0.1189710610932476,-0.6527331189710611,-0.04180064308681672,-0.6237942122186495,-0.01607717041800643,-0.5562700964630225,-0.12861736334405144,-0.3536977491961415,-0.01929260450160772,-0.6913183279742765,0.04823151125401929,-0.864951768488746,0.09646302250803858,-1.0,0.012861736334405145,-0.31189710610932475,0.09003215434083602,-0.6302250803858521,0.13504823151125403,-0.8102893890675241,0.1639871382636656,-0.9485530546623794,0.15755627009646303,-0.26688102893890675,0.1864951768488746,-0.5048231511254019,0.20257234726688103,-0.6495176848874598,0.21864951768488747,-0.7781350482315113 +5,0.0,0.0,-0.1337579617834395,-0.1464968152866242,-0.20063694267515925,-0.34076433121019106,-0.1337579617834395,-0.5127388535031847,-0.03184713375796178,-0.60828025477707,-0.2770700636942675,-0.39490445859872614,-0.1337579617834395,-0.6528662420382165,-0.04777070063694268,-0.6273885350318471,-0.012738853503184714,-0.5700636942675159,-0.1464968152866242,-0.3630573248407643,-0.03184713375796178,-0.697452229299363,0.03503184713375796,-0.8694267515923567,0.08280254777070063,-1.0,-0.006369426751592357,-0.321656050955414,0.06687898089171974,-0.6337579617834395,0.10828025477707007,-0.8057324840764332,0.13694267515923567,-0.9394904458598726,0.13694267515923567,-0.2802547770700637,0.1624203821656051,-0.5095541401273885,0.17197452229299362,-0.643312101910828,0.18471337579617833,-0.7643312101910829 +5,0.0,0.0,-0.13141025641025642,-0.14423076923076922,-0.1987179487179487,-0.33653846153846156,-0.13782051282051283,-0.5096153846153846,-0.041666666666666664,-0.6089743589743589,-0.27884615384615385,-0.38782051282051283,-0.13782051282051283,-0.6538461538461539,-0.05128205128205128,-0.6314102564102564,-0.016025641025641024,-0.5769230769230769,-0.15064102564102563,-0.36538461538461536,-0.038461538461538464,-0.6987179487179487,0.03205128205128205,-0.8685897435897436,0.08012820512820513,-1.0,-0.01282051282051282,-0.3269230769230769,0.060897435897435896,-0.6378205128205128,0.10897435897435898,-0.8108974358974359,0.13782051282051283,-0.9487179487179487,0.13141025641025642,-0.28205128205128205,0.16025641025641027,-0.5128205128205128,0.1762820512820513,-0.6506410256410257,0.1858974358974359,-0.7724358974358975 +5,0.0,0.0,-0.1377049180327869,-0.14426229508196722,-0.21311475409836064,-0.34098360655737703,-0.16393442622950818,-0.5180327868852459,-0.07868852459016394,-0.6262295081967213,-0.28524590163934427,-0.3901639344262295,-0.17049180327868851,-0.6557377049180327,-0.08852459016393442,-0.6426229508196721,-0.06229508196721312,-0.5934426229508196,-0.16393442622950818,-0.3737704918032787,-0.06229508196721312,-0.7016393442622951,0.009836065573770493,-0.8721311475409836,0.05245901639344262,-1.0,-0.03278688524590164,-0.3442622950819672,0.03278688524590164,-0.6426229508196721,0.08196721311475409,-0.8131147540983606,0.10819672131147541,-0.9475409836065574,0.10819672131147541,-0.30491803278688523,0.12786885245901639,-0.5278688524590164,0.1377049180327869,-0.6655737704918033,0.15081967213114755,-0.7836065573770492 +5,0.0,0.0,-0.13114754098360656,-0.14754098360655737,-0.20327868852459016,-0.3442622950819672,-0.15737704918032788,-0.5147540983606558,-0.07868852459016394,-0.6196721311475409,-0.28852459016393445,-0.39672131147540984,-0.1540983606557377,-0.659016393442623,-0.06229508196721312,-0.6688524590163935,-0.02622950819672131,-0.6459016393442623,-0.1737704918032787,-0.3737704918032787,-0.06229508196721312,-0.7016393442622951,0.01639344262295082,-0.8721311475409836,0.06557377049180328,-1.0,-0.04262295081967213,-0.3377049180327869,0.029508196721311476,-0.6426229508196721,0.08524590163934426,-0.8163934426229508,0.1180327868852459,-0.9475409836065574,0.10163934426229508,-0.29508196721311475,0.13114754098360656,-0.5278688524590164,0.14754098360655737,-0.6655737704918033,0.16065573770491803,-0.7868852459016393 +5,0.0,0.0,-0.1377049180327869,-0.15081967213114755,-0.21311475409836064,-0.34098360655737703,-0.16721311475409836,-0.5114754098360655,-0.08852459016393442,-0.6131147540983607,-0.28852459016393445,-0.40327868852459015,-0.16393442622950818,-0.6622950819672131,-0.07540983606557378,-0.659016393442623,-0.04262295081967213,-0.6196721311475409,-0.1737704918032787,-0.38688524590163936,-0.06557377049180328,-0.7147540983606557,0.006557377049180328,-0.8786885245901639,0.05245901639344262,-1.0,-0.04262295081967213,-0.3540983606557377,0.02622950819672131,-0.6557377049180327,0.07540983606557378,-0.8229508196721311,0.10491803278688525,-0.9540983606557377,0.10163934426229508,-0.3114754098360656,0.12459016393442623,-0.5409836065573771,0.13442622950819672,-0.6754098360655738,0.14754098360655737,-0.7934426229508197 +5,0.0,0.0,-0.1353135313531353,-0.1485148514851485,-0.21122112211221122,-0.33663366336633666,-0.16831683168316833,-0.5016501650165016,-0.0924092409240924,-0.6039603960396039,-0.29042904290429045,-0.40594059405940597,-0.16831683168316833,-0.6633663366336634,-0.07590759075907591,-0.6567656765676567,-0.0462046204620462,-0.6138613861386139,-0.18151815181518152,-0.38943894389438943,-0.07260726072607261,-0.7095709570957096,-0.0033003300330033004,-0.8778877887788779,0.0429042904290429,-1.0,-0.052805280528052806,-0.34983498349834985,0.0165016501650165,-0.6534653465346535,0.0627062706270627,-0.8250825082508251,0.0891089108910891,-0.9603960396039604,0.0891089108910891,-0.3069306930693069,0.11551155115511551,-0.5445544554455446,0.1254125412541254,-0.6798679867986799,0.1353135313531353,-0.7953795379537953 +5,0.0,0.0,-0.13355048859934854,-0.1563517915309446,-0.1986970684039088,-0.33876221498371334,-0.16612377850162866,-0.498371335504886,-0.09771986970684039,-0.5895765472312704,-0.28338762214983715,-0.40716612377850164,-0.15960912052117263,-0.6644951140065146,-0.06514657980456026,-0.6970684039087948,-0.026058631921824105,-0.6872964169381107,-0.1758957654723127,-0.39087947882736157,-0.0749185667752443,-0.7068403908794788,-0.003257328990228013,-0.8762214983713354,0.03908794788273615,-1.0,-0.05211726384364821,-0.3550488599348534,0.009771986970684038,-0.6482084690553745,0.05537459283387622,-0.8208469055374593,0.0781758957654723,-0.9543973941368078,0.08794788273615635,-0.30944625407166126,0.11074918566775244,-0.5439739413680782,0.12052117263843648,-0.6807817589576547,0.1237785016286645,-0.7915309446254072 +5,0.0,0.0,-0.1266233766233766,-0.1525974025974026,-0.19805194805194806,-0.33766233766233766,-0.1590909090909091,-0.4967532467532468,-0.08116883116883117,-0.5909090909090909,-0.2824675324675325,-0.40584415584415584,-0.15584415584415584,-0.6623376623376623,-0.05844155844155844,-0.6785714285714286,-0.016233766233766232,-0.6558441558441559,-0.17532467532467533,-0.38636363636363635,-0.07467532467532467,-0.7045454545454546,-0.006493506493506494,-0.8733766233766234,0.03896103896103896,-1.0,-0.05194805194805195,-0.3474025974025974,0.012987012987012988,-0.6525974025974026,0.05844155844155844,-0.8246753246753247,0.08441558441558442,-0.9577922077922078,0.09415584415584416,-0.30194805194805197,0.11688311688311688,-0.5357142857142857,0.12337662337662338,-0.6688311688311688,0.12987012987012986,-0.7857142857142857 +5,0.0,0.0,-0.13157894736842105,-0.1513157894736842,-0.20065789473684212,-0.33881578947368424,-0.1611842105263158,-0.506578947368421,-0.08223684210526316,-0.6085526315789473,-0.29276315789473684,-0.40789473684210525,-0.15789473684210525,-0.6743421052631579,-0.05263157894736842,-0.7335526315789473,-0.003289473684210526,-0.7664473684210527,-0.19078947368421054,-0.3848684210526316,-0.08223684210526316,-0.7006578947368421,-0.006578947368421052,-0.8717105263157895,0.04276315789473684,-1.0,-0.06578947368421052,-0.34539473684210525,0.006578947368421052,-0.6447368421052632,0.05592105263157895,-0.8223684210526315,0.08223684210526316,-0.9572368421052632,0.0756578947368421,-0.3059210526315789,0.1118421052631579,-0.5361842105263158,0.11842105263157894,-0.6710526315789473,0.125,-0.7861842105263158 +5,0.0,0.0,-0.1111111111111111,-0.17320261437908496,-0.16339869281045752,-0.3562091503267974,-0.13398692810457516,-0.5163398692810458,-0.0718954248366013,-0.6176470588235294,-0.26143790849673204,-0.4444444444444444,-0.12091503267973856,-0.6862745098039216,-0.03594771241830065,-0.8235294117647058,0.029411764705882353,-0.9281045751633987,-0.1895424836601307,-0.4215686274509804,-0.08169934640522876,-0.7058823529411765,0.0032679738562091504,-0.8725490196078431,0.06209150326797386,-1.0,-0.08823529411764706,-0.3790849673202614,-0.00980392156862745,-0.6568627450980392,0.05228758169934641,-0.8235294117647058,0.09477124183006536,-0.954248366013072,0.0457516339869281,-0.3366013071895425,0.08823529411764706,-0.5522875816993464,0.10784313725490197,-0.6830065359477124,0.12091503267973856,-0.7908496732026143 +5,0.0,0.0,0.059748427672955975,-0.22012578616352202,0.05345911949685535,-0.39622641509433965,0.09748427672955975,-0.5220125786163522,0.1509433962264151,-0.6257861635220126,-0.1949685534591195,-0.4968553459119497,-0.06289308176100629,-0.7075471698113207,0.031446540880503145,-0.789308176100629,0.09748427672955975,-0.8522012578616353,-0.1761006289308176,-0.4748427672955975,-0.059748427672955975,-0.7358490566037735,0.025157232704402517,-0.8836477987421384,0.09433962264150944,-1.0,-0.11635220125786164,-0.4276729559748428,-0.03773584905660377,-0.7044025157232704,0.031446540880503145,-0.8616352201257862,0.08176100628930817,-0.9937106918238994,-0.012578616352201259,-0.3742138364779874,0.025157232704402517,-0.5723270440251572,0.04716981132075472,-0.7012578616352201,0.06918238993710692,-0.8176100628930818 +5,0.0,0.0,0.10828025477707007,-0.2356687898089172,0.10828025477707007,-0.39171974522292996,0.1337579617834395,-0.4872611464968153,0.21019108280254778,-0.554140127388535,-0.1751592356687898,-0.5222929936305732,-0.0031847133757961785,-0.7006369426751592,0.10191082802547771,-0.6687898089171974,0.1624203821656051,-0.6178343949044586,-0.1751592356687898,-0.4968152866242038,-0.028662420382165606,-0.7611464968152867,0.04777070063694268,-0.8949044585987261,0.10509554140127389,-1.0,-0.1337579617834395,-0.4394904458598726,-0.041401273885350316,-0.7261146496815286,0.022292993630573247,-0.8694267515923567,0.06369426751592357,-0.9936305732484076,-0.050955414012738856,-0.37898089171974525,-0.025477707006369428,-0.5764331210191083,-0.0031847133757961785,-0.7038216560509554,0.01910828025477707,-0.8312101910828026 +5,0.0,0.0,0.14641744548286603,-0.2087227414330218,0.1806853582554517,-0.34890965732087226,0.22429906542056074,-0.4485981308411215,0.2585669781931464,-0.5077881619937694,-0.037383177570093455,-0.5046728971962616,0.06853582554517133,-0.6635514018691588,0.1557632398753894,-0.6261682242990654,0.205607476635514,-0.5514018691588785,-0.08099688473520249,-0.5046728971962616,-0.018691588785046728,-0.7445482866043613,0.018691588785046728,-0.8909657320872274,0.040498442367601244,-1.0,-0.09657320872274143,-0.4672897196261682,-0.04984423676012461,-0.7258566978193146,-0.01557632398753894,-0.8691588785046729,0.003115264797507788,-0.9813084112149533,-0.07476635514018691,-0.4205607476635514,-0.0529595015576324,-0.6199376947040498,-0.040498442367601244,-0.7476635514018691,-0.03115264797507788,-0.8629283489096573 +5,0.0,0.0,0.146875,-0.2,0.184375,-0.346875,0.234375,-0.446875,0.253125,-0.503125,-0.0375,-0.509375,0.05625,-0.675,0.153125,-0.63125,0.2125,-0.540625,-0.078125,-0.50625,-0.03125,-0.74375,0.009375,-0.890625,0.03125,-1.0,-0.09375,-0.4625,-0.059375,-0.7125,-0.028125,-0.859375,-0.0125,-0.978125,-0.08125,-0.40625,-0.065625,-0.6,-0.059375,-0.73125,-0.05625,-0.85 +5,0.0,0.0,0.15047021943573669,-0.20689655172413793,0.19122257053291536,-0.3448275862068966,0.2445141065830721,-0.44200626959247646,0.2664576802507837,-0.49843260188087773,-0.01567398119122257,-0.5109717868338558,0.07210031347962383,-0.670846394984326,0.16614420062695925,-0.6300940438871473,0.2225705329153605,-0.5391849529780565,-0.05642633228840126,-0.5078369905956113,-0.018808777429467086,-0.7398119122257053,0.0219435736677116,-0.890282131661442,0.04075235109717868,-1.0,-0.07836990595611286,-0.46394984326018807,-0.050156739811912224,-0.7084639498432602,-0.018808777429467086,-0.8589341692789969,-0.003134796238244514,-0.9811912225705329,-0.07210031347962383,-0.41379310344827586,-0.06269592476489028,-0.6081504702194357,-0.05642633228840126,-0.7366771159874608,-0.047021943573667714,-0.8495297805642633 +5,0.0,0.0,0.14733542319749215,-0.19435736677115986,0.18495297805642633,-0.335423197492163,0.23510971786833856,-0.43260188087774293,0.26959247648902823,-0.5047021943573667,-0.0219435736677116,-0.5047021943573667,0.07210031347962383,-0.670846394984326,0.16614420062695925,-0.6269592476489029,0.2225705329153605,-0.542319749216301,-0.06583072100313479,-0.5047021943573667,-0.018808777429467086,-0.7460815047021944,0.0219435736677116,-0.8934169278996865,0.047021943573667714,-1.0,-0.08150470219435736,-0.46394984326018807,-0.050156739811912224,-0.7147335423197492,-0.0219435736677116,-0.8652037617554859,-0.003134796238244514,-0.9843260188087775,-0.07210031347962383,-0.4106583072100313,-0.05956112852664577,-0.6050156739811913,-0.050156739811912224,-0.7366771159874608,-0.04075235109717868,-0.8526645768025078 +5,0.0,0.0,0.15141955835962145,-0.19242902208201892,0.19873817034700317,-0.3312302839116719,0.24921135646687698,-0.4353312302839117,0.2555205047318612,-0.49842271293375395,-0.006309148264984227,-0.5078864353312302,0.07570977917981073,-0.668769716088328,0.167192429022082,-0.6246056782334385,0.22082018927444794,-0.5394321766561514,-0.0473186119873817,-0.5078864353312302,-0.00946372239747634,-0.7413249211356467,0.028391167192429023,-0.8927444794952681,0.05362776025236593,-1.0,-0.07570977917981073,-0.47003154574132494,-0.0473186119873817,-0.7066246056782335,-0.022082018927444796,-0.861198738170347,-0.0031545741324921135,-0.9842271293375394,-0.07886435331230283,-0.41009463722397477,-0.07255520504731862,-0.6025236593059937,-0.06309148264984227,-0.7350157728706624,-0.050473186119873815,-0.8517350157728707 +5,0.0,0.0,0.1588785046728972,-0.205607476635514,0.2087227414330218,-0.3426791277258567,0.26791277258566976,-0.4485981308411215,0.2616822429906542,-0.5015576323987538,-0.012461059190031152,-0.5015576323987538,0.08411214953271028,-0.6666666666666666,0.17133956386292834,-0.6292834890965732,0.22118380062305296,-0.5451713395638629,-0.056074766355140186,-0.4984423676012461,-0.009345794392523364,-0.7414330218068536,0.03426791277258567,-0.8909657320872274,0.06230529595015576,-1.0,-0.0778816199376947,-0.45794392523364486,-0.04361370716510903,-0.7040498442367601,-0.012461059190031152,-0.8598130841121495,0.009345794392523364,-0.9813084112149533,-0.07476635514018691,-0.40498442367601245,-0.059190031152647975,-0.6043613707165109,-0.04672897196261682,-0.735202492211838,-0.028037383177570093,-0.8473520249221184 +5,0.0,0.0,0.15692307692307692,-0.19384615384615383,0.2123076923076923,-0.3384615384615385,0.27384615384615385,-0.4461538461538462,0.26461538461538464,-0.5107692307692308,0.003076923076923077,-0.5076923076923077,0.09538461538461539,-0.6676923076923077,0.18153846153846154,-0.6276923076923077,0.23384615384615384,-0.5446153846153846,-0.04,-0.5076923076923077,0.0,-0.7446153846153846,0.04,-0.8923076923076924,0.07692307692307693,-1.0,-0.06461538461538462,-0.4676923076923077,-0.033846153846153845,-0.7046153846153846,-0.009230769230769232,-0.8646153846153846,0.015384615384615385,-0.9876923076923076,-0.07076923076923076,-0.4123076923076923,-0.05846153846153846,-0.6061538461538462,-0.046153846153846156,-0.7384615384615385,-0.03076923076923077,-0.8492307692307692 +5,0.0,0.0,0.1540785498489426,-0.18429003021148035,0.21450151057401812,-0.338368580060423,0.27794561933534745,-0.45317220543806647,0.24169184290030213,-0.5015105740181269,0.0,-0.5045317220543807,0.09063444108761329,-0.6616314199395771,0.1782477341389728,-0.6163141993957704,0.22356495468277945,-0.525679758308157,-0.045317220543806644,-0.5045317220543807,-0.00906344410876133,-0.743202416918429,0.03323262839879154,-0.8912386706948641,0.06948640483383686,-1.0,-0.07250755287009064,-0.4622356495468278,-0.045317220543806644,-0.7009063444108762,-0.021148036253776436,-0.8610271903323263,0.0030211480362537764,-0.9848942598187311,-0.08459214501510574,-0.40483383685800606,-0.07250755287009064,-0.5981873111782477,-0.05740181268882175,-0.7341389728096677,-0.04229607250755287,-0.8489425981873112 +5,0.0,0.0,0.15915915915915915,-0.2012012012012012,0.2132132132132132,-0.33933933933933935,0.2822822822822823,-0.45045045045045046,0.25225225225225223,-0.4984984984984985,0.006006006006006006,-0.5075075075075075,0.1021021021021021,-0.6606606606606606,0.18618618618618618,-0.6186186186186187,0.22822822822822822,-0.5315315315315315,-0.042042042042042045,-0.5105105105105106,0.0,-0.7447447447447447,0.042042042042042045,-0.8918918918918919,0.07507507507507508,-1.0,-0.06606606606606606,-0.46846846846846846,-0.036036036036036036,-0.7087087087087087,-0.012012012012012012,-0.8648648648648649,0.012012012012012012,-0.984984984984985,-0.06906906906906907,-0.4114114114114114,-0.057057057057057055,-0.6096096096096096,-0.04504504504504504,-0.7417417417417418,-0.03303303303303303,-0.8528528528528528 +5,0.0,0.0,0.16265060240963855,-0.19578313253012047,0.21987951807228914,-0.33433734939759036,0.2891566265060241,-0.44879518072289154,0.26506024096385544,-0.49698795180722893,0.024096385542168676,-0.5060240963855421,0.10843373493975904,-0.6626506024096386,0.1897590361445783,-0.6144578313253012,0.2319277108433735,-0.536144578313253,-0.024096385542168676,-0.5090361445783133,0.015060240963855422,-0.7409638554216867,0.05120481927710843,-0.8885542168674698,0.07530120481927711,-1.0,-0.04819277108433735,-0.463855421686747,-0.02710843373493976,-0.6927710843373494,-0.006024096385542169,-0.8524096385542169,0.012048192771084338,-0.9759036144578314,-0.05421686746987952,-0.4036144578313253,-0.045180722891566265,-0.5993975903614458,-0.03313253012048193,-0.7289156626506024,-0.02108433734939759,-0.8403614457831325 +5,0.0,0.0,0.15873015873015872,-0.1746031746031746,0.21904761904761905,-0.326984126984127,0.2857142857142857,-0.4380952380952381,0.2571428571428571,-0.48253968253968255,0.025396825396825397,-0.5047619047619047,0.10158730158730159,-0.6603174603174603,0.19047619047619047,-0.6031746031746031,0.23174603174603176,-0.5142857142857142,-0.022222222222222223,-0.5111111111111111,0.0031746031746031746,-0.7365079365079366,0.04126984126984127,-0.8825396825396825,0.06349206349206349,-1.0,-0.05714285714285714,-0.46984126984126984,-0.0380952380952381,-0.6857142857142857,-0.01904761904761905,-0.8380952380952381,0.0,-0.9650793650793651,-0.07301587301587302,-0.4095238095238095,-0.06349206349206349,-0.5936507936507937,-0.05396825396825397,-0.7238095238095238,-0.0380952380952381,-0.8285714285714286 +5,0.0,0.0,0.16139240506329114,-0.17405063291139242,0.2310126582278481,-0.3291139240506329,0.30063291139240506,-0.44936708860759494,0.2563291139240506,-0.49050632911392406,0.028481012658227847,-0.509493670886076,0.11708860759493671,-0.6613924050632911,0.1962025316455696,-0.6075949367088608,0.2310126582278481,-0.5158227848101266,-0.0189873417721519,-0.5189873417721519,0.0189873417721519,-0.75,0.056962025316455694,-0.8892405063291139,0.08544303797468354,-1.0,-0.05379746835443038,-0.4810126582278481,-0.02531645569620253,-0.7056962025316456,0.0,-0.8607594936708861,0.0189873417721519,-0.9810126582278481,-0.07911392405063292,-0.4208860759493671,-0.06329113924050633,-0.6139240506329114,-0.04746835443037975,-0.740506329113924,-0.02531645569620253,-0.8449367088607594 +5,0.0,0.0,0.1498371335504886,-0.1563517915309446,0.2182410423452769,-0.31921824104234525,0.28338762214983715,-0.43322475570032576,0.254071661237785,-0.48534201954397393,0.02280130293159609,-0.50814332247557,0.09446254071661238,-0.6644951140065146,0.1791530944625407,-0.6058631921824105,0.22149837133550487,-0.5179153094462541,-0.026058631921824105,-0.5146579804560261,-0.003257328990228013,-0.739413680781759,0.029315960912052116,-0.8827361563517915,0.04560260586319218,-1.0,-0.06840390879478828,-0.4788273615635179,-0.048859934853420196,-0.6938110749185668,-0.029315960912052116,-0.8469055374592834,-0.016286644951140065,-0.9771986970684039,-0.10097719869706841,-0.4201954397394137,-0.09446254071661238,-0.5993485342019544,-0.08143322475570032,-0.7263843648208469,-0.06188925081433225,-0.8338762214983714 +5,0.0,0.0,0.14285714285714285,-0.14285714285714285,0.21926910299003322,-0.31893687707641194,0.2857142857142857,-0.4418604651162791,0.2425249169435216,-0.4883720930232558,0.026578073089700997,-0.5083056478405316,0.09302325581395349,-0.6644518272425249,0.17275747508305647,-0.6013289036544851,0.2159468438538206,-0.5116279069767442,-0.029900332225913623,-0.5116279069767442,-0.009966777408637873,-0.7375415282392026,0.016611295681063124,-0.8803986710963455,0.03322259136212625,-1.0,-0.07973421926910298,-0.4750830564784053,-0.06312292358803986,-0.6943521594684385,-0.03986710963455149,-0.8504983388704319,-0.026578073089700997,-0.9800664451827242,-0.11960132890365449,-0.4152823920265781,-0.10963455149501661,-0.5946843853820598,-0.09634551495016612,-0.7209302325581395,-0.07973421926910298,-0.8305647840531561 +5,0.0,0.0,0.13666666666666666,-0.12333333333333334,0.21666666666666667,-0.2966666666666667,0.29,-0.41,0.26,-0.4666666666666667,0.05333333333333334,-0.5266666666666666,0.12,-0.67,0.19333333333333333,-0.5966666666666667,0.22333333333333333,-0.5033333333333333,-0.0033333333333333335,-0.5333333333333333,0.023333333333333334,-0.75,0.05,-0.8833333333333333,0.06,-1.0,-0.056666666666666664,-0.49333333333333335,-0.03333333333333333,-0.71,-0.01,-0.8566666666666667,0.0033333333333333335,-0.98,-0.10666666666666667,-0.4266666666666667,-0.09,-0.6,-0.07333333333333333,-0.7233333333333334,-0.06,-0.8366666666666667 +5,0.0,0.0,0.13377926421404682,-0.12040133779264214,0.21070234113712374,-0.30434782608695654,0.27759197324414714,-0.41471571906354515,0.2709030100334448,-0.4782608695652174,0.06020066889632107,-0.5250836120401338,0.12374581939799331,-0.6688963210702341,0.1939799331103679,-0.6020066889632107,0.22408026755852842,-0.5117056856187291,0.0033444816053511705,-0.5317725752508361,0.026755852842809364,-0.7525083612040134,0.05351170568561873,-0.8862876254180602,0.06688963210702341,-1.0,-0.05351170568561873,-0.4916387959866221,-0.033444816053511704,-0.7123745819397993,-0.006688963210702341,-0.8561872909698997,0.010033444816053512,-0.9832775919732442,-0.10367892976588629,-0.42474916387959866,-0.08695652173913043,-0.6020066889632107,-0.07357859531772576,-0.725752508361204,-0.056856187290969896,-0.842809364548495 +5,0.0,0.0,0.14333333333333334,-0.12,0.22,-0.30333333333333334,0.29,-0.4166666666666667,0.28,-0.47333333333333333,0.06666666666666667,-0.53,0.13666666666666666,-0.6733333333333333,0.20333333333333334,-0.6,0.23,-0.5033333333333333,0.006666666666666667,-0.5333333333333333,0.03333333333333333,-0.75,0.06666666666666667,-0.8833333333333333,0.08,-1.0,-0.05,-0.49333333333333335,-0.023333333333333334,-0.7133333333333334,0.006666666666666667,-0.86,0.023333333333333334,-0.9866666666666667,-0.09666666666666666,-0.4266666666666667,-0.07666666666666666,-0.6,-0.06,-0.7266666666666667,-0.04,-0.8433333333333334 +5,0.0,0.0,0.1357615894039735,-0.12251655629139073,0.2119205298013245,-0.30132450331125826,0.2814569536423841,-0.4139072847682119,0.27483443708609273,-0.47019867549668876,0.059602649006622516,-0.5198675496688742,0.1291390728476821,-0.6655629139072847,0.1986754966887417,-0.5993377483443708,0.2251655629139073,-0.5033112582781457,0.0033112582781456954,-0.5264900662251656,0.033112582781456956,-0.7450331125827815,0.06291390728476821,-0.8841059602649006,0.076158940397351,-1.0,-0.04966887417218543,-0.4900662251655629,-0.019867549668874173,-0.7086092715231788,0.009933774834437087,-0.8576158940397351,0.026490066225165563,-0.9834437086092715,-0.10264900662251655,-0.4304635761589404,-0.07947019867549669,-0.6026490066225165,-0.06291390728476821,-0.7317880794701986,-0.046357615894039736,-0.847682119205298 +5,0.0,0.0,0.1357615894039735,-0.12251655629139073,0.2152317880794702,-0.304635761589404,0.2913907284768212,-0.4205298013245033,0.2781456953642384,-0.4768211920529801,0.06622516556291391,-0.5198675496688742,0.13245033112582782,-0.6721854304635762,0.2052980132450331,-0.6059602649006622,0.23509933774834438,-0.5099337748344371,0.013245033112582781,-0.5298013245033113,0.03642384105960265,-0.7483443708609272,0.0695364238410596,-0.8841059602649006,0.08278145695364239,-1.0,-0.039735099337748346,-0.49337748344370863,-0.013245033112582781,-0.7119205298013245,0.016556291390728478,-0.8609271523178808,0.033112582781456956,-0.9900662251655629,-0.09271523178807947,-0.4304635761589404,-0.0728476821192053,-0.6059602649006622,-0.056291390728476824,-0.7317880794701986,-0.039735099337748346,-0.8509933774834437 +5,0.0,0.0,0.14144736842105263,-0.125,0.2236842105263158,-0.3059210526315789,0.29605263157894735,-0.4243421052631579,0.26644736842105265,-0.48026315789473684,0.0625,-0.5230263157894737,0.13157894736842105,-0.6743421052631579,0.20065789473684212,-0.6052631578947368,0.23355263157894737,-0.506578947368421,0.006578947368421052,-0.5296052631578947,0.029605263157894735,-0.7467105263157895,0.0625,-0.8848684210526315,0.08223684210526316,-1.0,-0.046052631578947366,-0.4934210526315789,-0.01644736842105263,-0.7105263157894737,0.013157894736842105,-0.8618421052631579,0.03289473684210526,-0.9901315789473685,-0.09210526315789473,-0.4342105263157895,-0.06907894736842106,-0.6085526315789473,-0.05263157894736842,-0.7368421052631579,-0.03289473684210526,-0.8519736842105263 +5,0.0,0.0,0.14285714285714285,-0.11627906976744186,0.23255813953488372,-0.30564784053156147,0.3122923588039867,-0.42524916943521596,0.2591362126245847,-0.4485049833887043,0.06312292358803986,-0.5348837209302325,0.14285714285714285,-0.6744186046511628,0.20930232558139536,-0.5880398671096345,0.23255813953488372,-0.47840531561461797,0.0033222591362126247,-0.5382059800664452,0.036544850498338874,-0.7541528239202658,0.06976744186046512,-0.8837209302325582,0.08970099667774087,-1.0,-0.04983388704318937,-0.4983388704318937,-0.013289036544850499,-0.7142857142857143,0.016611295681063124,-0.8604651162790697,0.036544850498338874,-0.9867109634551495,-0.09302325581395349,-0.4318936877076412,-0.06312292358803986,-0.6079734219269103,-0.046511627906976744,-0.7308970099667774,-0.026578073089700997,-0.8471760797342193 +5,0.0,0.0,0.14950166112956811,-0.12292358803986711,0.22591362126245848,-0.3122923588039867,0.3023255813953488,-0.4318936877076412,0.2591362126245847,-0.46511627906976744,0.059800664451827246,-0.521594684385382,0.12956810631229235,-0.6644518272425249,0.2059800664451827,-0.5880398671096345,0.23920265780730898,-0.4850498338870432,0.0033222591362126247,-0.5282392026578073,0.029900332225913623,-0.7441860465116279,0.06312292358803986,-0.8803986710963455,0.07973421926910298,-1.0,-0.04318936877076412,-0.4850498338870432,-0.016611295681063124,-0.7043189368770764,0.013289036544850499,-0.8571428571428571,0.029900332225913623,-0.9867109634551495,-0.08305647840531562,-0.4219269102990033,-0.06312292358803986,-0.6013289036544851,-0.046511627906976744,-0.7308970099667774,-0.026578073089700997,-0.8471760797342193 +5,0.0,0.0,0.14950166112956811,-0.12624584717607973,0.22259136212624583,-0.30564784053156147,0.29900332225913623,-0.4186046511627907,0.2724252491694352,-0.4717607973421927,0.059800664451827246,-0.5149501661129569,0.132890365448505,-0.6611295681063123,0.2059800664451827,-0.5913621262458472,0.23588039867109634,-0.4950166112956811,0.006644518272425249,-0.521594684385382,0.03322259136212625,-0.7441860465116279,0.0664451827242525,-0.8837209302325582,0.08970099667774087,-1.0,-0.04318936877076412,-0.48172757475083056,-0.016611295681063124,-0.7043189368770764,0.013289036544850499,-0.8571428571428571,0.036544850498338874,-0.9833887043189369,-0.08637873754152824,-0.4219269102990033,-0.059800664451827246,-0.5980066445182725,-0.03986710963455149,-0.7275747508305648,-0.019933554817275746,-0.840531561461794 +5,0.0,0.0,0.15081967213114755,-0.12786885245901639,0.2262295081967213,-0.28852459016393445,0.29508196721311475,-0.39672131147540984,0.2819672131147541,-0.46229508196721314,0.05901639344262295,-0.5114754098360655,0.1377049180327869,-0.6491803278688525,0.21639344262295082,-0.580327868852459,0.24918032786885247,-0.4786885245901639,0.013114754098360656,-0.5245901639344263,0.04918032786885246,-0.7475409836065574,0.08524590163934426,-0.8852459016393442,0.10819672131147541,-1.0,-0.029508196721311476,-0.4918032786885246,0.003278688524590164,-0.7147540983606557,0.03278688524590164,-0.8688524590163934,0.05245901639344262,-0.9934426229508196,-0.06885245901639345,-0.4360655737704918,-0.04590163934426229,-0.6163934426229508,-0.029508196721311476,-0.7442622950819672,-0.009836065573770493,-0.8590163934426229 +5,0.0,0.0,0.1525974025974026,-0.1331168831168831,0.2305194805194805,-0.2922077922077922,0.2987012987012987,-0.3961038961038961,0.2824675324675325,-0.4577922077922078,0.06168831168831169,-0.5064935064935064,0.1461038961038961,-0.6461038961038961,0.22402597402597402,-0.5746753246753247,0.2532467532467532,-0.4675324675324675,0.016233766233766232,-0.5227272727272727,0.05519480519480519,-0.7467532467532467,0.09090909090909091,-0.8863636363636364,0.11688311688311688,-1.0,-0.025974025974025976,-0.4935064935064935,0.012987012987012988,-0.7207792207792207,0.04220779220779221,-0.8733766233766234,0.06493506493506493,-0.9935064935064936,-0.06168831168831169,-0.4383116883116883,-0.03571428571428571,-0.6201298701298701,-0.01948051948051948,-0.75,0.0,-0.8636363636363636 +5,0.0,0.0,0.15737704918032788,-0.12459016393442623,0.24918032786885247,-0.28852459016393445,0.33114754098360655,-0.4,0.29508196721311475,-0.45901639344262296,0.08196721311475409,-0.5081967213114754,0.16065573770491803,-0.6491803278688525,0.23278688524590163,-0.5704918032786885,0.25901639344262295,-0.46557377049180326,0.03278688524590164,-0.5245901639344263,0.07213114754098361,-0.7475409836065574,0.10819672131147541,-0.8885245901639345,0.12786885245901639,-1.0,-0.019672131147540985,-0.49508196721311476,0.019672131147540985,-0.7180327868852459,0.04918032786885246,-0.8721311475409836,0.07213114754098361,-0.9967213114754099,-0.06557377049180328,-0.43934426229508194,-0.03278688524590164,-0.6229508196721312,-0.01639344262295082,-0.7508196721311475,0.003278688524590164,-0.8655737704918033 +5,0.0,0.0,-0.16147308781869688,-0.11614730878186968,-0.26912181303116145,-0.2719546742209632,-0.36827195467422097,-0.3626062322946176,-0.43909348441926344,-0.44192634560906513,-0.13314447592067988,-0.4985835694050991,-0.23796033994334279,-0.6458923512747875,-0.32294617563739375,-0.5694050991501416,-0.34844192634560905,-0.47592067988668557,-0.07365439093484419,-0.5212464589235127,-0.1388101983002833,-0.7507082152974505,-0.20396600566572237,-0.8810198300283286,-0.24362606232294617,-1.0,-0.0028328611898017,-0.4985835694050991,-0.014164305949008499,-0.7280453257790368,-0.04815864022662889,-0.8611898016997167,-0.0679886685552408,-0.9830028328611898,0.06232294617563739,-0.43626062322946174,0.059490084985835696,-0.6062322946175638,0.05099150141643059,-0.7223796033994334,0.04815864022662889,-0.8271954674220963 +5,0.0,0.0,-0.16524216524216523,-0.1111111111111111,-0.27350427350427353,-0.2706552706552707,-0.37606837606837606,-0.37037037037037035,-0.43874643874643876,-0.4586894586894587,-0.1396011396011396,-0.4928774928774929,-0.245014245014245,-0.6410256410256411,-0.32193732193732194,-0.5612535612535613,-0.33903133903133903,-0.46438746438746437,-0.07692307692307693,-0.5213675213675214,-0.1396011396011396,-0.7492877492877493,-0.20512820512820512,-0.8803418803418803,-0.24786324786324787,-1.0,0.0,-0.5042735042735043,-0.022792022792022793,-0.7321937321937322,-0.05413105413105413,-0.8689458689458689,-0.07692307692307693,-0.9886039886039886,0.06552706552706553,-0.4444444444444444,0.05698005698005698,-0.6153846153846154,0.045584045584045586,-0.7293447293447294,0.039886039886039885,-0.8347578347578347 +5,0.0,0.0,-0.15759312320916904,-0.1174785100286533,-0.2664756446991404,-0.2693409742120344,-0.3667621776504298,-0.3667621776504298,-0.4183381088825215,-0.45558739255014324,-0.12034383954154727,-0.4871060171919771,-0.2349570200573066,-0.6275071633237822,-0.31805157593123207,-0.5530085959885387,-0.33810888252148996,-0.46131805157593125,-0.06017191977077364,-0.5157593123209169,-0.12034383954154727,-0.7478510028653295,-0.18051575931232092,-0.8796561604584527,-0.22349570200573066,-1.0,0.014326647564469915,-0.498567335243553,-0.0057306590257879654,-0.7306590257879656,-0.03724928366762178,-0.8653295128939829,-0.06017191977077364,-0.9856733524355301,0.08022922636103152,-0.44126074498567336,0.07449856733524356,-0.6160458452722063,0.06303724928366762,-0.7335243553008596,0.05730659025787966,-0.839541547277937 +5,0.0,0.0,-0.15759312320916904,-0.1174785100286533,-0.2693409742120344,-0.2722063037249284,-0.36962750716332377,-0.37249283667621774,-0.40974212034383956,-0.4699140401146132,-0.12320916905444126,-0.4871060171919771,-0.22636103151862463,-0.6361031518624641,-0.3123209169054441,-0.5702005730659025,-0.3438395415472779,-0.4785100286532951,-0.06303724928366762,-0.5157593123209169,-0.11461318051575932,-0.7478510028653295,-0.17478510028653296,-0.8825214899713467,-0.2177650429799427,-1.0,0.017191977077363897,-0.498567335243553,0.0028653295128939827,-0.7306590257879656,-0.025787965616045846,-0.8653295128939829,-0.04871060171919771,-0.9856733524355301,0.08595988538681948,-0.44126074498567336,0.0830945558739255,-0.6160458452722063,0.07449856733524356,-0.7335243553008596,0.0659025787965616,-0.839541547277937 +5,0.0,0.0,-0.14942528735632185,-0.11206896551724138,-0.25862068965517243,-0.26436781609195403,-0.35344827586206895,-0.367816091954023,-0.3793103448275862,-0.4540229885057471,-0.11206896551724138,-0.48563218390804597,-0.20689655172413793,-0.6379310344827587,-0.28448275862068967,-0.5660919540229885,-0.3074712643678161,-0.46839080459770116,-0.04310344827586207,-0.5114942528735632,-0.09482758620689655,-0.7413793103448276,-0.14942528735632185,-0.8793103448275862,-0.1867816091954023,-1.0,0.040229885057471264,-0.4885057471264368,0.02586206896551724,-0.7183908045977011,0.0028735632183908046,-0.8563218390804598,-0.014367816091954023,-0.985632183908046,0.11494252873563218,-0.42528735632183906,0.11494252873563218,-0.6063218390804598,0.10632183908045977,-0.7241379310344828,0.10057471264367816,-0.8362068965517241 +5,0.0,0.0,-0.14697406340057637,-0.11239193083573487,-0.2564841498559078,-0.2737752161383285,-0.3515850144092219,-0.37752161383285304,-0.3659942363112392,-0.4610951008645533,-0.10951008645533142,-0.48703170028818443,-0.2017291066282421,-0.6397694524495677,-0.27953890489913547,-0.5648414985590778,-0.29971181556195964,-0.4697406340057637,-0.037463976945244955,-0.5072046109510087,-0.07492795389048991,-0.7377521613832853,-0.12680115273775217,-0.8760806916426513,-0.1585014409221902,-1.0,0.04899135446685879,-0.4812680115273775,0.043227665706051875,-0.7118155619596542,0.023054755043227664,-0.8530259365994236,0.008645533141210375,-0.9827089337175793,0.1239193083573487,-0.414985590778098,0.12968299711815562,-0.5994236311239193,0.12680115273775217,-0.7204610951008645,0.12680115273775217,-0.8386167146974063 +5,0.0,0.0,-0.14942528735632185,-0.10919540229885058,-0.25862068965517243,-0.26436781609195403,-0.34770114942528735,-0.367816091954023,-0.3735632183908046,-0.46551724137931033,-0.11781609195402298,-0.4827586206896552,-0.20114942528735633,-0.6379310344827587,-0.27298850574712646,-0.5747126436781609,-0.2959770114942529,-0.4885057471264368,-0.04597701149425287,-0.5086206896551724,-0.09195402298850575,-0.7385057471264368,-0.14367816091954022,-0.8764367816091954,-0.1781609195402299,-1.0,0.04310344827586207,-0.48563218390804597,0.031609195402298854,-0.7155172413793104,0.008620689655172414,-0.853448275862069,-0.008620689655172414,-0.9798850574712644,0.1206896551724138,-0.4224137931034483,0.12931034482758622,-0.603448275862069,0.1235632183908046,-0.7212643678160919,0.1206896551724138,-0.8333333333333334 +5,0.0,0.0,-0.16422287390029325,-0.10557184750733138,-0.28152492668621704,-0.2727272727272727,-0.375366568914956,-0.3870967741935484,-0.39589442815249265,-0.4780058651026393,-0.15542521994134897,-0.49853372434017595,-0.25513196480938416,-0.6539589442815249,-0.31378299120234604,-0.5835777126099707,-0.3225806451612903,-0.49560117302052786,-0.08211143695014662,-0.5249266862170088,-0.1378299120234604,-0.7478005865102639,-0.1935483870967742,-0.8826979472140762,-0.2316715542521994,-1.0,0.008797653958944282,-0.5102639296187683,-0.011730205278592375,-0.7302052785923754,-0.03812316715542522,-0.8680351906158358,-0.06158357771260997,-0.9970674486803519,0.09090909090909091,-0.45454545454545453,0.09090909090909091,-0.6304985337243402,0.08211143695014662,-0.750733137829912,0.07331378299120235,-0.8621700879765396 +5,0.0,0.0,-0.17088607594936708,-0.1360759493670886,-0.27848101265822783,-0.28164556962025317,-0.37658227848101267,-0.37341772151898733,-0.4462025316455696,-0.46835443037974683,-0.1360759493670886,-0.4936708860759494,-0.2626582278481013,-0.6329113924050633,-0.3449367088607595,-0.5727848101265823,-0.3670886075949367,-0.4873417721518987,-0.09177215189873418,-0.5063291139240507,-0.1518987341772152,-0.740506329113924,-0.18354430379746836,-0.879746835443038,-0.18670886075949367,-1.0,-0.04746835443037975,-0.48417721518987344,-0.0949367088607595,-0.7151898734177216,-0.12025316455696203,-0.8670886075949367,-0.12025316455696203,-0.990506329113924,-0.015822784810126583,-0.4430379746835443,-0.05063291139240506,-0.6234177215189873,-0.07278481012658228,-0.740506329113924,-0.08227848101265822,-0.8449367088607594 +5,0.0,0.0,-0.17981072555205047,-0.138801261829653,-0.2870662460567823,-0.277602523659306,-0.38801261829652994,-0.3722397476340694,-0.45110410094637227,-0.47003154574132494,-0.15141955835962145,-0.4889589905362776,-0.2744479495268139,-0.6309148264984227,-0.35646687697160884,-0.5741324921135647,-0.3785488958990536,-0.4889589905362776,-0.10410094637223975,-0.5047318611987381,-0.1640378548895899,-0.7381703470031545,-0.19558359621451105,-0.8801261829652997,-0.20504731861198738,-1.0,-0.05993690851735016,-0.48264984227129337,-0.10725552050473186,-0.7160883280757098,-0.13249211356466878,-0.8643533123028391,-0.13564668769716087,-0.9905362776025236,-0.028391167192429023,-0.444794952681388,-0.06309148264984227,-0.6246056782334385,-0.08517350157728706,-0.7444794952681388,-0.09779179810725552,-0.8485804416403786 +5,0.0,0.0,-0.1746031746031746,-0.1365079365079365,-0.27936507936507937,-0.27936507936507937,-0.37777777777777777,-0.37142857142857144,-0.44126984126984126,-0.4666666666666667,-0.14285714285714285,-0.49523809523809526,-0.26666666666666666,-0.6349206349206349,-0.3492063492063492,-0.5777777777777777,-0.37142857142857144,-0.49206349206349204,-0.09841269841269841,-0.5142857142857142,-0.1523809523809524,-0.7428571428571429,-0.1873015873015873,-0.8857142857142857,-0.19365079365079366,-1.0,-0.050793650793650794,-0.49206349206349204,-0.09841269841269841,-0.7206349206349206,-0.12380952380952381,-0.8698412698412699,-0.13015873015873017,-0.9936507936507937,-0.015873015873015872,-0.4507936507936508,-0.050793650793650794,-0.6253968253968254,-0.07301587301587302,-0.7396825396825397,-0.08571428571428572,-0.8412698412698413 +5,0.0,0.0,-0.17197452229299362,-0.1337579617834395,-0.2770700636942675,-0.2802547770700637,-0.37579617834394907,-0.37261146496815284,-0.4394904458598726,-0.4713375796178344,-0.1337579617834395,-0.4968152866242038,-0.2611464968152866,-0.6305732484076433,-0.34394904458598724,-0.5668789808917197,-0.3662420382165605,-0.4840764331210191,-0.08917197452229299,-0.5127388535031847,-0.1464968152866242,-0.7388535031847133,-0.17834394904458598,-0.8789808917197452,-0.18471337579617833,-1.0,-0.041401273885350316,-0.49363057324840764,-0.08598726114649681,-0.7197452229299363,-0.11146496815286625,-0.8662420382165605,-0.1178343949044586,-0.9936305732484076,-0.009554140127388535,-0.45222929936305734,-0.041401273885350316,-0.6273885350318471,-0.06369426751592357,-0.7452229299363057,-0.07643312101910828,-0.8471337579617835 +5,0.0,0.0,-0.17041800643086816,-0.12540192926045016,-0.2765273311897106,-0.27009646302250806,-0.3762057877813505,-0.36012861736334406,-0.43086816720257237,-0.45980707395498394,-0.13183279742765272,-0.4983922829581994,-0.2540192926045016,-0.6270096463022508,-0.33762057877813506,-0.5659163987138264,-0.3665594855305466,-0.48231511254019294,-0.08681672025723473,-0.5176848874598071,-0.1382636655948553,-0.7427652733118971,-0.17363344051446947,-0.8810289389067524,-0.1864951768488746,-1.0,-0.03858520900321544,-0.4983922829581994,-0.07717041800643087,-0.7202572347266881,-0.10932475884244373,-0.8713826366559485,-0.12218649517684887,-0.9967845659163987,0.0,-0.4565916398713826,-0.028938906752411574,-0.6302250803858521,-0.05144694533762058,-0.7459807073954984,-0.06752411575562701,-0.8456591639871383 +5,0.0,0.0,-0.16932907348242812,-0.12779552715654952,-0.2779552715654952,-0.26517571884984026,-0.3706070287539936,-0.3546325878594249,-0.41214057507987223,-0.4504792332268371,-0.13738019169329074,-0.49201277955271566,-0.26517571884984026,-0.6230031948881789,-0.34824281150159747,-0.5591054313099042,-0.3706070287539936,-0.4696485623003195,-0.08945686900958466,-0.5111821086261981,-0.14696485623003194,-0.7380191693290735,-0.1757188498402556,-0.8785942492012779,-0.18210862619808307,-1.0,-0.03514376996805112,-0.4952076677316294,-0.07987220447284345,-0.7220447284345048,-0.10543130990415335,-0.8690095846645367,-0.11182108626198083,-0.9936102236421726,0.009584664536741214,-0.4504792332268371,-0.019169329073482427,-0.6293929712460063,-0.04153354632587859,-0.7476038338658147,-0.051118210862619806,-0.8498402555910544 +5,0.0,0.0,-0.17041800643086816,-0.10932475884244373,-0.29260450160771706,-0.2508038585209003,-0.3858520900321543,-0.3408360128617363,-0.42765273311897106,-0.43729903536977494,-0.15755627009646303,-0.4919614147909968,-0.2829581993569132,-0.6205787781350482,-0.35691318327974275,-0.5498392282958199,-0.3665594855305466,-0.45980707395498394,-0.10289389067524116,-0.5176848874598071,-0.15755627009646303,-0.7427652733118971,-0.1864951768488746,-0.8810289389067524,-0.18971061093247588,-1.0,-0.04180064308681672,-0.5016077170418006,-0.08360128617363344,-0.7266881028938906,-0.11254019292604502,-0.8745980707395499,-0.12218649517684887,-0.9935691318327974,0.012861736334405145,-0.4533762057877814,-0.01929260450160772,-0.6334405144694534,-0.04180064308681672,-0.752411575562701,-0.05466237942122187,-0.8553054662379421 +5,0.0,0.0,-0.1715210355987055,-0.10679611650485436,-0.2912621359223301,-0.2459546925566343,-0.39158576051779936,-0.33980582524271846,-0.41423948220064727,-0.44660194174757284,-0.15857605177993528,-0.49514563106796117,-0.2750809061488673,-0.6245954692556634,-0.35275080906148865,-0.5501618122977346,-0.36245954692556637,-0.4563106796116505,-0.10355987055016182,-0.5242718446601942,-0.15210355987055016,-0.7475728155339806,-0.18122977346278318,-0.883495145631068,-0.18122977346278318,-1.0,-0.038834951456310676,-0.511326860841424,-0.0744336569579288,-0.7313915857605178,-0.10355987055016182,-0.8705501618122977,-0.11974110032362459,-0.9902912621359223,0.019417475728155338,-0.4627831715210356,-0.006472491909385114,-0.6375404530744336,-0.032362459546925564,-0.7508090614886731,-0.05177993527508091,-0.8511326860841424 +5,0.0,0.0,-0.17096774193548386,-0.1032258064516129,-0.2903225806451613,-0.24193548387096775,-0.38387096774193546,-0.33548387096774196,-0.4161290322580645,-0.43870967741935485,-0.15483870967741936,-0.4870967741935484,-0.26129032258064516,-0.6161290322580645,-0.34838709677419355,-0.5548387096774193,-0.3741935483870968,-0.4645161290322581,-0.1,-0.5129032258064516,-0.13870967741935483,-0.7387096774193549,-0.16774193548387098,-0.8806451612903226,-0.17096774193548386,-1.0,-0.035483870967741936,-0.4967741935483871,-0.06129032258064516,-0.7193548387096774,-0.08387096774193549,-0.8612903225806452,-0.0967741935483871,-0.9806451612903225,0.025806451612903226,-0.44193548387096776,0.0064516129032258064,-0.6193548387096774,-0.016129032258064516,-0.7354838709677419,-0.03225806451612903,-0.8354838709677419 +5,0.0,0.0,-0.16932907348242812,-0.11501597444089456,-0.2779552715654952,-0.26198083067092653,-0.36421725239616615,-0.3514376996805112,-0.41214057507987223,-0.4440894568690096,-0.13099041533546327,-0.5015974440894568,-0.25878594249201275,-0.6230031948881789,-0.3514376996805112,-0.549520766773163,-0.3769968051118211,-0.4536741214057508,-0.07987220447284345,-0.5239616613418531,-0.12779552715654952,-0.7412140575079872,-0.16613418530351437,-0.8817891373801917,-0.1757188498402556,-1.0,-0.01597444089456869,-0.5015974440894568,-0.05750798722044728,-0.7252396166134185,-0.08626198083067092,-0.865814696485623,-0.09584664536741214,-0.9776357827476039,0.03514376996805112,-0.4536741214057508,0.003194888178913738,-0.6261980830670927,-0.019169329073482427,-0.744408945686901,-0.03194888178913738,-0.8466453674121406 +5,0.0,0.0,-0.15755627009646303,-0.12218649517684887,-0.27009646302250806,-0.26688102893890675,-0.3633440514469453,-0.35691318327974275,-0.41479099678456594,-0.4533762057877814,-0.1157556270096463,-0.48231511254019294,-0.2379421221864952,-0.6205787781350482,-0.3311897106109325,-0.5659163987138264,-0.35691318327974275,-0.48231511254019294,-0.0707395498392283,-0.5048231511254019,-0.12218649517684887,-0.7331189710610932,-0.15434083601286175,-0.8778135048231511,-0.1639871382636656,-1.0,-0.01607717041800643,-0.4919614147909968,-0.05787781350482315,-0.7234726688102894,-0.08681672025723473,-0.8681672025723473,-0.0932475884244373,-0.9903536977491961,0.02572347266881029,-0.4533762057877814,-0.003215434083601286,-0.6302250803858521,-0.02572347266881029,-0.7491961414790996,-0.03858520900321544,-0.8488745980707395 +5,0.0,0.0,-0.1762820512820513,-0.14743589743589744,-0.2692307692307692,-0.28846153846153844,-0.358974358974359,-0.3685897435897436,-0.42948717948717946,-0.4551282051282051,-0.11538461538461539,-0.5096153846153846,-0.2532051282051282,-0.6282051282051282,-0.34615384615384615,-0.5512820512820513,-0.375,-0.4583333333333333,-0.07692307692307693,-0.5256410256410257,-0.15384615384615385,-0.7403846153846154,-0.20512820512820512,-0.8782051282051282,-0.22435897435897437,-1.0,-0.041666666666666664,-0.5,-0.08974358974358974,-0.7307692307692307,-0.125,-0.875,-0.1346153846153846,-0.9903846153846154,-0.035256410256410256,-0.46153846153846156,-0.060897435897435896,-0.6378205128205128,-0.08333333333333333,-0.7564102564102564,-0.09935897435897435,-0.8621794871794872 +5,0.0,0.0,-0.19873817034700317,-0.17665615141955837,-0.2744479495268139,-0.30914826498422715,-0.3722397476340694,-0.3911671924290221,-0.45425867507886436,-0.47318611987381703,-0.07886435331230283,-0.5394321766561514,-0.2586750788643533,-0.6435331230283912,-0.35646687697160884,-0.5741324921135647,-0.3911671924290221,-0.48580441640378547,-0.031545741324921134,-0.5394321766561514,-0.17665615141955837,-0.7539432176656151,-0.24605678233438485,-0.889589905362776,-0.2744479495268139,-0.9873817034700315,-0.031545741324921134,-0.4952681388012618,-0.13249211356466878,-0.7444794952681388,-0.1861198738170347,-0.886435331230284,-0.20189274447949526,-1.0,-0.08201892744479496,-0.45741324921135645,-0.14195583596214512,-0.6466876971608833,-0.17034700315457413,-0.7665615141955836,-0.1861198738170347,-0.8738170347003155 +5,0.0,0.0,-0.2087227414330218,-0.17757009345794392,-0.2803738317757009,-0.3115264797507788,-0.3707165109034268,-0.3894080996884735,-0.46105919003115264,-0.4672897196261682,-0.07476635514018691,-0.5295950155763239,-0.2585669781931464,-0.6479750778816199,-0.3582554517133956,-0.5794392523364486,-0.3925233644859813,-0.48909657320872274,-0.028037383177570093,-0.5327102803738317,-0.20249221183800623,-0.7320872274143302,-0.2803738317757009,-0.8473520249221184,-0.3146417445482866,-0.9221183800623053,-0.03115264797507788,-0.49221183800623053,-0.14330218068535824,-0.7289719626168224,-0.19937694704049844,-0.881619937694704,-0.2118380062305296,-1.0,-0.08411214953271028,-0.4517133956386293,-0.14953271028037382,-0.632398753894081,-0.17757009345794392,-0.7570093457943925,-0.19003115264797507,-0.8660436137071651 +5,0.0,0.0,-0.21518987341772153,-0.1962025316455696,-0.27848101265822783,-0.31962025316455694,-0.370253164556962,-0.38924050632911394,-0.4651898734177215,-0.4651898734177215,-0.07278481012658228,-0.5379746835443038,-0.27848101265822783,-0.6613924050632911,-0.37658227848101267,-0.5759493670886076,-0.41455696202531644,-0.48417721518987344,-0.02531645569620253,-0.5253164556962026,-0.25316455696202533,-0.7246835443037974,-0.3670886075949367,-0.7689873417721519,-0.4240506329113924,-0.7721518987341772,-0.04113924050632911,-0.47151898734177217,-0.16139240506329114,-0.7468354430379747,-0.23734177215189872,-0.8924050632911392,-0.2626582278481013,-1.0,-0.11708860759493671,-0.4272151898734177,-0.18037974683544303,-0.6265822784810127,-0.21518987341772153,-0.7531645569620253,-0.2310126582278481,-0.8734177215189873 +5,0.0,0.0,-0.2168284789644013,-0.19741100323624594,-0.2815533980582524,-0.32362459546925565,-0.37540453074433655,-0.3851132686084142,-0.48220064724919093,-0.459546925566343,-0.06796116504854369,-0.5533980582524272,-0.284789644012945,-0.6828478964401294,-0.3883495145631068,-0.5889967637540453,-0.43042071197411,-0.49514563106796117,-0.025889967637540454,-0.5372168284789643,-0.2912621359223301,-0.6990291262135923,-0.39805825242718446,-0.6213592233009708,-0.43042071197411,-0.5275080906148867,-0.042071197411003236,-0.4886731391585761,-0.18770226537216828,-0.7766990291262136,-0.2686084142394822,-0.9093851132686084,-0.284789644012945,-1.0,-0.1262135922330097,-0.4563106796116505,-0.20388349514563106,-0.6666666666666666,-0.24919093851132687,-0.7993527508090615,-0.2621359223300971,-0.9223300970873787 +5,0.0,0.0,-0.21337579617834396,-0.1910828025477707,-0.28662420382165604,-0.33121019108280253,-0.36942675159235666,-0.3980891719745223,-0.4681528662420382,-0.4713375796178344,-0.06050955414012739,-0.5414012738853503,-0.267515923566879,-0.6942675159235668,-0.37579617834394907,-0.6114649681528662,-0.4171974522292994,-0.5286624203821656,-0.022292993630573247,-0.5222929936305732,-0.27070063694267515,-0.6719745222929936,-0.37898089171974525,-0.6050955414012739,-0.410828025477707,-0.5191082802547771,-0.041401273885350316,-0.46178343949044587,-0.17197452229299362,-0.732484076433121,-0.24522292993630573,-0.8853503184713376,-0.2643312101910828,-1.0,-0.12101910828025478,-0.4140127388535032,-0.1910828025477707,-0.6050955414012739,-0.2197452229299363,-0.7292993630573248,-0.22611464968152867,-0.8439490445859873 +5,0.0,0.0,-0.21221864951768488,-0.18971061093247588,-0.2797427652733119,-0.3408360128617363,-0.3665594855305466,-0.40836012861736337,-0.47266881028938906,-0.48231511254019294,-0.06109324758842444,-0.5562700964630225,-0.2572347266881029,-0.6977491961414791,-0.3729903536977492,-0.6270096463022508,-0.4212218649517685,-0.5466237942122186,-0.01929260450160772,-0.5401929260450161,-0.2604501607717042,-0.6720257234726688,-0.3729903536977492,-0.594855305466238,-0.40192926045016075,-0.5080385852090032,-0.03215434083601286,-0.4887459807073955,-0.1607717041800643,-0.7427652733118971,-0.2347266881028939,-0.8906752411575563,-0.24758842443729903,-1.0,-0.10610932475884244,-0.45016077170418006,-0.17684887459807075,-0.6463022508038585,-0.2057877813504823,-0.7717041800643086,-0.2057877813504823,-0.8906752411575563 +5,0.0,0.0,-0.21474358974358973,-0.1955128205128205,-0.27884615384615385,-0.3269230769230769,-0.3717948717948718,-0.40384615384615385,-0.4583333333333333,-0.49038461538461536,-0.07051282051282051,-0.532051282051282,-0.2564102564102564,-0.6602564102564102,-0.36538461538461536,-0.5993589743589743,-0.40705128205128205,-0.5160256410256411,-0.022435897435897436,-0.5224358974358975,-0.21794871794871795,-0.7307692307692307,-0.32371794871794873,-0.8397435897435898,-0.3685897435897436,-0.907051282051282,-0.028846153846153848,-0.47115384615384615,-0.14423076923076922,-0.7339743589743589,-0.21474358974358973,-0.8846153846153846,-0.23076923076923078,-1.0,-0.09615384615384616,-0.42948717948717946,-0.16025641025641027,-0.6282051282051282,-0.1891025641025641,-0.7564102564102564,-0.1987179487179487,-0.8685897435897436 +5,0.0,0.0,-0.2088607594936709,-0.18670886075949367,-0.28164556962025317,-0.31329113924050633,-0.370253164556962,-0.38924050632911394,-0.4620253164556962,-0.47468354430379744,-0.06329113924050633,-0.5348101265822784,-0.2626582278481013,-0.6518987341772152,-0.3670886075949367,-0.5759493670886076,-0.3987341772151899,-0.4873417721518987,-0.0189873417721519,-0.5253164556962026,-0.22784810126582278,-0.7310126582278481,-0.3259493670886076,-0.8164556962025317,-0.3670886075949367,-0.8734177215189873,-0.02531645569620253,-0.47468354430379744,-0.14873417721518986,-0.7341772151898734,-0.21518987341772153,-0.8860759493670886,-0.2310126582278481,-1.0,-0.08544303797468354,-0.43037974683544306,-0.14873417721518986,-0.620253164556962,-0.18354430379746836,-0.75,-0.19936708860759494,-0.8670886075949367 +5,0.0,0.0,-0.20192307692307693,-0.1858974358974359,-0.27884615384615385,-0.3141025641025641,-0.3717948717948718,-0.3942307692307692,-0.44551282051282054,-0.49038461538461536,-0.09294871794871795,-0.5288461538461539,-0.2532051282051282,-0.6506410256410257,-0.34935897435897434,-0.5865384615384616,-0.3782051282051282,-0.5032051282051282,-0.041666666666666664,-0.5352564102564102,-0.1762820512820513,-0.75,-0.24358974358974358,-0.8878205128205128,-0.2692307692307692,-0.9967948717948718,-0.03205128205128205,-0.5,-0.1282051282051282,-0.7371794871794872,-0.1891025641025641,-0.8846153846153846,-0.20833333333333334,-1.0,-0.07051282051282051,-0.46474358974358976,-0.1282051282051282,-0.6506410256410257,-0.16346153846153846,-0.7756410256410257,-0.1858974358974359,-0.8846153846153846 +5,0.0,0.0,-0.18241042345276873,-0.1563517915309446,-0.2768729641693811,-0.2996742671009772,-0.3745928338762215,-0.38436482084690554,-0.44299674267100975,-0.4788273615635179,-0.11400651465798045,-0.5146579804560261,-0.25732899022801303,-0.6416938110749185,-0.3485342019543974,-0.5765472312703583,-0.3811074918566775,-0.48859934853420195,-0.0749185667752443,-0.5244299674267101,-0.16612377850162866,-0.752442996742671,-0.2280130293159609,-0.8892508143322475,-0.254071661237785,-1.0,-0.04560260586319218,-0.498371335504886,-0.11074918566775244,-0.742671009771987,-0.15309446254071662,-0.8859934853420195,-0.16938110749185667,-1.0,-0.04560260586319218,-0.4560260586319218,-0.0781758957654723,-0.6384364820846905,-0.10749185667752444,-0.7654723127035831,-0.1270358306188925,-0.8697068403908795 +5,0.0,0.0,-0.17684887459807075,-0.14469453376205788,-0.2797427652733119,-0.29260450160771706,-0.3729903536977492,-0.3858520900321543,-0.4437299035369775,-0.4758842443729904,-0.13183279742765272,-0.5048231511254019,-0.2733118971061093,-0.6302250803858521,-0.36012861736334406,-0.5627009646302251,-0.38263665594855306,-0.4790996784565916,-0.0932475884244373,-0.5209003215434084,-0.16720257234726688,-0.7427652733118971,-0.2090032154340836,-0.8842443729903537,-0.22508038585209003,-1.0,-0.05144694533762058,-0.49517684887459806,-0.10932475884244373,-0.7266881028938906,-0.14469453376205788,-0.8713826366559485,-0.15434083601286175,-0.9903536977491961,-0.028938906752411574,-0.4533762057877814,-0.06752411575562701,-0.6270096463022508,-0.0932475884244373,-0.7459807073954984,-0.10610932475884244,-0.8488745980707395 +5,0.0,0.0,-0.17363344051446947,-0.14469453376205788,-0.2829581993569132,-0.2861736334405145,-0.37942122186495175,-0.38263665594855306,-0.45016077170418006,-0.47266881028938906,-0.1414790996784566,-0.4919614147909968,-0.26366559485530544,-0.6334405144694534,-0.3440514469453376,-0.5819935691318328,-0.3665594855305466,-0.5016077170418006,-0.09967845659163987,-0.5048231511254019,-0.16720257234726688,-0.7395498392282959,-0.21221864951768488,-0.8810289389067524,-0.2315112540192926,-1.0,-0.05787781350482315,-0.4855305466237942,-0.10932475884244373,-0.7202572347266881,-0.14469453376205788,-0.8681672025723473,-0.15755627009646303,-0.9935691318327974,-0.02572347266881029,-0.4437299035369775,-0.06109324758842444,-0.6237942122186495,-0.09003215434083602,-0.7427652733118971,-0.10932475884244373,-0.8488745980707395 +5,0.0,0.0,-0.1715210355987055,-0.1423948220064725,-0.2750809061488673,-0.2815533980582524,-0.37216828478964403,-0.37540453074433655,-0.4401294498381877,-0.4692556634304207,-0.13268608414239483,-0.4886731391585761,-0.2588996763754045,-0.627831715210356,-0.343042071197411,-0.5728155339805825,-0.36893203883495146,-0.4919093851132686,-0.09385113268608414,-0.5048543689320388,-0.1553398058252427,-0.7378640776699029,-0.20388349514563106,-0.8802588996763754,-0.22330097087378642,-1.0,-0.05501618122977346,-0.4919093851132686,-0.10032362459546926,-0.7281553398058253,-0.13268608414239483,-0.8705501618122977,-0.14563106796116504,-0.9902912621359223,-0.025889967637540454,-0.4563106796116505,-0.05825242718446602,-0.6375404530744336,-0.08414239482200647,-0.7572815533980582,-0.10032362459546926,-0.8576051779935275 +5,0.0,0.0,-0.16451612903225807,-0.14193548387096774,-0.267741935483871,-0.2806451612903226,-0.36451612903225805,-0.3741935483870968,-0.43548387096774194,-0.47096774193548385,-0.12258064516129032,-0.4870967741935484,-0.25161290322580643,-0.6258064516129033,-0.3419354838709677,-0.5645161290322581,-0.36774193548387096,-0.4806451612903226,-0.08387096774193549,-0.5032258064516129,-0.15161290322580645,-0.7322580645161291,-0.2032258064516129,-0.8774193548387097,-0.22903225806451613,-1.0,-0.03870967741935484,-0.4870967741935484,-0.08709677419354839,-0.7258064516129032,-0.12580645161290321,-0.8709677419354839,-0.14193548387096774,-0.9903225806451613,-0.00967741935483871,-0.45161290322580644,-0.041935483870967745,-0.6290322580645161,-0.07096774193548387,-0.7483870967741936,-0.08709677419354839,-0.8516129032258064 +5,0.0,0.0,-0.16447368421052633,-0.13815789473684212,-0.2631578947368421,-0.27960526315789475,-0.3618421052631579,-0.3651315789473684,-0.4407894736842105,-0.4605263157894737,-0.12171052631578948,-0.506578947368421,-0.2532894736842105,-0.631578947368421,-0.34210526315789475,-0.569078947368421,-0.3717105263157895,-0.48026315789473684,-0.08552631578947369,-0.5328947368421053,-0.15460526315789475,-0.75,-0.20065789473684212,-0.881578947368421,-0.2236842105263158,-0.993421052631579,-0.046052631578947366,-0.5197368421052632,-0.09868421052631579,-0.7467105263157895,-0.13815789473684212,-0.8881578947368421,-0.15460526315789475,-1.0,-0.029605263157894735,-0.48355263157894735,-0.06578947368421052,-0.6611842105263158,-0.09210526315789473,-0.7763157894736842,-0.1118421052631579,-0.8782894736842105 +5,0.0,0.0,-0.1762820512820513,-0.16025641025641027,-0.2692307692307692,-0.30448717948717946,-0.3685897435897436,-0.38782051282051283,-0.4583333333333333,-0.47435897435897434,-0.10256410256410256,-0.5224358974358975,-0.2532051282051282,-0.6442307692307693,-0.34615384615384615,-0.5737179487179487,-0.3814102564102564,-0.48717948717948717,-0.0641025641025641,-0.5288461538461539,-0.16666666666666666,-0.7532051282051282,-0.22435897435897437,-0.8878205128205128,-0.25,-0.9967948717948718,-0.041666666666666664,-0.4967948717948718,-0.10576923076923077,-0.7371794871794872,-0.15064102564102563,-0.8814102564102564,-0.16346153846153846,-1.0,-0.05128205128205128,-0.4551282051282051,-0.09294871794871795,-0.6410256410256411,-0.11858974358974358,-0.7628205128205128,-0.13782051282051283,-0.8717948717948718 +5,0.0,0.0,-0.19032258064516128,-0.18387096774193548,-0.27741935483870966,-0.3064516129032258,-0.38387096774193546,-0.3903225806451613,-0.46774193548387094,-0.47419354838709676,-0.11290322580645161,-0.5193548387096775,-0.26129032258064516,-0.635483870967742,-0.3548387096774194,-0.5709677419354838,-0.3903225806451613,-0.49032258064516127,-0.07096774193548387,-0.5258064516129032,-0.17096774193548386,-0.7516129032258064,-0.22580645161290322,-0.8903225806451613,-0.25161290322580643,-0.9967741935483871,-0.05161290322580645,-0.49032258064516127,-0.12580645161290321,-0.7451612903225806,-0.17419354838709677,-0.8838709677419355,-0.19032258064516128,-1.0,-0.06129032258064516,-0.45161290322580644,-0.10967741935483871,-0.6483870967741936,-0.14193548387096774,-0.7645161290322581,-0.15806451612903225,-0.8709677419354839 +5,0.0,0.0,-0.18849840255591055,-0.17891373801916932,-0.28115015974440893,-0.31629392971246006,-0.3801916932907348,-0.3961661341853035,-0.46325878594249204,-0.4792332268370607,-0.1182108626198083,-0.5175718849840255,-0.26198083067092653,-0.6293929712460063,-0.3610223642172524,-0.5686900958466453,-0.3993610223642173,-0.48881789137380194,-0.07987220447284345,-0.5239616613418531,-0.1757188498402556,-0.7476038338658147,-0.23961661341853036,-0.8913738019169329,-0.268370607028754,-1.0,-0.054313099041533544,-0.49201277955271566,-0.12140575079872204,-0.7412140575079872,-0.16932907348242812,-0.8849840255591054,-0.1853035143769968,-0.9968051118210862,-0.06070287539936102,-0.45686900958466453,-0.09904153354632587,-0.645367412140575,-0.12779552715654952,-0.7667731629392971,-0.14696485623003194,-0.8753993610223643 +5,0.0,0.0,-0.1891025641025641,-0.16346153846153846,-0.28205128205128205,-0.3076923076923077,-0.3814102564102564,-0.391025641025641,-0.46794871794871795,-0.4807692307692308,-0.11538461538461539,-0.5192307692307693,-0.25961538461538464,-0.6314102564102564,-0.3557692307692308,-0.5673076923076923,-0.3942307692307692,-0.49038461538461536,-0.07371794871794872,-0.5288461538461539,-0.16987179487179488,-0.7435897435897436,-0.23076923076923078,-0.8846153846153846,-0.2532051282051282,-1.0,-0.04807692307692308,-0.4967948717948718,-0.11538461538461539,-0.7339743589743589,-0.16346153846153846,-0.8814102564102564,-0.1794871794871795,-1.0,-0.05128205128205128,-0.4583333333333333,-0.09294871794871795,-0.6442307692307693,-0.125,-0.7660256410256411,-0.14423076923076922,-0.8782051282051282 +5,0.0,0.0,-0.18471337579617833,-0.1751592356687898,-0.2770700636942675,-0.31210191082802546,-0.37898089171974525,-0.39490445859872614,-0.46178343949044587,-0.4840764331210191,-0.11464968152866242,-0.5159235668789809,-0.2611464968152866,-0.6369426751592356,-0.3503184713375796,-0.5796178343949044,-0.3821656050955414,-0.5,-0.07643312101910828,-0.5222929936305732,-0.17197452229299362,-0.7484076433121019,-0.22929936305732485,-0.8853503184713376,-0.25477707006369427,-0.9968152866242038,-0.050955414012738856,-0.49044585987261147,-0.1178343949044586,-0.7388535031847133,-0.16560509554140126,-0.8821656050955414,-0.18152866242038215,-1.0,-0.05732484076433121,-0.45222929936305734,-0.09872611464968153,-0.6369426751592356,-0.1305732484076433,-0.7579617834394905,-0.14968152866242038,-0.8662420382165605 +5,0.0,0.0,-0.20192307692307693,-0.18269230769230768,-0.26282051282051283,-0.32371794871794873,-0.34294871794871795,-0.3942307692307692,-0.4358974358974359,-0.483974358974359,-0.038461538461538464,-0.5416666666666666,-0.22115384615384615,-0.6923076923076923,-0.3301282051282051,-0.6314102564102564,-0.3717948717948718,-0.5608974358974359,0.003205128205128205,-0.5288461538461539,-0.23397435897435898,-0.6666666666666666,-0.33974358974358976,-0.5801282051282052,-0.3557692307692308,-0.483974358974359,-0.009615384615384616,-0.4807692307692308,-0.1282051282051282,-0.7371794871794872,-0.1891025641025641,-0.8910256410256411,-0.1955128205128205,-1.0,-0.08012820512820513,-0.4519230769230769,-0.14102564102564102,-0.6442307692307693,-0.16666666666666666,-0.7692307692307693,-0.16346153846153846,-0.8814102564102564 +5,0.0,0.0,-0.2012987012987013,-0.19155844155844157,-0.262987012987013,-0.33116883116883117,-0.3474025974025974,-0.39935064935064934,-0.44155844155844154,-0.4837662337662338,-0.025974025974025976,-0.5487012987012987,-0.22077922077922077,-0.6915584415584416,-0.33116883116883117,-0.6136363636363636,-0.37337662337662336,-0.525974025974026,0.016233766233766232,-0.5292207792207793,-0.237012987012987,-0.6753246753246753,-0.34415584415584416,-0.5941558441558441,-0.37337662337662336,-0.5,0.0,-0.4805194805194805,-0.1266233766233766,-0.7467532467532467,-0.18831168831168832,-0.8928571428571429,-0.19480519480519481,-1.0,-0.07792207792207792,-0.4512987012987013,-0.14285714285714285,-0.6493506493506493,-0.16883116883116883,-0.775974025974026,-0.16558441558441558,-0.8961038961038961 +5,0.0,0.0,-0.2032258064516129,-0.2,-0.26129032258064516,-0.3387096774193548,-0.34516129032258064,-0.4064516129032258,-0.43870967741935485,-0.4967741935483871,-0.02903225806451613,-0.5483870967741935,-0.22580645161290322,-0.6903225806451613,-0.3387096774193548,-0.6129032258064516,-0.3870967741935484,-0.5290322580645161,0.012903225806451613,-0.532258064516129,-0.23548387096774193,-0.6838709677419355,-0.34838709677419355,-0.6129032258064516,-0.3774193548387097,-0.5225806451612903,-0.0064516129032258064,-0.4806451612903226,-0.12580645161290321,-0.7516129032258064,-0.1870967741935484,-0.896774193548387,-0.1935483870967742,-1.0,-0.08387096774193549,-0.4483870967741935,-0.14193548387096774,-0.6451612903225806,-0.16774193548387098,-0.7741935483870968,-0.16451612903225807,-0.8903225806451613 +5,0.0,0.0,-0.2057877813504823,-0.19935691318327975,-0.26366559485530544,-0.33762057877813506,-0.3536977491961415,-0.40836012861736337,-0.45016077170418006,-0.49517684887459806,-0.03858520900321544,-0.5434083601286174,-0.2282958199356913,-0.6784565916398714,-0.33762057877813506,-0.6012861736334405,-0.38263665594855306,-0.5080385852090032,0.003215434083601286,-0.5305466237942122,-0.2347266881028939,-0.6881028938906752,-0.34726688102893893,-0.6205787781350482,-0.37942122186495175,-0.5401929260450161,-0.00964630225080386,-0.4855305466237942,-0.13183279742765272,-0.752411575562701,-0.19935691318327975,-0.8971061093247589,-0.2057877813504823,-1.0,-0.08681672025723473,-0.45980707395498394,-0.15112540192926044,-0.662379421221865,-0.1832797427652733,-0.7909967845659164,-0.1832797427652733,-0.9067524115755627 +5,0.0,0.0,-0.2,-0.2032258064516129,-0.26129032258064516,-0.3419354838709677,-0.3548387096774194,-0.4129032258064516,-0.45161290322580644,-0.5032258064516129,-0.02903225806451613,-0.5483870967741935,-0.22258064516129034,-0.6870967741935484,-0.33225806451612905,-0.6161290322580645,-0.38064516129032255,-0.532258064516129,0.012903225806451613,-0.5290322580645161,-0.23225806451612904,-0.6870967741935484,-0.34838709677419355,-0.632258064516129,-0.3935483870967742,-0.5612903225806452,-0.0064516129032258064,-0.4806451612903226,-0.13225806451612904,-0.7580645161290323,-0.1967741935483871,-0.9,-0.20967741935483872,-1.0,-0.08387096774193549,-0.45161290322580644,-0.14838709677419354,-0.6548387096774193,-0.17419354838709677,-0.7806451612903226,-0.17419354838709677,-0.9 +5,0.0,0.0,-0.19935691318327975,-0.2090032154340836,-0.26366559485530544,-0.3504823151125402,-0.3536977491961415,-0.4180064308681672,-0.4565916398713826,-0.5048231511254019,-0.022508038585209004,-0.5530546623794212,-0.22508038585209003,-0.7041800643086816,-0.33440514469453375,-0.6334405144694534,-0.3858520900321543,-0.5562700964630225,0.012861736334405145,-0.5305466237942122,-0.2379421221864952,-0.6816720257234726,-0.36012861736334406,-0.617363344051447,-0.40514469453376206,-0.5337620578778135,-0.00964630225080386,-0.4790996784565916,-0.1382636655948553,-0.752411575562701,-0.20257234726688103,-0.8971061093247589,-0.21221864951768488,-1.0,-0.0932475884244373,-0.44694533762057875,-0.15755627009646303,-0.6495176848874598,-0.1864951768488746,-0.7813504823151125,-0.1864951768488746,-0.9003215434083601 +5,0.0,0.0,-0.1870967741935484,-0.1870967741935484,-0.25483870967741934,-0.3419354838709677,-0.3419354838709677,-0.4096774193548387,-0.43870967741935485,-0.4838709677419355,-0.016129032258064516,-0.5387096774193548,-0.1870967741935484,-0.7419354838709677,-0.29354838709677417,-0.7387096774193549,-0.34516129032258064,-0.7129032258064516,0.012903225806451613,-0.5129032258064516,-0.22903225806451613,-0.6645161290322581,-0.34516129032258064,-0.603225806451613,-0.38387096774193546,-0.5225806451612903,-0.012903225806451613,-0.4645161290322581,-0.13225806451612904,-0.7322580645161291,-0.19032258064516128,-0.8870967741935484,-0.2032258064516129,-1.0,-0.09032258064516129,-0.4290322580645161,-0.15161290322580645,-0.6193548387096774,-0.1774193548387097,-0.7451612903225806,-0.1774193548387097,-0.867741935483871 +5,0.0,0.0,-0.1935483870967742,-0.2161290322580645,-0.24516129032258063,-0.34516129032258064,-0.33225806451612905,-0.4129032258064516,-0.42258064516129035,-0.4870967741935484,-0.012903225806451613,-0.535483870967742,-0.2129032258064516,-0.6838709677419355,-0.32903225806451614,-0.6,-0.3774193548387097,-0.5096774193548387,0.02258064516129032,-0.5161290322580645,-0.2,-0.7129032258064516,-0.3,-0.7483870967741936,-0.3387096774193548,-0.7677419354838709,-0.0032258064516129032,-0.4612903225806452,-0.12258064516129032,-0.7387096774193549,-0.19032258064516128,-0.8870967741935484,-0.2064516129032258,-1.0,-0.08709677419354839,-0.4258064516129032,-0.14516129032258066,-0.6225806451612903,-0.17096774193548386,-0.7548387096774194,-0.17419354838709677,-0.8741935483870967 +5,0.0,0.0,-0.1967741935483871,-0.2064516129032258,-0.25483870967741934,-0.3419354838709677,-0.3419354838709677,-0.4129032258064516,-0.43548387096774194,-0.5032258064516129,-0.025806451612903226,-0.5483870967741935,-0.22258064516129034,-0.6903225806451613,-0.33548387096774196,-0.6161290322580645,-0.38064516129032255,-0.5290322580645161,0.016129032258064516,-0.532258064516129,-0.22580645161290322,-0.6870967741935484,-0.33548387096774196,-0.6387096774193548,-0.3709677419354839,-0.5806451612903226,-0.0064516129032258064,-0.4838709677419355,-0.13225806451612904,-0.7483870967741936,-0.2,-0.8935483870967742,-0.2129032258064516,-1.0,-0.08709677419354839,-0.45806451612903226,-0.15161290322580645,-0.6612903225806451,-0.1774193548387097,-0.7870967741935484,-0.1774193548387097,-0.9 +5,0.0,0.0,-0.19875776397515527,-0.19254658385093168,-0.2639751552795031,-0.32298136645962733,-0.35714285714285715,-0.40372670807453415,-0.43478260869565216,-0.48757763975155277,-0.055900621118012424,-0.5248447204968945,-0.2422360248447205,-0.6428571428571429,-0.3447204968944099,-0.5838509316770186,-0.38198757763975155,-0.5031055900621118,-0.009316770186335404,-0.515527950310559,-0.17080745341614906,-0.7422360248447205,-0.2484472049689441,-0.8788819875776398,-0.2857142857142857,-0.9751552795031055,-0.015527950310559006,-0.468944099378882,-0.12111801242236025,-0.7298136645962733,-0.17701863354037267,-0.8819875776397516,-0.19254658385093168,-1.0,-0.08385093167701864,-0.42857142857142855,-0.13354037267080746,-0.6242236024844721,-0.15838509316770186,-0.7484472049689441,-0.17080745341614906,-0.860248447204969 +5,0.0,0.0,-0.19047619047619047,-0.17777777777777778,-0.27936507936507937,-0.31746031746031744,-0.3682539682539683,-0.3968253968253968,-0.43492063492063493,-0.4857142857142857,-0.09841269841269841,-0.5174603174603175,-0.24761904761904763,-0.6476190476190476,-0.346031746031746,-0.5904761904761905,-0.38412698412698415,-0.5079365079365079,-0.050793650793650794,-0.5238095238095238,-0.15873015873015872,-0.7428571428571429,-0.2222222222222222,-0.8857142857142857,-0.24761904761904763,-1.0,-0.03492063492063492,-0.49206349206349204,-0.11428571428571428,-0.7238095238095238,-0.16507936507936508,-0.8698412698412699,-0.18095238095238095,-0.9809523809523809,-0.06031746031746032,-0.45396825396825397,-0.10158730158730159,-0.6349206349206349,-0.13333333333333333,-0.765079365079365,-0.1523809523809524,-0.873015873015873 +5,0.0,0.0,-0.17207792207792208,-0.1396103896103896,-0.2792207792207792,-0.288961038961039,-0.37662337662337664,-0.37987012987012986,-0.44805194805194803,-0.4707792207792208,-0.12987012987012986,-0.4935064935064935,-0.2597402597402597,-0.6363636363636364,-0.3474025974025974,-0.5844155844155844,-0.37662337662337664,-0.5032467532467533,-0.08766233766233766,-0.512987012987013,-0.14935064935064934,-0.737012987012987,-0.19805194805194806,-0.8798701298701299,-0.21753246753246752,-1.0,-0.045454545454545456,-0.4935064935064935,-0.09415584415584416,-0.7207792207792207,-0.1396103896103896,-0.8701298701298701,-0.15584415584415584,-0.9902597402597403,-0.025974025974025976,-0.4512987012987013,-0.06168831168831169,-0.6331168831168831,-0.09090909090909091,-0.75,-0.10714285714285714,-0.8571428571428571 +5,0.0,0.0,-0.17475728155339806,-0.13915857605177995,-0.284789644012945,-0.284789644012945,-0.3818770226537217,-0.37540453074433655,-0.44336569579288027,-0.4692556634304207,-0.12944983818770225,-0.4919093851132686,-0.2588996763754045,-0.6343042071197411,-0.3365695792880259,-0.5792880258899676,-0.3592233009708738,-0.4919093851132686,-0.08090614886731391,-0.5048543689320388,-0.1488673139158576,-0.7378640776699029,-0.19093851132686085,-0.8802588996763754,-0.21035598705501618,-1.0,-0.03559870550161812,-0.48220064724919093,-0.09061488673139159,-0.7152103559870551,-0.12944983818770225,-0.8673139158576052,-0.14563106796116504,-0.9902912621359223,-0.009708737864077669,-0.4368932038834951,-0.04854368932038835,-0.6181229773462783,-0.07766990291262135,-0.7411003236245954,-0.0970873786407767,-0.8446601941747572 +5,0.0,0.0,-0.17763157894736842,-0.12828947368421054,-0.28289473684210525,-0.2565789473684211,-0.3782894736842105,-0.34868421052631576,-0.4309210526315789,-0.4407894736842105,-0.1513157894736842,-0.4967105263157895,-0.28289473684210525,-0.6151315789473685,-0.3684210526315789,-0.5460526315789473,-0.3848684210526316,-0.45723684210526316,-0.1118421052631579,-0.5131578947368421,-0.15789473684210525,-0.7467105263157895,-0.19078947368421054,-0.8848684210526315,-0.20065789473684212,-1.0,-0.05921052631578947,-0.4967105263157895,-0.09210526315789473,-0.7335526315789473,-0.11842105263157894,-0.8782894736842105,-0.12828947368421054,-0.993421052631579,-0.013157894736842105,-0.45723684210526316,-0.03618421052631579,-0.6348684210526315,-0.05921052631578947,-0.7532894736842105,-0.07236842105263158,-0.8486842105263158 +5,0.0,0.0,-0.1737704918032787,-0.1180327868852459,-0.2786885245901639,-0.25901639344262295,-0.36721311475409835,-0.3540983606557377,-0.419672131147541,-0.4557377049180328,-0.14754098360655737,-0.4918032786885246,-0.25901639344262295,-0.6196721311475409,-0.34098360655737703,-0.5704918032786885,-0.3639344262295082,-0.4918032786885246,-0.09836065573770492,-0.5147540983606558,-0.14754098360655737,-0.7475409836065574,-0.18360655737704917,-0.8852459016393442,-0.19672131147540983,-1.0,-0.04262295081967213,-0.5016393442622951,-0.07540983606557378,-0.7245901639344262,-0.10491803278688525,-0.8655737704918033,-0.1180327868852459,-0.9836065573770492,0.003278688524590164,-0.4557377049180328,-0.01639344262295082,-0.6327868852459017,-0.04262295081967213,-0.7475409836065574,-0.06557377049180328,-0.839344262295082 +5,0.0,0.0,-0.16721311475409836,-0.1180327868852459,-0.2819672131147541,-0.26557377049180325,-0.3704918032786885,-0.36065573770491804,-0.42950819672131146,-0.45901639344262296,-0.15081967213114755,-0.4885245901639344,-0.25901639344262295,-0.6229508196721312,-0.3442622950819672,-0.5704918032786885,-0.3737704918032787,-0.4852459016393443,-0.10163934426229508,-0.5081967213114754,-0.14754098360655737,-0.740983606557377,-0.17704918032786884,-0.8852459016393442,-0.18688524590163935,-1.0,-0.04262295081967213,-0.4918032786885246,-0.07540983606557378,-0.7180327868852459,-0.09836065573770492,-0.8655737704918033,-0.10819672131147541,-0.9836065573770492,0.006557377049180328,-0.4426229508196721,-0.013114754098360656,-0.6196721311475409,-0.036065573770491806,-0.7377049180327869,-0.05245901639344262,-0.8360655737704918 +5,0.0,0.0,-0.16501650165016502,-0.11551155115511551,-0.27722772277227725,-0.25742574257425743,-0.36633663366336633,-0.3564356435643564,-0.41914191419141916,-0.46204620462046203,-0.14521452145214522,-0.49174917491749176,-0.2508250825082508,-0.6204620462046204,-0.33663366336633666,-0.5742574257425742,-0.36633663366336633,-0.5016501650165016,-0.09570957095709572,-0.5148514851485149,-0.1419141914191419,-0.7425742574257426,-0.1782178217821782,-0.8844884488448845,-0.19141914191419143,-1.0,-0.039603960396039604,-0.49834983498349833,-0.06930693069306931,-0.7227722772277227,-0.09570957095709572,-0.8646864686468647,-0.10891089108910891,-0.9801980198019802,0.009900990099009901,-0.4521452145214521,-0.006600660066006601,-0.6270627062706271,-0.0297029702970297,-0.7425742574257426,-0.0462046204620462,-0.8382838283828383 +5,0.0,0.0,-0.17105263157894737,-0.12171052631578948,-0.27960526315789475,-0.2598684210526316,-0.3651315789473684,-0.35526315789473684,-0.41118421052631576,-0.46381578947368424,-0.14802631578947367,-0.4868421052631579,-0.2532894736842105,-0.6151315789473685,-0.3256578947368421,-0.5756578947368421,-0.34868421052631576,-0.5098684210526315,-0.09539473684210527,-0.5131578947368421,-0.14473684210526316,-0.743421052631579,-0.17434210526315788,-0.8848684210526315,-0.18421052631578946,-1.0,-0.03618421052631579,-0.4967105263157895,-0.06907894736842106,-0.7236842105263158,-0.09539473684210527,-0.868421052631579,-0.10855263157894737,-0.9868421052631579,0.01644736842105263,-0.4506578947368421,-0.003289473684210526,-0.6282894736842105,-0.023026315789473683,-0.743421052631579,-0.04276315789473684,-0.8421052631578947 +5,0.0,0.0,-0.1758957654723127,-0.12052117263843648,-0.2899022801302932,-0.25732899022801303,-0.3811074918566775,-0.3550488599348534,-0.4201954397394137,-0.46254071661237783,-0.15960912052117263,-0.48859934853420195,-0.2671009771986971,-0.6188925081433225,-0.34201954397394135,-0.5798045602605864,-0.36482084690553745,-0.50814332247557,-0.10749185667752444,-0.511400651465798,-0.1563517915309446,-0.742671009771987,-0.18566775244299674,-0.8827361563517915,-0.19543973941368079,-1.0,-0.04560260586319218,-0.495114006514658,-0.08143322475570032,-0.7166123778501629,-0.10423452768729642,-0.8631921824104235,-0.11726384364820847,-0.9804560260586319,0.006514657980456026,-0.44625407166123776,-0.016286644951140065,-0.6221498371335505,-0.03908794788273615,-0.739413680781759,-0.05537459283387622,-0.8371335504885994 +5,0.0,0.0,-0.17434210526315788,-0.125,-0.28618421052631576,-0.2598684210526316,-0.375,-0.3519736842105263,-0.41118421052631576,-0.45723684210526316,-0.15460526315789475,-0.4868421052631579,-0.2598684210526316,-0.618421052631579,-0.33881578947368424,-0.5723684210526315,-0.3618421052631579,-0.4967105263157895,-0.10197368421052631,-0.5098684210526315,-0.14473684210526316,-0.7401315789473685,-0.17105263157894737,-0.881578947368421,-0.18092105263157895,-1.0,-0.04276315789473684,-0.4934210526315789,-0.06907894736842106,-0.7138157894736842,-0.09210526315789473,-0.8585526315789473,-0.10197368421052631,-0.9769736842105263,0.006578947368421052,-0.4440789473684211,-0.006578947368421052,-0.6217105263157895,-0.029605263157894735,-0.743421052631579,-0.046052631578947366,-0.8421052631578947 diff --git a/model/keypoint_classifier/keypoint_classifier.hdf5 b/model/keypoint_classifier/keypoint_classifier.hdf5 deleted file mode 100644 index 7e022acd33e063e5748df499514b6ba3f37518d1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22264 zcmeHPdq7Ru_rH;p9(s63uE-=w4~aT^pFAQVg`qsEn{J98y4^gBkmM0j%3Fyvlt+w7 zoxN@zgUTb1)EFt`Z9FEA#Ejp)opWZUYYboCnfZQy-|75u*V%iov-a9+ueJ6*pL5P# z<~(?ac8d-z1d2mlU7#w^tv}^|-f>6mIJSl_^X)#|i3&&KIGWjnJy8*;2^4MZxO!bq zzOX4<(T=-t>}V$^ft-_<&r|NQUj(TCQqg$wPqKis(*QTccs;m5^Zs<2^E2KS!J&TQ zAn#e?z^MV!aCs%~mySHczex2se^vHtErGKg6U$3DBOFdSP~u>8X~W6 zucA_ar6QVG9azuh^=YQigL7s@otD6nlc!!U&sQ{Mx;Vt|qjKs4my@F~#jkp4*UMq; zF(ov_KX9s|%l7il6gquKuR1k(BPWjyQ3dDwhl-p@p*KGdd|cNmu9qKASt9sYT+isp zGMaMyjpUzY0p+;v#|=M~^CR9Ge&UdDvAj@Ey{$NEE%1|s&IpZ=@>Jf!9(rYD%z{R1K+{4=mf<$w~67LXEuvn2z1OfxOU=2A{k;k{PNzbId3<9T-FwS zEG*@s_%zFI6a)gPd_F=Y{z0L$*nYU>Tu`4sTbj>*pCOOsilBZ@^G*_HcRqL}fw4LS{rrM<`}RNszBdIwin6P|@ri9w3^b zkUB9WA}GjQ*vERZyi-5vocc;*xz-}7jkV(X@EIaWxPsGP6cjF&S4c!tr;7c4Q^D)U z3brziiZYjL-EeS&StnFdh`*9^07a`*A_@!