-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathnodes.py
368 lines (320 loc) · 16.3 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import torch
from torch.nn import functional as F
from omegaconf import OmegaConf
import comfy.utils
import comfy.model_management as mm
import folder_paths
from nodes import ImageScaleBy
from nodes import ImageScale
import torch.cuda
from .sgm.util import instantiate_from_config
from .SUPIR.util import convert_dtype, load_state_dict
import open_clip
from contextlib import contextmanager
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPTextConfig,
)
script_directory = os.path.dirname(os.path.abspath(__file__))
def dummy_build_vision_tower(*args, **kwargs):
# Monkey patch the CLIP class before you create an instance.
return None
@contextmanager
def patch_build_vision_tower():
original_build_vision_tower = open_clip.model._build_vision_tower
open_clip.model._build_vision_tower = dummy_build_vision_tower
try:
yield
finally:
open_clip.model._build_vision_tower = original_build_vision_tower
def build_text_model_from_openai_state_dict(
state_dict: dict,
cast_dtype=torch.float16,
):
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
vision_cfg = None
text_cfg = open_clip.CLIPTextCfg(
context_length=context_length,
vocab_size=vocab_size,
width=transformer_width,
heads=transformer_heads,
layers=transformer_layers,
)
with patch_build_vision_tower():
model = open_clip.CLIP(
embed_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
quick_gelu=True,
cast_dtype=cast_dtype,
)
model.load_state_dict(state_dict, strict=False)
model = model.eval()
for param in model.parameters():
param.requires_grad = False
return model
class SUPIR_Upscale:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"supir_model": (folder_paths.get_filename_list("checkpoints"),),
"sdxl_model": (folder_paths.get_filename_list("checkpoints"),),
"image": ("IMAGE",),
"seed": ("INT", {"default": 123, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
"resize_method": (s.upscale_methods, {"default": "lanczos"}),
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 20.0, "step": 0.01}),
"steps": ("INT", {"default": 45, "min": 3, "max": 4096, "step": 1}),
"restoration_scale": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 6.0, "step": 1.0}),
"cfg_scale": ("FLOAT", {"default": 4.0, "min": 0, "max": 100, "step": 0.01}),
"a_prompt": ("STRING", {"multiline": True, "default": "high quality, detailed", }),
"n_prompt": ("STRING", {"multiline": True, "default": "bad quality, blurry, messy", }),
"s_churn": ("INT", {"default": 5, "min": 0, "max": 40, "step": 1}),
"s_noise": ("FLOAT", {"default": 1.003, "min": 1.0, "max": 1.1, "step": 0.001}),
"control_scale": ("FLOAT", {"default": 1.0, "min": 0, "max": 10.0, "step": 0.05}),
"cfg_scale_start": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 100.0, "step": 0.05}),
"control_scale_start": ("FLOAT", {"default": 0.0, "min": 0, "max": 1.0, "step": 0.05}),
"color_fix_type": (
[
'None',
'AdaIn',
'Wavelet',
], {
"default": 'Wavelet'
}),
"keep_model_loaded": ("BOOLEAN", {"default": True}),
"use_tiled_vae": ("BOOLEAN", {"default": True}),
"encoder_tile_size_pixels": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 64}),
"decoder_tile_size_latent": ("INT", {"default": 64, "min": 32, "max": 8192, "step": 64}),
},
"optional": {
"captions": ("STRING", {"forceInput": True, "multiline": False, "default": "", }),
"diffusion_dtype": (
[
'fp16',
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
"encoder_dtype": (
[
'bf16',
'fp32',
'auto'
], {
"default": 'auto'
}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 128, "step": 1}),
"use_tiled_sampling": ("BOOLEAN", {"default": False}),
"sampler_tile_size": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 32}),
"sampler_tile_stride": ("INT", {"default": 512, "min": 32, "max": 2048, "step": 32}),
"fp8_unet": ("BOOLEAN", {"default": False}),
"fp8_vae": ("BOOLEAN", {"default": False}),
"sampler": (
[
'RestoreDPMPP2MSampler',
'RestoreEDMSampler',
], {
