-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleConvAE.py
100 lines (92 loc) · 3.52 KB
/
SimpleConvAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Input
from tensorflow.keras.layers import Flatten, Dense, Reshape, Conv2D, Conv2DTranspose
import matplotlib.pyplot as plt
digits_mnist = keras.datasets.mnist
(train_images, _), (test_images, _) = digits_mnist.load_data()
input_shape = train_images.shape # (60000,28,28)
input_shape = (input_shape[1], input_shape[2], 1,)
print('input shape:', input_shape)
train_images = train_images.astype('float32')
test_images = test_images.astype('float32')
train_images = np.expand_dims(train_images, axis=3) # without extension - model.fit error
test_images = np.expand_dims(test_images, axis=3)
# ---Architecture of the encoder ---
# === ENCODER ====
inputs = Input(shape=input_shape)
# Conv1 (using stride = 2 instead of MaxPooling layer)
x = Conv2D(filters=8,
kernel_size=(3, 3),
strides=(2, 2),
padding="same",
activation="relu",
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros', )(inputs)
# Conv2
x = Conv2D(filters=2,
kernel_size=(3, 3),
strides=(2, 2),
padding="same",
activation="relu",
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros')(x)
x = Flatten()(x)
# Dense
x = Dense(units=24)(x)
# ==== DECODER =====
# Dense
y = Dense(7*7)(x)
y = Reshape((7, 7, 1))(y)
y = Conv2DTranspose(1, (3, 3), padding='same', strides=2, activation='relu',
use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros')(y)
# Conv1
y = Conv2DTranspose(2, (3, 3), padding='same', strides=2, activation='relu',
use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros')(y)
# Conv2
y = Conv2DTranspose(8, (3, 3), padding='same', strides=1, activation='relu',
use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros')(y)
# Conv3
y = Conv2DTranspose(1, (3, 3), padding='same', activation='relu',
use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros')(y) #sigmoid - output pixels in range [0,255]
# ----------------------
autoencoder = tf.keras.Model(inputs, y)
keras.utils.plot_model(autoencoder, to_file='CNN_AEv{i:d}.png'.format(i=ver),show_shapes=True)
# ---COMPILE MODEL---
autoencoder.compile(optimizer='Adam', loss='mse', metrics=['accuracy'])
# ----PRINT MODEL SUMMARY INTO A FILE -----
with open('CNN_AE_v{i:d}summary.txt'.format(i=ver),'w') as fh:
autoencoder.summary(print_fn=lambda x: fh.write(x + '\n'))
# ------TRAIN THE MODEL
epoch_no, batch_size = 5, 120
train_model = autoencoder.fit(train_images, train_images, epochs=epoch_no, batch_size=batch_size)
file_weights = 'weights.h1'
autoencoder.save_weights(file_weights)
#autoencoder.load_weights(file_weights)
# ---EVALUATION ---
test_loss, test_acc, = autoencoder.evaluate(test_images, test_images, verbose=2)
print('Test accuracy:', test_acc)
predictions = autoencoder.predict(test_images)
test_images = np.squeeze(test_images, axis=3)
predictions = np.squeeze(predictions, axis=3)
print(predictions.shape)
fig, axes = plt.subplots(4, 4)
ax = axes.ravel()
i = 0
while i <= (len(ax) - 1):
ax[i].axis('off')
ax[i].set_title('orig')
ax[i + 1].axis('off')
ax[i + 1].set_title('pred')
ax[i].imshow(test_images[i])
ax[i + 1].imshow(predictions[i])
i = i + 2
plt.savefig('digits{i:d}.png'.format(i=ver))
plt.show()