<`35O^lu9BL9sZtH5|LEFVQFD4X9x)m z3>W`0B6dJ>Yt<{MDE+QNifH+eI(*wFDiaYBC{@gawWVAc(G+RmOp#Q+#>s1pCE}n6 zMK2L@1$_fW3NCI`^5rl@z77YO%O{$!yAfG*v6RCMIxRW5hRjux^Q-^7yG*{^&<_G&hh@;R!*kekHhQDD3uTI zw<6zb_}y9h6u0rVQVi)6=js>7=_9}9FL9iINgdvGtQuYCSO55PT!#(E^PYXtY411sW~TXn{rx{8<(l<2q`viX6$~w;TPqjSG(hDB~l4R=@via(=~K zKZFPWF`iSu59B6+-4lKYcUApe+%>loYtaPGuph%++ZnTr{Jj6K%}3*S{@4P_xGV2% z?KnK1znaHg`F!BaH+&{#^G&l~^38q@ujJ*IbLCn?wgXOwV0rxzVWBc0)k6$a>OH2NQ zOp(G>1lslZHTxv&R{&dqU+XB^IsBT(b$MDp-@RFk!rqcCDL^uNOMZy_jPPZa^3Qqe zlaoTefVH4X6V}3J9D6H{Dwmtev33Qgp0IPh{sMte&{kd0b^*t)@EApVlP0V{1valZ znyO@Wt3MG4wOPvk>T@2ZxaNWDW$#Z%#D6R0^UoD)s-kb+FZub3?##+e?ZVQJy8od59V;3JkV^D(RNLB+v8S7S>b|5e@>dT@Tr%TxB_k4yY# za!yBKFpn2cv^9|L4pzi?5|bDhX=&N(|O6*%Y7@JFgXS+Q$x|txFncw6a{@x#6#Sf6q0*K z1hFS(K;(m9JfkuL>FUzNY}`#UB*X*eI&A^n@xD0PWjL|37zG|z=40ne3&_kzu5hob zDlto026a~2IJ!*YFl7BA+^gjy99`NCJ9z41!_n*DyIo`P+!q9wPt5?QZbHg_;7{n4 zQ(xNZ$r3P|xC!lW(8Z7S){}c*sK~yY`x?aVmr3WULNwvQ4@}k|H*By{U*>#j8cxxW zkF#PVuI`eLp03yj#<4Bn$@jytdFF2XkR<{>*J0<+c$gY?*-ynw8^DZ45|h@nSeWY&&+cO+h!x9YDWe8)_Qg2ImBS0Wd8E zITiO}+}5^~jc-#2{>G+o%&dTm`9%6TYx*4JVhA; zZ@`}PGIVd&a}>NF74`ZehtS_GhFHJD(7ZGfo!F2C`tE1JFKR2e7pua%Vqbi-X&}Vx zDaB)xmf*bf`=~%oi+-E`0!b`Z!sVOK(NB{O;mwZO@V)j9oVZAaCr?=g;zJS#*C-lY zI&vQhn|gv{KqjnSqJoodcg4Hbd(Q{)yLq=#Znk|=>%-MxR)B!G6j#Ax)RJni}0FU zA3S`e4U=ZLktw>Z2OHmFTz6<6UTSIqw8aicS)|*PGg)TUJ@ja@|=~%MW>J~(-%_BD^og}L}9>qgqTHrC1 zl$lA+P~)9~kbTN}=8Kg%D3&RJz>1ShZTvMda(f){SbCHc8ZWcIe&{M$ZlsE4CcI(1 z{G*8WcvH9~U?|C|L(J0g)yVmZ1vT9%kBX@oN#3j(3YD{aI+$9OkU@sM;bKiNvRV6# zl1_2PlI#Uk-2LqiI(kcp@3Ohbb?`;zRno=$n%BJ`%GU=ug{@>(N=;CZZ5LQ5lQF_k z<|J^yZk*WeEcG;P1*rOWg5zG}sNFC9ndgsPVRQFrW`*z^65iWF?z`@0o?f)Y_C^+1 z#e4~RDq-v|Joa_yxkm#H?1Aw?Cm+UdKr%rQg>bC@5R|fKE3$1p49?D;&ZsXiL=#sD z@dc3yR9y`tCf7Wm>5*#2f66v=u;dAv<$Z*ac-Wvw;~v=fg$X44WtX0&OT7sz*+!jKn+D zV~GFgYI4Xlli05wMFm}Rz)pERaHmVl(6ZsXP>Rn=yxeIROz4}9vnvXiom4OGb8It-+$=2jtp918^C=ozRh~4nJ5{gCC;?dd~u3OGaH@ zX*&~?Ic6#fFkJ{6id<32j6h@*T*ln7%cmH-gH)n)BRtwthQh5AiPy;9xF~cUwsx_^ ztEK&rFU-enYBfmJ%|rd_)LkKL|7J$x@LsZ^>1Z5P+7Fu=nN!0umN2GIim1^$I+2T# ztw`e?kcHGJ>crg{yQrg{N)@fX0avh?X+3QY`?1N9x?m}JS^XLqf z)+&su+WeHnpUXi+lE%#P+JnBdJcIOHc9HRWI_KAgnW0AxPUJwIDa`KB2c{g}1gcT9 z9CVVxiJ^uOoNAFlR*esIcurquSt$smt;s3WJbo--WpUu;Hj?d@!-P(jUd1w}lkZdgN_) z7WLooEs9=~i{3a}WA~&lu*aG-C|Ud*WhQ#zpX1BOPp-4UrgtLK>QXd%m$9DYt<}R% zOX5%;otLDol^e;NGznjI8V@S6S~6YThZ*D^MZ#vR1{Fssh+XWVm25NalT|{Rmmfwp z;sWf_JPj&cGDyPyX83yu0Lk8mctz+6{QPYpxvklS=wH3dly&?HMV4yk+meIi{*+B9 z@5UmTtJx!@KU58i{Pbl5P8w0yr+37jn%OYnM=xv+(P%T2VDW&Ta9(~1Y8PyTulJtL z$WHk&r}xgs9agrNsd`qCjJ{R4Mc_l!JnIc*e)j-+lXn!MiA_+XMjf_uv4rZn3Hi?p zY_aETExci`Gt3eXCGOKVk=9u{u;RQW+^Fdd4nwYzjeFjpsMVVM>{O_Qi*WF}N+*;v>njLV5Tl>MT!UQb8S%yx`aYgfP#3Hqc`|&xSF|b25 zhWa`)1U*wPBg}0tJT9&X-?*@jxw+UBCHI`eoV8sI>n~(d<{OTXYpeW`!}c{KOq4;Q zkN3yV+#De_FB?_;d;~3@DWooxt|ES+XDD0uqj;`+6Iy7}f%0#^05UGmCP|j+)Yfr1 z_=?L`XdluY79|j{4cvg9yuJ#naTYY&X99j#H0kA|Ey$^=3sh}QHV%4r5u|1ZNqqG| z2Z8)Li&h%6|6XglX2Mgl^GZ2mGsKj7JvoPToZFkE>005_?yA_^b2RSRU5csgj%aXI zXITl#MG2ZUXx=^p*|~EAWn+`NpgSvV=qf{F+Vw#?GC98wH=mz{cC3p+55zt2W{**_ zzN@1MPHQVW=9NcnovDg#-t@<1W`nS3&p?ut&;?IfBE%m31%Sf7!tT=;d|<5nJb54% zUp9xEW0t`Ao!j!ad3A-aT^A6?Uh8mEyF%nXJb`o_9|sXabsW>{B$+05CJ(YasjQx= zu=?0N82oK2Hm%A*u-F{pd@E4(x1+%Chhl2`v<~?2=mgS!X%+P>XQHf|@p@{MNj%(h zT+eK`QGMNs`NC$09Ud4{49v@vssP7k2iT16L-4E-rcJ>cwyL_Lgl1B3PYOO;|$G%KK z^l0dQOBJ5XS&kkG2%fN`GY&A+rPR*0gzU9Lr~!wf(S%cXNksR#C?PWk`aTUMFW%HL z(HVL&2b04DxlaP05xVGZc?H_!^%z%F9)W9J<|BQ#9BkfvHPLfT!im+jxV*f~{_?(1 zQYa+UQy)!PIKE6zgo4Kx z+i4DAr4c z?G{kR-+1)fk@F*7A@-#^t9qYP)H(AFpGkSVSot}}r{Mbv9r?KDaebb0dNxG(y{&rl zcp>|g@_nV>&o8F+Ogz5N=N0~aH|6r@=bLu+tTy}?V{GaDd=v1#(tlyihwyzLJGRr) z16ca8{1P{aFMlLGpI!okch0hx>4Rh&XCH@6M~Y#gnxX6j zlt4n^bu??O9It%f3yzkZk<$=~>_W3{(EjT-c$c#&DJgZt=frz(pA8pqa>sXYp{@yi zbiSeNW&w@MW!|#msW$kW<{5m|{UqLg&x2OEzZ8$Pn*vUnUCH>dJ0R!eHdI`sBI{n7 zj>iveN?%TKq@(jj6S3Mxk{)jgl@(j?%zn8za$iw?**XF3XD?y`Lu_Ft7Bf3rj3D{r zJ!QedH_R3PRQxJZpXr+JK+g1@D4W+roAxa`g6|A=gTt2%=|j)e;Z?zDTzM7H_D5a7 zZe=IBa*z>3oo$|Pa8?9N%p^?j?gnek8GJLk8SS&;BtCpphhE!B6SW#}3aee0<1Z7! zz|uE_Srylo@?{?5m(MXc$6mxuhj#+c$!my7)f;l=5|CDLi?Hg0j&u*JLOkrI3B5Sc z8LG`}NPOGXFrqSmdS`S6HoNK5w>rJRPQxeDu|;ceVazS6i&-3eC)x#%)1ByD4@&UJ ztVJ-hSU`uhTLU`rZD?VurI45!M}IRf4wCFv<79(&GMhwS;=lC^S$F#(=y2i*c((T^ zqTXv2d}V>@_zhwhVYn2R)IElE#@dL^43p_B3&h_pNy521FVCV${ z>hMw;A39|~XZ2l*%WA4n*5D3wZt^$qwmJb_7h+kNhnnpBiFWjfp+>~E+Y-<{kcWov zt|S|S%dk;1EmGu#kStq=-n_vT$}UD?O`qY2c5OpvR5{}5FMdWo)-|}rxXE~%Y7*|g zJOfqtS&o0+REzE`-$5Qeyh>e)`6^$2Z$WD;jUy9jqt(vGVwK5FWrJi=*)T~My?9AiboXIv{I;2$OueK% z&TJbmQy)AH9~{$-ZtnLpEZ54Rx8%pjN+T9gW$Br)uwyKpU8GC9GGVlPObskAkEOR! z9b`R590V(LjqJ{}z|VEQk$I@w(RI-ykW21R8FerLWNyRYP(lU%Sng0pJ$PMQnw-4n<_gB9s(2v{y^6v>K?}vFk8fildD8DCAGPq&8a*4lRFzu_{^3N{6 zf1lbA2jlNgdHVVHrTq|VY10MG+oN`?-G(zGbb1Z(0A__|~uag0+Zp`SbIL50^(8=85<7NB}<-e+&H( zzUAn`cJIUGjgRFQp)1SZm|y;uY5TA1L^;0*ISr#Z|KSz>tM{etIKSohrOJNH>(NLX zT0nVU8ZfG1yK;$-bM;}$E&uHD$M&WC|L6QlKlgixa&A4*YGCm9*OP|pO#|k?q3|Kx zyC3&`O*E$iyS@lM{J(&IgRYHT{P$Wwd41vYPZjqa7q2;=_ucr4f0OdhXO+Jj`}I3e z#sBZM6DWUwr6;7hFOwVveKZAq-f;oXKd*gXEq+Jdu;oMXGn@M^Et+F*jGu;fYb-Ui Wz=z^TsPui~Ull*f-&6iw@$-Kt7ov;+ diff --git a/model/keypoint_classifier/keypoint_classifier.keras b/model/keypoint_classifier/keypoint_classifier.keras new file mode 100644 index 0000000000000000000000000000000000000000..db5a367523cb46ed82cd19717cc31e189889c233 GIT binary patch literal 43080 zcmeHw30zIv_xPz=HC0>(|g|ge&7H1`@Z-6J;&#^&)R$Kz1CiP?Y-Ap`<%mWl1vvh zmgpM9`nV(WB3B4>{CWz13%tVIJl(?F4E;lc0+;B__X=?fb&2o_3H1vK)PdSMqYQze zsm=&(9U+pJOQ>6fmuE+|sj;c~NMo~+#uk>w0Ge4qQ?|}hyKg8tI4w>YsKjD*{1k+g zJc0tf{d~l976f^Q2Y7X~^p#=<0gnK;&`_5^w*_Cbr+Y07_X-U2a|`%d_O-4MeTj|) zA@nB%7n2T@un;%DKsWcVjfRDUdv&lJwm7(>u_ZcxNX}-45Y;Xyz|Ujxcj$Qs1i6Kc zGSyisY&gWr$1gO@E5yrF!f#-BKtM-HfZJlB?1VI(enr$!TqeZ&wyP5YgTuoncU0^| z+TAV8!`CI$*X?UBoH}TX&^9x5{zcbxBy0)uLWA8xLOc5F?G_N)(f<%PAD^$oCCQM; z&aZ=_%U6Dc!u#DG{p;PZ2?+`g3J>el2MI|}QK`#UUHW^BRftfdh0-!MH0=6(}4cAwAJ-_^O;giKwH@WmHG$-$Ov*fqr2fx@>AJ zWXa7V%rC+%OuQ_Fcm;%aFd8o8*xk>q14}&Vg!4JjE5OB1SXVfC{i1|g{TnmT@E7Hw zU*+-5>>n2p6cQBX5a{O}6tbX`xPCEGzpJ@A9en+N@-fFNBuK>GPYclR(-ik!s43wA zZXx2{ipfg+wAW*zfFG3@1JMO_or4z$$!uMHZ^wsH|O^s zZcXNYKh-rCj>)$>Q)rNP*aEl64px6`P9kGkV!!o0PG!iLvN1W19iCnYqa*VJ8-O`T6*Uxp;bcxGnzKDDVjI3l8kCjD9i`d;)^p z-2z;GUC@ye;T90yVd;uZijHaFwZKi7A@K`@kjsLg1wwx-yrWHHLjZ)dJ92}BuHd2& zKcVaA9rD%T68c9!H53pebl5^Y+=O!T7EZ#T4ogo=!zaYe(@)r*i<^f>_yVCV)L}Tf z2z{pD4pUKL+X#J6q5tufV8?)UfTki)#6WPUU%*#4)WmC~FU+^dNjfLnP8BW4Q#v?q$ zP1ySmtrTGjy}zF^#9ayr4|MTz^YID^=#Y~{zF+(866_V?;uY!T5iT~OO@uA^`-KU0 z?yK%e@R$C=kFK#zoKvs(eouZji`DT{?(o=yJiP)8#mpM|nkSF98QW7{Lta?KV#&#| zx_rg@3Vr?aMSOMC@3*237vgn_*_3xzGR)&b@~=>vKS6<7UfI$*OvJf zZ@d`x?bI(3)_?C`$-dROe?3^1Uppnml4Yr}?j3;e`YA#x0)-fgck1A%Pzf z_#uHG68Is39}@T>fgck1ApwyDz85F&9H054IJw*aQG1d&&JX$ivn0?t&WMS--zJXl zNu(i;7m4CR!c0m0$V7}FiWixP<3^_97#54AEoq=r`aS&()(|14X^PT6(qH94B0Nca zu@jje;Qw(6bk<)<+lTy%WXudu^6v>>bH1JVwhzw%9rT-c=3FZ(Cs{bB}7wDA6W_D1J*`j6}lOuUdw#``xr^CR>BtOPo* zGZK44TfEOpI{rUxZ+vf`j2SMX=qe`sNBXNQHt;2UOZfef{xc-dS$`$=Vbid0`!BIW zCH|dcKePN6?O%pE?~{?@`66jIUkq1t;^SW?@DD+h?3114^=J3Vj^{BX`((#6ARW)8 zd>s?4KQ|@*F4}FX?`QyIu4`r<&UWDDEEA)pF8M|_5-R(1oYU?80rfEIh zqxl`)rTk5gjQW>yf3N8cs_C)&{}{bn&G z8CpbfMImvqACKN@WyGzWA}7d^_rP^tu4jUls0fmuwbB+>(($I6Y$7;&C*8ZN4&T4( zB0lw0FTp`YKfKuXDC3rUo5}57!t5%_!b^4U5fj=s;d6G{F|xbI5N=n_Ft?nY=$4j3 zd_=!Kf=Oc#K4<1T+*d)GsU7G|RFAhNhTJqGs)*~v1lPOFdF_kDjX@9a{t*P@``VTn zft(1Ju2ZU-dW&w|I53-Rd ze34BI+oi*8yM2=JT0e`pHBya~l^so6>n|p-x!KI10dHunl_~hrmlUxfp@A`4s!nf? zAZb^!o#E*pV?qWkrH>o*XQoDFGd^sbzT^wsIiCSMtW?uRkV*i&oignc&5 z!HZXz^e!WrNikb+>sdwucYz&|!c`-7&Yei-tf7g`T$)v zOOalC)IrdHAsdg`TS>65V}hWI-h%yua+rg*{g}$U>8SYh7gQ5)jecV{fw+}89@j$U zOxq+&=9p6qk%tl(ot43~;S6o22MgkFM%?E-efbKXlRTEllyT$M?N??tR{7Eo!SYc*aRrpGC%w;+_CpTjH0U*TBaOeTVctj6c9x=5cnxRNML8HKCpZRc0C z1@H^n(m35MaLRc_3Z7xxz}Us@BTHP5GjlDwGuVm*{OFr49AyDPZ%bQ=gYyqLr|%!7 zvs8vLr#F=18?N=FQ)(^gUCll;+c^!tZq*mJjCH~TZ+USx4bLKS?YdCfi9?vMvHcl* zp9Y=q`Z4|SoiXm?aRco=drr!O`75%E2*Fc&iG@JDJxiI@k7&NE%X-)hFC)J&wQ{>i)1 z+Ib4N!?~--(P|&w-V%VXtuZ8K51L67CsgwJ)@+*Y!l!x1gn1kb+|kgKxoMeApNw2e ze9;=jylk|_d$||jt;6`7_6Pg%jbqq&-<`)9o4x&ruJa<8om*rWX605oV{I?OWS}nR zuHzK~^B+i`+`5+;`Q8mbDnEyqG)TbY4aJCkq&1O|+Ri_cn8APj)`dQoE0mwlNYrPs zI?*Gb8SR}cL*!juhWk{i66Gllg!bhG`tBK$=CSK&I9LO}Gh_|t_0}4GOqB+{tztBx zv+X@U?Wzqf6B~d>>1=^@K?ele^#&0YgA#~>9iy22?At`;B5Q8T3pt{24vYSrwHen{ z9wImw=|Io?lud-f8pe_pCJ1}Igt>^am`bu2jt;Kpl-qBn6SOA~h1rAfmbKfN)+^JP z(h8g8kHhG}@70-Qrf=w5 zO7e7+-fnz=Ml0WA(r{w!ty_H{R-xxTp34p$@6>yjC#VA?X(FLq@+}oxLvpVOcP#1bL zWmF2jEPp+o?l6HF?YIM%Ypcd%Mp!at`TL1YH)z7iSwLLX+05Krw1RdoHe#0APh<}G zq%xi}vhav)MRb?&3xsU;IHLFF_r!MH?o6Mc9k@r_M}FR7d8YI*jWY|U(gzxc5U)4v zIFO2~A*fwRv@GrRIJq-(2ByzcRgexY*%=UvYs!j>A~%|*3B`V;Ue zecltg=5O#TJsjx#j9}V+L?zxmn$6fKoF*<#mEwj_hTP#-moRFrLz$AkpO|NnmzWa@ zxr}vASGp+7joJTHhkHpzi>S_+#*N0>=x7rwqQ8W zE*ou)k9&27?l*oLF*>Ihx9@+1zNFEcuhrXtNL92YmP#|6M{|}FIuAEeo4Pj;UKY3U zo6ZfyITu=x((fIfGqj2ZyJzATO}lZc*;T~;?jsqNe=E_`peNT*^DKY*YBjpNVFWx6rG+W~X+T{ZnG zONF`8%*U^ee@-Jq4dS?Q8SYT)gzMZ{Lk!&&z;ATvL-!hclCM_!1aBIAf}Zq zU`FmK;&h8iB~H0HFmsQ@^3`uVp#yz$@aW0S{LBPh@>~=TS53^JPu1(tCY#pbJ2jK& z0X7HeB0oL)Ora@#=Hw)%%g%KA22YRw@S_GE@X(yuru2wbTqMA=oSJC=NfW78a*)yg z{Dk9DR)}9(*@KbkZHc$4CgE;3Con^-FyhtV7evizZ-&1njM3W`gF7s@plb$hV!R1u z!TSI`f;@DE79_nC@_mpv8uJ)eBQD^PXB(*aU4`@%eiJ=6&z(U0EBqt<3<=jucj>n> z4fL$QVT{Vo-Nd|VDcabAVj^NUG1)rmgxy;k;@Ym~oLSKcM4ePNzV$qhc+$(1sWUoB zDrgaVMjm43 z4G-db@4mzYIX)%6%nId<+jWmgAchD=l{MnAY7tzg$@O@4;3k4OoQHp`WN|0Cs4|ul zJ`oGb%lOwD)VV{?4idPWe?gyk>&$iC{FvBWIhe6*h$KdzjU~1gD=}ETCDT?(8ez z56dwo*6EMryw%vwY;U>A94eytB@vbM+jaVk<(7AN{+$qpc$P+Uv(g!T)w7J&))=PN zXf3m8=yiN}KM$s4<#@ui@+O`cznLfqJb`CfA4HZMO(tbbE&h6Hm~ao=j(ayXa~3Y! zM<;hZM=s|*B$V^gn8nSH=*XB`wEF8B{M42zT4hZ?enxFG9<{ifHc}i&Z{!$oOp_Pl zii!F(dMHcq52rA^I|8OHt{Z(ORSAF8e;J;=QmT5+CCJj`@A3_U!&w%+%x^p+d z!Z$ud%9wNb4Qw{Ou-km%!;ApBMGhy1Xk6k<$bQN1GsA#U?mY%KmfJyt)jf!nrx1Sq z0Hm9n%kfja1Bjg2IOCa{z#RQBjZq)uOw55P_=lh|^j)-$7%HoU@5tRrdP??-c_1 z*=Jx!HH_}fYGK~o&nE)eR(KcpK}6fs{dCCb zIk>?=P3Fd?D&pOYJG9qvhPkFKBN!&oBrM(x;i}b~=WAFL6SHIwxwW*CpvdVhE%NK7e~N!MiQ`e<^VB49Cr9u-jDKeSul;UOWJXH(UP#9! z@wX-EpZBwU#V3DuodliK3I1!rX&3bcG5uEwPOPqA`fbY*C=XL2j-@9H8v2I_dN?Tw zvhI&%G^`sLQ_BSctuiNKyTT|z;RHXzY4R4q`7wrEcklO1tF4q^>*&3VidA>PcjNz^ z&O!eueu`O&1a@f%0$N{wn@2o-YzQ`C_=D6CeK;k$(X4Px1dw^7^y!|6iVy zcf6DNy?wItb4q`-Pr8m14TeO&{sBYtql>?gK<9NvvQLf|Kj$Vv{ZH+ah2upOUB!g| zNPjU~5u$`|akU@GKSTnZ^;dFEE+<~sBw{cY-~4Z#ljn=)i)5dy62lM2N;vqD{+0wJ z`($T%{n>r;m*?cNLV~~c*Y&=#Avq_P`01h#CH?HbOW;56zxSOe>aXNW8j{}swddr| zM|BYlwv?qe=Fa3^(3#9l-jqzog>S;^UAhubdJOk-+E8x)kbSsi?g4zi=@ZW5sssXU zf6p{dI7Tn7HsnUfDhr0Kx zbRxa1osL=)#~hOB$1R`ZL%i779d}oj=YAa5P4JZVVIJo#(jWc`GW|DDJzMdVe6SO zb2e}<2TmfYt8U`s?Ka{!uHoF7t0ohynU35O>U(L;I$0vwWiU6*K!$J{X+~%|j-^k| z7({JZt|i!UVGZ}y(-(Mru_oU#72#TMt@sTmJ-Cn8zGW6iZz5h;9_Mfs7Ym&G_9X5P zF(S@ur*o&jsUg@I#@vDDO$Bd_`OJ~qAMka{PZD*PbhtaDV~OG!Pl(tlPH6wEa)I}z zu3U4ea@@_^k$5wB9K&6KjNy{Bsyn(16?u4n0V=8fitg)@NTUJOiN@7uH`<6+c09P zVDmzGe)q~$0XuyQ;n-sX5vb(LeR-x-FmLcqBIbQQac}2brj+T%t<2~`%MGZ(l^-1@ zCZ0?olIzDaL{u$zB`cP`du18jwNEzl{Cp^}3s0is2lr>3>W%5uy^R=WW;fv-(@P*f z@)$Gt+I-rub}Xao7r|Y-335k!R^pX!3h+XO2Y9$YEmH$gIQe>;`f9WhgWyZoP;`|EZ0+c>FYeU+qtew|Gdzi}a2*MF9G z($BYlgFBUr#$1(Sj|iSjJhvilAJK-282@a0=9&tZXncHxu-V5ZhC4NLzUS98%CC!=DWd2qCj3YGTka@Al<+OC_9OX+ zNT9R+O8mN}8Q%)vf7`E%6weolUzab2D?0J(@!_ ziVh#Jq@O~V9= zHvo6$tz&{Y$NDp-1!@BA6eCWsx&oKmy;*QF7jbV{4iG$$izVO=J+8wrZSL}*rvlCU zo49#jc+9Dz(*%NvM+AMR-Daxq#&Pw`o#?QDVS;QELa2?8MBkgO6en@M_eJ+XT}hMtHZh9v$Z>a6ZMa5l>%2$pMTielCl41rJZdR z$(oen{H+}RQ?~YFHxXS|F?o^xN`Lno?4BMXL~Sv?-dfR(of!U+{NI*%y_Pg`52KU7CMPh6Bm?xq?!u5ZbkN@`8CAM~FdHq>iyW{x+$-9Of=PAFoB}6-& zWSly_Lf&z&EX)>_SPCJQ@D0W9y+b%xyyA4;G4sFH`@8>JykK#0bk^_Vi7ZJLtHSH|@wCOoZD0TA zhVSG4v3~v8cUAdf4m&jZmsid&fxq2-kZK(KwM_KB@+mpD)E9FtvAR3Mf8L%y=Phdb z@AZD~-)@jPF;uG&fY?4)LD#)8)Yd~%Xq{&~@Hojv6)&cfc6V)%Rxc}FquMGee_Kyf zbaDZVP+tzMo!ZB(b#)AcJnWSOw^U(A5P2W}gSMHYj2Yyr&4#UHqRMcz&%GzPa9SBslU~8=)>=%FYxu|j zD}bJ>0?C}x&1ma}H&ogsH8inDFx&BPxdvtLOxrFp}DS3 z)SaF@6nXR&xRYr^tu-D62lxtyI z0SD1(Q}{02t0>0(5YKeRY)WNkGMZC5l$<%X4sCp$PDS){hMw~#kv-3&UEIE$p``r}BqzARKOa@)5yGSjm zH{#rRc^tJ|D54&`svuR=%=m5=b794_x!6wAu5eG<3S_g^n(y4*fojW&<&{4)M=_sI zqNi&gQ5GZgIfTJRQX6c8{Tx@KsrJV^k2VxbUY4JptjbABR79Q%y*ZihEhz1`*GS>plIX-?DZZM2 z9*Q2Mk8UNNqdXImsT+?i_`cgr5&ytOUS#e8R4`>T`mCeJ-!?Q4wX)|^@#ETI{?c-k z^tOyTxmy>l%j-_AZZDwrO!h!Qrt9Ikp)%CkfMrz7hn1*CI~K00RHx#?>k*kz3*WCy zB+>2N=-_o3%Jaoq_qywh& zk^XZO<84H`e{7;=u#cmm{P12Nge6)j9_jxNj-n^2I=OP!6#idlWj#0 z&<)wM)Q;i)=)mH)q)U1NfBxo|=xJ0fDj2HIDL=lR)HE=o4opx%^%vSGU+FRY$$_uP znV)ni&wazG!7W|+(g#Aws0D>&tVJ^f8%A-a3<~7WdmDq^Oq4~c{BE2RFO*O~bp}P& zC~&Uy9)z{Vrcvvk3_^Jr6-DZCL;vL z6H+v#sS&{?uqk>lbyeM(Z(FI#u|CrUy~uXvtQlZM#n^48?pauq4ZWsQn~$ucjHgW{ zhwj=yIVTm8AvUx5X;0G0C*%85=Q2n0_KmxPHdRgLpIO%xITf8E8wXb)1;5)UmnfmK zKi8xD>IZD?wk_1>2tQPPryd-uZbB2!m%;IP1bXmEmz+0Gj=yZWEh=o>Pv#Wvhm|we zA$uy8db)5sI_;fFMH-CbPg5Am!M2S+q>m#91dpbk&Mt@jbgsi9|4&r;tz=GWGKbU7 zKSe##yiLk1o52q))uYlf4M3CeS}bkcOq8F%qY4(SgscZv6zhd1*iu`Go-+3QChz`8 zg-Iq0T^CUMYNU~W(M7WSur(DqFp+nYnTjH2t|PY;M^MMd>_&3hO5pQRKyC9{gWe^U zLX8PmQJiT3`6arI>Lp){f=9HW0}6^9dv{e59zQ|ty59xOo4u2Y^S7qF3%5Y>0|U*M zkD%(kEvU448%bTM13ZnvkI?AHN*r}Yng7zo1XX=>Aj5;>QEf{sX@0hpIxIMd-b6Dz z4l9O-=J$ir*g)#$uD#^B@KWlWVZo7Jwq2-6f&*0S%3~x5CBE*1Iq4b7ew3olXf%p_(^7SIkA}uNQT-#W$ZWx zZTi(vbLC^q{d9`OY z!^>Uc&@pm4IW|O|AC|X~T5)v+a(2`vbEp=How4Lo8%`=rK%s+kn;r>$;_w$NVEAA85pQdUD7xWGan8?BsUK|Gur|W zjBuwu1=Hx=2?x&6p*=WvqwbQ>_Cxub1G(hEqWzRjffEY%$U#$1#!?k!)nuRNB~)fL ziwe*lOhw|c@cFwWbgrRt-oA z|M^QYsox3Sm^rRgWWgNXQ}d@3=hz73ANB~`v#EjWc5FvA58}v?S<6vv*?g+`el|6< z;1r_X_vD;^n}+mE0s%cr7Co+61^7pMQ6{Tu5R*9)8H7Eex;Cp&Nza}M_hwUY*7^o| zvDku~{GrF4JSy?w~2@_bER}<4&mFqn~xkn1!DQ{Uzg7{!FauomXK#O z4^q+Qd|pmcA+);G8}8Keq_obbz&Bg7NbeK(dGwWJR58Ja?6J!cSr5&jUbrSxx$dXX z^ZK{w#qixI$fleO%hQJ&J-eaFJ}arGfnBN9cJ^qgn+ku`zK!Ij*sat7Piw_KJ;?WirGsN~cBe&Y_hR>-+XlApF zv+?a=w4}QuiB4{z&ac$q#WZdqgOhkXn*tABjfEE(xuJs032!0Ip)?rZXhhn#bKw2f zKIn<>T59gWHsop`i<)WyvcA!W;(Pd00j8sP@4O6QHTwu8Ijhi??OS-+h40A~c@Ww4 zeL;~Vo{&=&x2tZiBN962RY1FxL&1a zQhOA7Z~|{+qK1c4kZ)8qJod4ITD-b9vQ&{n_7?