"default": 'RestoreEDMSampler'
}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("upscaled_image",)
FUNCTION = "process"
CATEGORY = "SUPIR"
def process(self, steps, image, color_fix_type, seed, scale_by, cfg_scale, resize_method, s_churn, s_noise,
encoder_tile_size_pixels, decoder_tile_size_latent,
control_scale, cfg_scale_start, control_scale_start, restoration_scale, keep_model_loaded,
a_prompt, n_prompt, sdxl_model, supir_model, use_tiled_vae, use_tiled_sampling=False, sampler_tile_size=128, sampler_tile_stride=64, captions="", diffusion_dtype="auto",
encoder_dtype="auto", batch_size=1, fp8_unet=False, fp8_vae=False, sampler="RestoreEDMSampler"):
device = mm.get_torch_device()
mm.unload_all_models()
SUPIR_MODEL_PATH = folder_paths.get_full_path("checkpoints", supir_model)
SDXL_MODEL_PATH = folder_paths.get_full_path("checkpoints", sdxl_model)
config_path = os.path.join(script_directory, "options/SUPIR_v0.yaml")
config_path_tiled = os.path.join(script_directory, "options/SUPIR_v0_tiled.yaml")
clip_config_path = os.path.join(script_directory, "configs/clip_vit_config.json")
tokenizer_path = os.path.join(script_directory, "configs/tokenizer")
custom_config = {
'sdxl_model': sdxl_model,
'diffusion_dtype': diffusion_dtype,
'encoder_dtype': encoder_dtype,
'use_tiled_vae': use_tiled_vae,
'supir_model': supir_model,
'use_tiled_sampling': use_tiled_sampling,
'fp8_unet': fp8_unet,
'fp8_vae': fp8_vae,
'sampler': sampler
}
if diffusion_dtype == 'auto':
try:
if mm.should_use_fp16():
print("Diffusion using fp16")
dtype = torch.float16
model_dtype = 'fp16'
if mm.should_use_bf16():
print("Diffusion using bf16")
dtype = torch.bfloat16
model_dtype = 'bf16'
else:
print("Diffusion using using fp32")
dtype = torch.float32
model_dtype = 'fp32'
except:
raise AttributeError("ComfyUI too old, can't autodecet properly. Set your dtypes manually.")
else:
print(f"Diffusion using using {diffusion_dtype}")
dtype = convert_dtype(diffusion_dtype)
model_dtype = diffusion_dtype
if encoder_dtype == 'auto':
try:
if mm.should_use_bf16():
print("Encoder using bf16")
vae_dtype = 'bf16'
else:
print("Encoder using using fp32")
vae_dtype = 'fp32'
except:
raise AttributeError("ComfyUI too old, can't autodetect properly. Set your dtypes manually.")
else:
vae_dtype = encoder_dtype
print(f"Encoder using using {vae_dtype}")
if not hasattr(self, "model") or self.model is None or self.current_config != custom_config:
self.current_config = custom_config
self.model = None
mm.soft_empty_cache()
if use_tiled_sampling:
config = OmegaConf.load(config_path_tiled)
config.model.params.sampler_config.params.tile_size = sampler_tile_size // 8
config.model.params.sampler_config.params.tile_stride = sampler_tile_stride // 8
config.model.params.sampler_config.target = f".sgm.modules.diffusionmodules.sampling.Tiled{sampler}"
print("Using tiled sampling")
else:
config = OmegaConf.load(config_path)
config.model.params.sampler_config.target = f".sgm.modules.diffusionmodules.sampling.{sampler}"
print("Using non-tiled sampling")
if mm.XFORMERS_IS_AVAILABLE:
config.model.params.control_stage_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.network_config.params.spatial_transformer_attn_type = "softmax-xformers"
config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla-xformers"
config.model.params.ae_dtype = vae_dtype
config.model.params.diffusion_dtype = model_dtype
self.model = instantiate_from_config(config.model).cpu()
try:
print(f'Attempting to load SUPIR model: [{SUPIR_MODEL_PATH}]')
supir_state_dict = load_state_dict(SUPIR_MODEL_PATH)
except:
raise Exception("Failed to load SUPIR model")
try:
print(f"Attempting to load SDXL model: [{SDXL_MODEL_PATH}]")
sdxl_state_dict = load_state_dict(SDXL_MODEL_PATH)
except:
raise Exception("Failed to load SDXL model")
self.model.load_state_dict(supir_state_dict, strict=False)
self.model.load_state_dict(sdxl_state_dict, strict=False)
del supir_state_dict
#first clip model from SDXL checkpoint
try:
print("Loading first clip model from SDXL checkpoint")
