|
32 | 32 |
|
33 | 33 |
|
34 | 34 | BASE_WEIGTHS_PATH = (
|
35 |
| - 'https://github.com/fchollet/deep-learning-models/' |
36 |
| - 'releases/download/v0.8/') |
| 35 | + 'https://github.com/keras-team/keras-applications/' |
| 36 | + 'releases/download/densenet/') |
37 | 37 | DENSENET121_WEIGHT_PATH = (
|
38 | 38 | BASE_WEIGTHS_PATH +
|
39 | 39 | 'densenet121_weights_tf_dim_ordering_tf_kernels.h5')
|
@@ -253,38 +253,38 @@ def DenseNet(blocks,
|
253 | 253 | 'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
|
254 | 254 | DENSENET121_WEIGHT_PATH,
|
255 | 255 | cache_subdir='models',
|
256 |
| - file_hash='0962ca643bae20f9b6771cb844dca3b0') |
| 256 | + file_hash='9d60b8095a5708f2dcce2bca79d332c7') |
257 | 257 | elif blocks == [6, 12, 32, 32]:
|
258 | 258 | weights_path = keras_utils.get_file(
|
259 | 259 | 'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
|
260 | 260 | DENSENET169_WEIGHT_PATH,
|
261 | 261 | cache_subdir='models',
|
262 |
| - file_hash='bcf9965cf5064a5f9eb6d7dc69386f43') |
| 262 | + file_hash='d699b8f76981ab1b30698df4c175e90b') |
263 | 263 | elif blocks == [6, 12, 48, 32]:
|
264 | 264 | weights_path = keras_utils.get_file(
|
265 | 265 | 'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
|
266 | 266 | DENSENET201_WEIGHT_PATH,
|
267 | 267 | cache_subdir='models',
|
268 |
| - file_hash='7bb75edd58cb43163be7e0005fbe95ef') |
| 268 | + file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807') |
269 | 269 | else:
|
270 | 270 | if blocks == [6, 12, 24, 16]:
|
271 | 271 | weights_path = keras_utils.get_file(
|
272 | 272 | 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
273 | 273 | DENSENET121_WEIGHT_PATH_NO_TOP,
|
274 | 274 | cache_subdir='models',
|
275 |
| - file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3') |
| 275 | + file_hash='30ee3e1110167f948a6b9946edeeb738') |
276 | 276 | elif blocks == [6, 12, 32, 32]:
|
277 | 277 | weights_path = keras_utils.get_file(
|
278 | 278 | 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
279 | 279 | DENSENET169_WEIGHT_PATH_NO_TOP,
|
280 | 280 | cache_subdir='models',
|
281 |
| - file_hash='50662582284e4cf834ce40ab4dfa58c6') |
| 281 | + file_hash='b8c4d4c20dd625c148057b9ff1c1176b') |
282 | 282 | elif blocks == [6, 12, 48, 32]:
|
283 | 283 | weights_path = keras_utils.get_file(
|
284 | 284 | 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
285 | 285 | DENSENET201_WEIGHT_PATH_NO_TOP,
|
286 | 286 | cache_subdir='models',
|
287 |
| - file_hash='1c2de60ee40562448dbac34a0737e798') |
| 287 | + file_hash='c13680b51ded0fb44dff2d8f86ac8bb1') |
288 | 288 | model.load_weights(weights_path)
|
289 | 289 | elif weights is not None:
|
290 | 290 | model.load_weights(weights)
|
|
0 commit comments