}EH#KMAzI>82KF8tT+5M7qzR^O; z5%N?>Wen*%#1}M?6@ZB-fec3uy_#u?EXi?jxRF1wC>lUQ&IhD8*NC%}SBawiCLp&5 zyP^MbYf|~414WqnQMJvHsI_?o)hoRg`dg(?3DH~-yT6h=RosiRi(7zNYQm`v1!X9* z`wi6A?vIpRE#arRM=5{lDtNzl6S$CE1K;1-4$qk!r1Tygp%kw_fXmbks28j=r}wfh>R zMxG6-3VFyo_~k71*ZGUA@E`tSCui_q0Ue4ls6(^QK1;^NPM5;s$_%ieWE~I~p#VnD zDZth=uVt@y&c|}6jllNKvcqPmt^XB5dVaC+u<9TFm1@HKs_VV;|zDf};+j zu%Mzk_N1pum~NRCHrY`TiWMMp3DmR)P^vnVCFi&JZHz{NXJ-N#6RZz|@ zHjc--xtn2|@-naw+fQH#%ST|bjl%)gHy*_9@y6V(ri0LN<=C~#X3Ssh8o0iq5iH9~ z27)AaY+^|mh{(|a>*NN3#a#_)gZYoaXPt6v z4R#9bz%#+H;&`wpt_l=$&4K*kdhni;19Yp3z$)d>pjY-WFf%p^&aR^Yk1zrTPqM)d z#W;{ZeFd1hWfAP&ssZgAF9W%0yRqKgi^04p53$R>W+1lS2P7Hw0jKw!0v4Y$z|dwX z*rKWgPe0fWPRXu;Nj;^Y!wxCX&zu2gKh6MUTUP>mbvAUY9Sb4q18>8XfN4Do z!RIl1;Ny}B&=RS@y3H+ENY+!Z1!;jqi&QY_P&sIC_5wAByFvG{r@^eck?>MJg0?$b zfrefM%worZq$4R<{}&vf7~K=Zd_0T!-pvJAnidr||rIZf(`Y!;HLnncRb&AkDVmPdyI~2|y+Jv=^{RHH4E5I;|XrS7q4#cK8 zfiXrGLGZ3ppxks1tbJ$&Z)n~I^1BmYb$2f~+m!}qfg0>v@D_wF{RsTMzQ8r@nQ-&Q zMNl>n0H=@-4uY5O^h3$})L^9j z5TG&s2pABY3{K^)1JwAXTsV~l>oRiS-fl~v*|Az6m!%Ia^5tNYUN871oP~nVZGcUavS4-LLh$6d zBCH7*1#Ff2L6A_?kY;qYbnT-2`11yf_9u@T8_*ux_qu;bxb z7;k0$4h|1A4&#=-TcDy^|7v(#e&eaYqh3R%-=^6-z@W#KUfF#zC9kRxDmN9W;3H z!Li!}khAUvS4HK4caC?!3g=6pgeV2!Dx2WvvwK0*)LP7UnJXyYzyWE~%z)B{YasT` zd0;TD73{LvfvwKk1Eh~9fX%9=ARu);=sv0sn4ho)WI3h)#q^^9JXMCTtPX+^YNMfn z>o_^8LkYkJATk>vpH5!#-X zK5V#ktP~`(T_A6V7M#sCg#n%_XqaU+IBg`rW_U${vk!*=mD+h=({owq(Cf5ty*&v6 z4_v@ZZI1)}b`RlrOa@-*`C$63K_JB=6D<0a29~v50zS)C;q|cxKs!Dch7^v5E!uTp z+Ts523ilRpl0OY%H-CaFH)p~NjLYpOn}eU#egR)bNF~t zJy@c%7IyRM14s1pfISlB(esiU;MQY4Hgi!Nc(!o>D70G+x~=O5&(=4Ags%1AOzcZ+ zX6$>wA2tivr_KO})*c6w!qq@XZ8j)Aw;P0AZv?KPvanaTBVg8BXSnOSCA80K1XpuL z!X~YDVCc+%iFa6NxY0KFOgaTFJrfKDEo=nLMO|P7J_5@pu5kA#8^Bq`h01$2gL8QY zU<>L2lkZ2s7U`ZSw^jovZ1czNoqLFR$~?f@_GDm7Et0^!U|n$3-X9Flm&O_{^alkm z?_kC|60p)6hq2R^S=g6Pt=I1WdXEWc&97NfB8ftzZmL zTsju0dxpXU6)jj&`v}zf6k`0tJ;0I)6b5+9fmQ_xPUvZX2|G^!?L$!@C$tQV3|R|S zAJ_tJ_ge~miqpYl4u$D8Ie{1Qy5NJSHkiHdHW=I|17MkZK*n=#%wtnF@RQR9d8r?; zThGkE)fZo|o0X2>rMnA=vMc}%B~8HMQ9AH=JrMG*4}mIQ62X?$&A{>a25?(@7l7CJ zFxz-K99?A%gIlyf?_orQ<(Ph3OL*_08Y4d z8y>&80jMtBkDbf(0K2Bk0Ne9=;PJStKy%p|pgC}jP?uL?ob>I$M@|+D&+ZG#n=C=N zhZI=Q)fsHO?8zQz+iVLx z25{j=r6Is`Z#+18P-qLV>Ve}T1K7&Z1$Wk82bw~@D@`ZBb92kUjzT>cui6CRsZ1~~ zW*;`wWgIBUc!oVBIbeoC3-IP3RHeH z10O7A0pmndptPt4yk2n-coba56v)}YG(#DzQ`G?XPV2*ryLW&A-T+SCNyc_8uff{F z>aZ&1v7oi@9X}p0?HI@fzp|^z+Sip1vkY5mtK?L&5dEe-h{;Bw+DizoIc>u zXE{(4^8%!!6wvEs8aUi+iq)m1fOxtbgTroM#=W`&8;eHF=k^p3lxPN=->(Kqqf5XW zp`9_bP64hP^96JZG6E%^wt~jX(?ITxNU)n&4*S6V&}>(KI8*jLcJ-P$*s*{On&V19 zVWTpP$^hWxB%v+D$_6HF((vxgJRmpk9mwQtg)=mkfS8yfENGo4P<;LYJL#bW6k#i9 z-4O?5)s}*ZT_BdPycV$8>Dc0p?=gcb>Oj5rCgx*m1@e}T0vw;M;Q4@!Ac+hFgggrl z$$JRwTt@+^XP~w#685N9gVA{!Fz<~N0P^F2mWMug(y$AR?5P5q*JuE% zX*)rwR4|ygR|8g}M38o|D_kQ5*vb+ zkiqcC{JG$Uc~59wRQem|i=tEA|M~A28OMp-q0UbeCH*U2(tix+PL~Y+zV^Y09I_L= zPZ@z$GU}Xj8s{n2rk+4GVhSg7{$iBol7zBitT|yLrcm?PH&Oh-0)F?mxttzzhVo4- zf+)MzRY>}+6~{d~QTQHD=kGKBZ^<_;{=Y%Ky?0)Qg>U=7;6-a-=&^CIf0YZ|?+B22 ziY$6z`VzJYeKmuyEXeFpgdcaTfXmqHVN-$`Ts^J`dJfNm8v-j}*`90AFSG<2x%#1B z%lF&!aml&3nT`xE^L-(}Xg~g`{RQ zj`RlI;0?Vpl6rID8EG%I0_8+zVy};`CCAIP!JR45RNjiW@Z{;&)ZG0wRG-+lFtpv6 z*V;V-`uEJBYHE)llhT>UWnwA{Nos|$?TOH_elEBcy@OKQZ%lq-4dNV1lj6)BeE?+$ z<6{#i4yR6*Zh$^|xny*Y?T~&HL7D8`fZ)K~z+e#2V50ZJiXY(hfg_B>hyTSLt`uw5s>F}`gc36C;lB{SLL6*-mA?F6< zAy4;daP-5Q@S$x0W#2ym^}X*3_Po80ax*``x7J$J=E^K8V{9r59+98&MB0~ zT$*~^WeYG=DJ|bJwg%YLCGw)RUSqN=3&7~&dC>5rCb?l>J1{w;N``c;{dut21=th#@+Zil}UU*!w7zt?t3|& z*SB$)ePcLFmZpG^9t@QdRmW-AJ&kI7ewn)3rpK!S{gB>{spYShSWqg1GtkNhx1n*a z8rt#59km$Bpd>3RezhNqf1vFxrJ>Y}bdL<=#6-;Ed{SJuH*^Z;!s*Ru;N=PY zm(Pdu6XG<`8!KJ1*s7ii>h2AXj5kE?_Bwn6!idw9ef@}3+GKuOpabP7I7YQixDR}8 zZb1sQ!l0#36e3Thpe?a4(KG{ss=whtJ(cZ()&@7gz+SsZLhyxZx6T1gartE1&E4gf z`cq_GzbdF7o=>U_7oP1|7?FApt9kL}=479URC2gm>5)TI49L%kgQ4D+GidD4Q`CV3 z7JnOO4>BI}yu3%M6#rhzS#Ys30-4=a;P>-Pg5#Ezz`3*(HFY=(7Tr!I*C$MbCI)>e z&DK}s$XO)3-LHukhC7pg-Fl(D>hHK-$g`{2x$a${ex(4rmCVM1O)N3vZ5Oc~x5vPF zG0WIhDdRAOAS?LMt{g`6*#vp3NM%%DqA>+WgWKEznSphCR$^+U<%dxpr0@zPg z0x^%z@nD_vR?zdvW$gIjk)T;t0h}503cFoU2whowKw69pwx4SYZT1d<_l~tgz4>Y& zXKoA_dAAIXJTwC6Ton4q|-8;b+#Snz{0vAXNn zvJGe1{iQW5CeL!i9K)=!-O~)gm19%cwFv@t%MvAQ(K-O8#vXvhy%k`$Wr|R$U^|=? zoB;1&C!t^E0QO;vVlY8Z5uLi54sH)D0NK}SG5wcrAn~vp_9TBYSo2x~8b5f(PI$8o z3zF>)LmZ7T!@fd3FJA>S^Y4S9Z*t&SP%GBm*05?gY-Lln`S8&zFL-{1 zH(WmT9q{ts%f5Ww00tb{jwMe`2b&gMhla66aMAV>cH7}#7?LOt)#LYq{>C*hvLFV2 zm{JZeme~T8s~dolz!J94K7^5`o59Dy%K*}z0_fnLfMs|U?5P4EuQ~wCGm8e!d5xIY zp{-a!NHLbF)5gAeL<*A$&;p+qlwe~%lGx|Rd)YiWH_TL*VrNzF0KsT9EQsk1)P#PN zs?g`J`eF$`Pl^L04#$DI$nMZ#+iI+~cP8lTc@S%vm4gj_&tNK!sqCm7QNa32EjADz zffacxVN2@{V8323zO~;Zc7-JU^Y(k$i8*R1A+2r)J{RT%1~nQ?@w8#Hr-- zvnJvOO~ehFh#NE!Hz;`)SyE42{SOn-GrV2J|9c9Hr5*eGRV4k25qmY?!{AV=9`3`LY_NoX2R zB6iEQO(0EUBvRU%k5$i zLG_cNkj*&?=gag%sh{pcy$PdWHvXR7-l_~gER=;$cWA&}LEFq#TOU|_7}pQEPwS25 zd&a`j+u4AX^oZ@Ws|kG3Xa^4;WB@g1AHXVCVtb#^hnjmS7^|5D?~l5P9Uixlea~7S zZ41ajL&JTMG{D6a#q6wgO)mV=ONFAG={0Z`oPt$%12Nam>|{qytFSNs-+Byu5{ zhe?u~zeT!hrvl~9?#|KL>B%omrx1sb{*Bm7->lNYXzqqm*os5dPjWDz_O3 z`^+|no6Zk~?QWC7wrq1?H%Urb?WeEB4`O}Xk$JJ>le!(hU;f8xF<%Xv1zurpo^D}o zhW?>Jft{;5I4w>YsKjD*{1im;`1&_S%3qjz1Ox!zOi!M2Zb4D%1|u#;!1Z^yw~O;#8T?Aek*oU3Mjl)sM|J&E0F|TFk~^L zGl=;KWe|Oqe&;)zjm0=h%$t}OF|L@aK@1X!LWfL&jYJzUkIz{`yZx1a`3_qgj7D8Z zj`k4ODnis1Z7fX9N1C!M4S)G9H=5X3HXtZh>*C%opysk%Jm*`F83Sy`Csa zcM(V5;V?(>3i@!$0{AZVs6NX~NSmoB7#xnG0bYaX;1>l_FMjxVc%VFz#)YsS0uyE(oaNt#USdGxE7>4 zRuEHe1zP8J9cmxwq04za@%%I?opLFF4o^P=3;1U1%TJonMs7E3Ijn@vguaDKvrf@W+05c5(1MqMbqv#KpUJk%@KgR93nFh1ye01-G6ZF}_ z^En4=_?M+G$;^csv?RBUI1YKr2TAwQ27DZDjN45Dvz(Fg(fOqF7h}31Z4T+Ix|W8^ zs#4qXKZwoQG2AQDUU0nAU~E3@3bJZn2f=5|zyYTKU%wiyQ#$V z&S&ZBHJAAN=62Rzjs6ByIwP0(7ApwjZ>;4KUCYqrghP}wU4fB)0=X100UHHe zc;;ry-@tJHpAg4*Zyg5;UvOkW6t(MY4qrce7C^*=Y1--VE40s2j=5(}!MH z+|ek@c4V+@11f1uMoL%mQQp&FqMl#zXV&XzbTwKqt+WBRy}<=kFyx zAuBg)z%30w*rTir2S>W&ihZ@HrT82hfffhcey@OwR${YK8 z+Vg$+7II};E|)OZlOz`m;__CXE&AfCOJwzx_*%_O5*c34t#lem=2qH}Iq!<4?kIzl z=kFv(O*YaCxm!r&rh(u#IfJ~gh^9AJX`-+_5@Cyj7ScaDKqwBDqS@KGaCS-**StrI zM$n_EI((q;n?X40m$X!Pej*iZ8uErSuu3Auj}B1Vk5)8f&I~#}vs8M`KbUG-VUm9% zf!G@y=3Vjz;-km*(GN{Zc+t=zu23}tMz(h*ZAnA$IfZ@5=Z-(7OXKKT)A!ajHe*r$ z@K0pg(R(O%RvI0ec?Z?ZRKbC2UUX~V6)>Hh%)JIT5?bYra&|P5w>t{Zp(DO{|0ypL zAPk3^HxW==DxH6hS}#aJr!@_ok4c3s&mBo- zP#@gq@Cr22a5d&+4j~20Wkm}Wk03Sw-l)pCFLgIj#F=e8s&46nH`q6z$rcGDP%8qq zjhR8))|^7!l^3Fz17*l;&1-aN>maC}xRW&cPX!On96CuyL2z2(i<o0sq|e0B zLh;mini!Z*TYV$w-by{HRk;mK6!wsPV?Lq*Gi4#mUJjbBokclGztY2>Ka=TZDzwmh z6IrlbhA-5tLIXM%qn>wbkz2_;+D~&JwOOIkZNVFf{mHp z^!-vzY}r1PDtZLql^@e+!o|~MhEFPe5cwQ6g!9x$FCGO4JfucO+t3uJ)ik*(i0kT* zOg##^!(I0UsJb!&s@~{9Uezk#6OyP^qzoEpPDn*>g6KhA>L@=6VjvUj;xG)4$t8y6 zA9&-EG*0_!JUV{s1gR*W03KuafbrO2AbGzGB4?P82RAkG%J5~NrriWy^J>uEtKG1o z?{>b6d`~>;d^9Jk+=s>uN#_mTjYY?DbhyOH3EaSbsbrBtD)O@KON&fD@p(&5k|jM< zX_W0&4(wkU0sCbgEyjAIyORn1BbH0 zPC)$X>HO*KTga33U19Rsuk=v3KJ@e$D#W(yL1bCHlzvK}J_|fKf3g7v1>GU%i)KQ4 zwJW8&?IHb@FV*);2N$de`IBTIZ^C9yPVE$mcvdSl{dAdAFKggVZgS(6y6S+rP>$XU zC4ATHY^1DeNya4aB(BL_AtvHa;(ay}<>*~SdkqheZD-oipEJh6XnQrGdT$e)tLY`^ zG|l0y&CTH55=5q1TtdGrutTp>BPc$0iu5_*AQ;L=QHeEYZ5pp6Smk|$8+GsK;*cVg zJX}!_GEdOBE&Hj-%e{2zSTAA5cxU3?U?4n~T}HAeWRXW2zoMk1S5imCi)7(2KVfh; zdD>X4BplzQi&j<}66M(=peb}2?||5On_(bq-tA8`G7{-H^|PG1Ml;Gz=?kyN4nZmN z?;~|$L-h;ns14XtyBE&ngWNS3l39&3%sv1PNJQR&3#hlVGgNt}(ce@X;A;Q#T*~@8 zsK`W>UMX>gykBk*nL&$b>wF1JxLPmOxy>Wj-f|E(F%wm2`-0Mh*Qmik3VYRSxeGV@ zlU**iq)*h|O7G2-qjTc7k+qSULY;LEE%Q)Ar{z6K?Y3&<*9+5>1FA)R>@w*>m3nH) zHPcZ=8YEjTpPXFvguhc_Mo*TkAy-Pf2*(_ZsDX`}`pvB}GD(&7zI`>eAvew_I5Ikc071q%^|za{{q=L zHTh&Y5AuN#twM-9=rU6V;Ll|yxJ zr@-f!r^s%~wZabyF=*7reJK25GLezwL8p&qbYw{xa*G=T^-@lnY_yUKywQL@s6V8S z`scy}4hv>R*#xW3hS`BvNa>|}sD!&sqVEM$%a;^3s#McK6O-VU_idCp?GeZ?I7DT2 z!ojfkB~2gI7sd_$#7%7-0VBq5r}idRIQ_j5y?h}X9a1SE>#q6H3mIAb+NYanOZ*~q z_<k$#nZ1(En#@hMQRc~7$)`z!4<{=%^W$I-)~@pGVTV_S+Py1 zZgw8MXWShe@p9bOe4VO(&4>D`jl{)S1*RU#M6vx6$f-GBP&+S2ZSGbUHS}14)BVGs z$3qMJr7a3-xAw-z8l_z2s0x@}kw#1!dg1-03OM+lJ6yBBkL*7$r**O_P&`*gu+jA+ z8(!`OcdCLPnd!g_-QUpd%X0Js|BRm=>P|~r+ojQGpFzT`OGtTQ8aO<6CZ!s!1k|ml z<&n+gM*J?4Z#)u|1Kt#^H+%yrhM6>~X$Nw*$tKr*j*v!PiEjM#?RV8=_G?Pr!%(P~ zyG);(cnICUKB2#FK1}VdE+)!4vO>|X=EBJO6Xf{LD%yia2)VkeATatWxs52TnrJLM z&a@PQ&mgMpbB7-5Z79fVw$ta|eT%;XXDY>joJ&2YY2=!I|*0I zQyS%*3ukQXWVqecnqetmoo<|1Q|}yN(X~9r^6RWzdz6 zCD)!@$Nq06Fi0a6O%IKO{McN)L)RT&oLm77iA(V4P-7gIpo=qPwQ*RiJ=}GCK^;|t zc^3r7jik?HV;woHQ<{|x>S&PcL-bC6-UO0WL8m@#)eA1#fc8#8j zdo8rZVaEQj(`PH5zB3j@j<1A(XEmJa(_e7EMg=k_P#)_UR=|eg4&>sIaZr$yKwU3; z!w|U@@Oy@V(6-|`+^tX))LL7)ZEjEC?Y%-`eqtaPa}+M$TnDic=0Mg}3Zr|JQhoas zQ2%jzk!I{J(xau5@cy@Yctvtx-mVdN-)bGK`}z}EuCFXf*=LR5s9n(~oGO$Z^MoubLFKq(lpwR7`MjRhA%8PUUx* zS)$aG1r!}oz}M!L6aH*I4RhWFeuRTV2Q;v4#BL~^{1I%&F9N;Kd1SlZcr1528?H6U z!YZqL_}t=3#(ao_p`-6Wy?+?e9QG&34A8)Vzu%^LUM)1cx|K{+h=Q>0`d9nT91e_!fa;6)GSws6LeQ>elhef+pQ zfgBm3N^@#usmqpNNS-x<7^(W>5dkmh*wxcuhF&VwNVUadjqY3H;djxgGiN~X&4%`4 zfuJyFBKy1E3xEFnJ62x&h+KL&0soP`n=g5=ovba96J%B<;DD(kaf7EjZoZm_`aN!g z#W(fPtL%&L9-XK6x8#vwht`licYTrm{h@ThDl5Eb_F5F`IgM}du7d{^yO36r0@iKO z6>f~V4)!;1&}X*I5cu`md3wXn({y+P_YE-4)!t8cSNFiyBMhmH%4mG4>u_OJu7a@q zcOy8Spe5vKR6*AbeX*M=7HZ0|;B2ic6hkG|aJdYY1vByWBOZ9oklFZS|6p=n%1VhdKgZ3Th40a(8<72O)@hW!p|3tH+;!dI=MLgpzaoYL%!bzQzvm!z>U zQ@5QSmG8nOmc8c27;ghTLruYJnl7!%^AS##&jmMgW$YO@QMmmj4eyS*(8k;40p?tSO28 zH{K#o#f};r6Lt6!eTcrqCf4RUF^DmK@Mpu0+GQJ4%3_$npu%v11$JjpVOY)#>X_ba z1~I2&+rDxAk#jM&SpT$S5c#sDw2QHZGCfV!PYd-7_3;h!pX|9P)Gw4(Fnzr3JpKJW z%&muZ=!<+r{hdGYEAn(@_^01krpGZ^h|j_>A66RmWUkD-eF8&#JS^DA(KFOB%wPIn zW^MgELq>UfGxPt5t?}jmuSwk7(C>QUnmTI1Oi$$V6Yu687XKr*I6KwHKkR3`#JQjF z6659ngqQe!`2T~KxDV+}Zz}75#_NBv`tO|nW+dib+#@m0Hg-3OkK%hPLVUl(|0`%Q zxwzN=BYsD|MIXitHUIJ>?*9k|ZzeZk{ZIXT&k^J7>FwgV$j{Tu-)BCu zxQXw&_@10$K8O4lpMPim-(LSdC-MLCE1m)IomXLU@t$H#Lg$&z2?`7e^$ZNP=-?x+ z=ls9y*sVQtHxrM4eEVRh m`tP$P+KE1N7{t82V?5dC8L_E%>$uCr;kWMz;(24O^Zx<+K~L!b literal 6352 zcmai330zKF*MFo`N}{<$xsn@7qEctClPL{KWazrlplCv=Ot(}@xP>UCiMnRdL|xU{ z>m&)eag~rEQz>IEA=l7%PI&M4dcEIwp5Oo3d#}CMe+_$|{p(o`l1L=8ZKs<_Bm*Ub zB+?Q&iK0YVqAEx=1&Kt`TR@PeL~=_QR108)v9y3*0u%*^>qRZOp8jWY=i-)E&C=)m7z_akUXhVhLC8Eom41sJI4!!D4uB+~h#`M$e{@?)c8 z`MwRK+2;$3Va0Vb-q*4T^rvL-_b*xkA^YKN@n*JY%X_%iECY70U!ih-AAXLUF014; z84`NkgI(_m_$7-g`TNU%;j5RQ+N4>=DQ`btrjZL!M4(LXI@%YGOM*%O*DRAvJS zaanF%u$sp$Sp@rq7t^G$S=>4Uz}jhEEIRik8zyWeyIfM>ZR$ui-d~TcYLg+YGzCWe zT7W}>-C3!>nrXjcS+;rBPdD`LGAk^Sqmu#Fpd*) zsed09$X*2N08ch5HU+!Gpx;=1wz^vT)-#Xd{HBcKF+vpdCUwdJtgdjnwIM+dm~v<20*6WO2ECy)oX zpFz<3UHr?#$#5~S1xo9@d0z7tb!`0&r(4{_($#6av4JcNe ztD_+5XKgI9ZpS%h#{7;q=DhTXoz%hXG;Pw)!m~>>_*Jv>z;m5GE-;b?-|)e#qwC+W zz~w0T>Z!89`oiyv(!uXh zKK$Xl1>`$Ym|0I-tmLE(Y5$KFB=u1SXE!vYT(x*0S@~jPMcWOFiY=GD=#WBbdP(tD za`N&JO!M->qT*(h+V=;pPBsAdtu|!C-59#4{w{aUaXI>2Hpjx#6xR<^;a})RLouo1 zjx656NNUeAgM|FJ$CS}6U9!CU&mU3s+;V*JZYW*el#55|ogm7ri>ACgi~%Xl_?EB0 zl#DhUzx52N9Nk6@l=eb?FK;I3=YyonMxD|Avk#r(xE?OvT92C=*W$1_1u)-94wu|$ z;{JM{3R!OJ!DX-_J1dJ43#h(*jVau( z51SJwfyNzs@Rc9UhmFug11QEUKYM&KQG#o?j>kj6CEUxGYJ93U@HyLxs8rJ?>M?9B zS$5M4YTx&ViK{bV)x?wJQHUBpGCr6()Q&=_q(4Z6mJjHK)RH-wSzw^CnhZAALhb&Y zT&rgubvRK%Hm<58?z$?lL4GP2UU*JAohymno;b$xmNU%${TU?1dNXrWHiC)PR%-M> z3#RET;lO(j$bywVu&vk)LZhi+LR&Vp$!?o!4`Mlx=qeWTQCQ!qA@pqJbP+;3+9fR!|l)a z0i#Au9KU-m%y%$HCBN2+$IiO2(s&!{t=R!?8vam{5XyS?)kKH0^6Zv*M)1;QD>PR9 zK+en?0&W4>n4?k#T|s87pW`{QLDLVObh)FX$^h!lBx9kQGc_N&4u0PSa4m5RR5dz~ zhK9|wB@8S4&st*aa$qVAQov`REdMr9tUym z(ll_0KZi{>r19NZZKyAGBBpz5nQhNUF##*JndXo*CSb}^E?qu^=8f9V@LnYqlGkHU zr`reZ0&mg{?)%US%Yd$pB)bOfVA`kfq*AgCqxO4X`E6IwFtz6A+l^)orh0>A{2qSSS0z7@ZdkVK1s_hruCyW%!PqdKik!J!;6}H>!MA zryqTg>V}5XtRS+ph&sq9lO;c8QWcWKS>ORaSJ26$hhcKVzPP% z23%c0(py{ccv>7Ya+4Ifx-6L_C~LqtnFbp1#ti4W*3+wI)1g7Gm0M#l4jx36g^2j&UG@Guwy$@H}Mlunm3!w z@p(vMPE;|!Ut5OuW-`S4bu7xQ0wyf6f>ge0BRBhAv@+<;l7|uJk={QJ>C=q(!+(## z?upxo@unosM7N9y>RU>rf@4v3stUY#dL5VFwn5c?HQ^MQL|&TwURLRL3z z(dkX+$Zevz0W+~-ogY-s-V5va1`=>ziFFUmq8WPOIH5Qe7KCb%n-2Que)a=SmK_PP z5j+hXu1!Wd{f<6QO|hhRI`-X52({SrbxaWNm6P{j%*H>(jE{caMD<|Nnhev2z z$9wu>sR2eA+JoXG74XE|5A^QyQ!d;4(4^YrF$M?AuoxgqGZ#e$D@3P6KF59!{K9dxZy9!>l> zlr-0Bfr;sB!bRsmz~hI+PvI85HAofhdlk_x%a3G}N*QTea-Z0AE{6%vw-86OGt?qh zm3xy~ONTVxB+VDiVeuR(*xZs0jVA7-tKklLvm_eE4rzfYYYbs2WWW{vQ-$g@4qmKS zNT!@@fK0_yf(=qwTv)^SdpL4I_xdopUG2=6C*}0_&P>`%s)|}zc+f*>I;1_`mg*dn zC#`l7sGPHx92}m6t#_2@uao`TV=dPD6+$;rd84lFwPzLL!P>pBu9a-;H*HK?@A$y4a zfjJ$n?0|7cte8Kf=$^KV)aBGRkoHujF^_#Tr8@ilWZtg^5!{n{K-Ig@@^3`)vb=0S}NhH+zaJ9WpwbiLk^YeqSotz zHK5!;LX=i!lDGTS2)#If?9ggvj=eUdvTdGte{=$vZ<)pUzS@H^7F%J~u*ql~rOJl< z5Qe|3TLgzfZ((NSBU+|%nabu4NBIG^Tuke9nq2mfto3-z^*Yo{CZEZo>MNCTd)8q_ zuBC_$xF`)vb|0fNw#JDJ|J8}tUAAji&Ea@kjkh}zggG=9TTdSKcC z)V?r}n=w&^AER$Zt>UG~oui>}xh3Cv#PM3v+G)txt=vxI5}t4qHov2fQst=kl6a`O zeTeQ%b|X`(is6E37Tr^%%-TM>L`zb;Xm`d*P@QDT-M!n%w9k}cS0v6wHPb=tuB9*O z9u-$yzbp?F$wBJekxCqvZwF@7G;*m#mc2`-(m_MB!37U9PqOq;El&rXi=?ohX%gz2 zZ$mIlLyI|S)I~EEpXQcZ_!HxQG(m#O2z4k*vFqV1n@ z;aYq)^_V#idj&PR*s+(ImzNrmI+>fZ(Fx?W(@@(+K zsZ&(CNd`Bc+C`+o4H(sHlVO3p9od;a3hqv8W9&xA;~VKTE+<(9o}{K!oRIqw6z$YW zUZ)}i#jc^XwX5+$y#dJSD8LSvB4*>Fao~`p3=7xG_WWK-{q#@0WkXgP&i?H%skGPu zISyJ>{5@6rWqyRvkL%?FeO5@=S^LV!!+``keo=?V)B3YRGLpech{-jq8yKH6J$j<9 z_`La|?;`Zq>}aCXw_JR!Ixr;uFn^^L+(~t-OGX-97%xeO)iw zwRzv&{dHcf&53n4QD5wf{)_g-nw+dqE&F0uZjc}oYiFW<`De~vB8R9e>d6X_5g;W% zb-(NZ61P%>h{H-5f;_lHGb&Ui#3;N<-i9UVR zuNL&j3gd6}g*d+KhL9;QpSfNu{Jp$`d}joktndw89=>9c@8|r8TnE1Jim$>~-a&%w zyS)F}<^P*kjQR5&AX@lb$?v(tgprt&uXf_T