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer."] = ""
sd = comfy.utils.state_dict_prefix_replace(sdxl_state_dict, replace_prefix, filter_keys=False)
clip_text_config = CLIPTextConfig.from_pretrained(clip_config_path)
self.model.conditioner.embedders[0].tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
self.model.conditioner.embedders[0].transformer = CLIPTextModel(clip_text_config)
self.model.conditioner.embedders[0].transformer.load_state_dict(sd, strict=False)
self.model.conditioner.embedders[0].eval()
for param in self.model.conditioner.embedders[0].parameters():
param.requires_grad = False
except:
raise Exception("Failed to load first clip model from SDXL checkpoint")
del sdxl_state_dict
#second clip model from SDXL checkpoint
try:
print("Loading second clip model from SDXL checkpoint")
replace_prefix2 = {}
replace_prefix2["conditioner.embedders.1.model."] = ""
sd = comfy.utils.state_dict_prefix_replace(sd, replace_prefix2, filter_keys=True)
clip_g = build_text_model_from_openai_state_dict(sd, cast_dtype=dtype)
self.model.conditioner.embedders[1].model = clip_g
except:
raise Exception("Failed to load second clip model from SDXL checkpoint")
del sd, clip_g
mm.soft_empty_cache()
self.model.to(dtype)
#only unets and/or vae to fp8
if fp8_unet:
self.model.model.to(torch.float8_e4m3fn)
if fp8_vae:
self.model.first_stage_model.to(torch.float8_e4m3fn)
if use_tiled_vae:
self.model.init_tile_vae(encoder_tile_size=encoder_tile_size_pixels, decoder_tile_size=decoder_tile_size_latent)
upscaled_image, = ImageScaleBy.upscale(self, image, resize_method, scale_by)
B, H, W, C = upscaled_image.shape
new_height = H if H % 64 == 0 else ((H // 64) + 1) * 64
new_width = W if W % 64 == 0 else ((W // 64) + 1) * 64
upscaled_image = upscaled_image.permute(0, 3, 1, 2)
resized_image = F.interpolate(upscaled_image, size=(new_height, new_width), mode='bicubic', align_corners=False)
resized_image = resized_image.to(device)
captions_list = []
captions_list.append(captions)
print("captions: ", captions_list)
use_linear_CFG = cfg_scale_start > 0
use_linear_control_scale = control_scale_start > 0
out = []
pbar = comfy.utils.ProgressBar(B)
batched_images = [resized_image[i:i + batch_size] for i in
range(0, len(resized_image), batch_size)]
captions_list = captions_list * resized_image.shape[0]
batched_captions = [captions_list[i:i + batch_size] for i in range(0, len(captions_list), batch_size)]
mm.soft_empty_cache()
i = 1
for imgs, caps in zip(batched_images, batched_captions):
try:
samples = self.model.batchify_sample(imgs, caps, num_steps=steps,
restoration_scale=restoration_scale, s_churn=s_churn,
s_noise=s_noise, cfg_scale=cfg_scale, control_scale=control_scale,
seed=seed,
num_samples=1, p_p=a_prompt, n_p=n_prompt,
color_fix_type=color_fix_type,
use_linear_CFG=use_linear_CFG,
use_linear_control_scale=use_linear_control_scale,
cfg_scale_start=cfg_scale_start,
control_scale_start=control_scale_start)
except torch.cuda.OutOfMemoryError as e:
mm.free_memory(mm.get_total_memory(mm.get_torch_device()), mm.get_torch_device())
self.model = None
mm.soft_empty_cache()
print("It's likely that too large of an image or batch_size for SUPIR was used,"
" and it has devoured all of the memory it had reserved, you may need to restart ComfyUI. Make sure you are using tiled_vae, "
" you can also try using fp8 for reduced memory usage if your system supports it.")
raise e
out.append(samples.squeeze(0).cpu())
print("Sampled ", i * len(imgs), " out of ", B)
i = i + 1
pbar.update(1)
if not keep_model_loaded:
self.model = None
mm.soft_empty_cache()
if len(out[0].shape) == 4:
out_stacked = torch.cat(out, dim=0).cpu().to(torch.float32).permute(0, 2, 3, 1)
else:
out_stacked = torch.stack(out, dim=0).cpu().to(torch.float32).permute(0, 2, 3, 1)
final_image, = ImageScale.upscale(self, out_stacked, resize_method, W, H, crop="disabled")
return (final_image,)
NODE_CLASS_MAPPINGS = {
"SUPIR_Upscale": SUPIR_Upscale
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SUPIR_Upscale": "SUPIR_Upscale"
}