-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEnergy_prediction_Competition.py
315 lines (228 loc) · 15 KB
/
Energy_prediction_Competition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os, sys,site,pyodbc , pandas as pd,numpy as np , imp,sys,yaml , matplotlib.pyplot as plt , gc ,csv
from dateutil import parser
from datetime import date, timedelta
from dateutil.relativedelta import relativedelta
from catboost import CatBoostRegressor, Pool
from pylab import rcParams
from datetime import datetime
from copy import deepcopy
from pathlib import Path
#path ="/Boris/Projects/Brain/Energy_prediction_Competition-Kasun/Code_submitted"
path = Path(__file__).parents[0].absolute() # parents[0] => go one back ( like ../) to folder where the current __file__ is located
os.chdir(path)
print(path)
import Aux_Energy_prediction_Competition as Aux_Energy
imp.reload(Aux_Energy)
################################################
#Set required col names ########################
################################################
def set_config(is_to_plot = True,is_to_standardize=False):
###############################
#Set configuration object
###############################
agg_level={"months":0,'days':1}
item_col ="meter_id" ; y_label ="energy_agg" ; date_column ='date_only' ; pred_col = "prediction"
y_label_original_col = y_label #+ "_original"
# key_id_col = "key_ID"
key_columns = [item_col]
#Horize is 14 days ahead !
total_future_UNITS_to_forecast = horizon = 365
losses_function_optimize = "Quantile:alpha=0.45"#"RMSE"
is_residual_based_model = False
#Create configuration object with all column setups
conf_obj = Aux_Energy.Configuration_class(agg_level = agg_level.copy(), item_col =item_col ,\
date_column=date_column, pred_col=pred_col, y_label = y_label, y_label_original_col = y_label_original_col,
key_columns =key_columns ,
total_future_UNITS_to_forecast = total_future_UNITS_to_forecast,
losses_function_optimize = losses_function_optimize,
is_residual_based_model = is_residual_based_model,
is_to_plot = is_to_plot,is_to_standardize=is_to_standardize)
return(conf_obj)
#####################################################################
#Predict the test set
#####################################################################
#def predict_on_test(all_given_data_df,test_data_to_predict,CB_model,x_columns_numeric_to_remain , x_CAT_cols_to_remain , conf_obj) :
def predict_on_test(all_given_data_df,test_data_to_predict,CB_model,x_columns_all, cat_features , conf_obj) :
#Get months name
all_given_data_df['month_name'] = all_given_data_df[conf_obj.date_column].map(lambda x : x.strftime('%b'))#Get months name
#################################
#Predict on all given (trained)
#################################
all_given_data_to_predict_pool = Pool( data = all_given_data_df[x_columns_all ].copy(), cat_features = cat_features )
predictions = CB_model.predict(all_given_data_to_predict_pool)
#No negative predictions - BUT for residuals based solution there are !
if conf_obj.is_residual_based_model == False:
predictions[predictions < 0] = 0
#Set predictions for the TRAIN set
all_given_data_df.loc[:,conf_obj.pred_col] = predictions
##################
#Predict on test
#################
test_data_to_predict_pool = Pool( data = test_data_to_predict[x_columns_all ].copy(), cat_features = cat_features )
predictions = CB_model.predict(test_data_to_predict_pool)
predictions[predictions < 0] = 0
#Set predictions for the TEST set
test_data_to_predict.loc[:,conf_obj.pred_col] = predictions
###################################################################
#Run Shap go get shaply values per each sample in data to predict
###################################################################
#Set_of_TS_Models.run_shap_models(CB_model , x_train = df_full[x_columns_numeric + CAT_cols ])
(shaply_values,shaply_values_as_DF,shap_explainer) = \
Aux_Energy.get_shaply_values_from_Catboost(CB_model ,\
x_train = test_data_to_predict[x_columns_all ].copy(),\
x_train_pool = test_data_to_predict_pool , is_to_plot = False)
assert(len(shaply_values)==len(test_data_to_predict)),"Must have shaply value per row in shap_values !"
assert(len(shaply_values_as_DF)==len(test_data_to_predict)),"Must have shaply value per row in shap_values !"
#######################################################################
#Add key columns to shaply values df - to be able to do group by !
#######################################################################
#shaply_values_as_DF.loc[:,conf_obj.key_columns + [conf_obj.date_column] + [conf_obj.pred_col]] = test_data_to_predict[conf_obj.key_columns + [conf_obj.date_column] + [conf_obj.pred_col]]
cols = list(shaply_values_as_DF.columns) + conf_obj.key_columns + [conf_obj.date_column] + [conf_obj.pred_col]
shaply_values_as_DF = pd.concat([shaply_values_as_DF , test_data_to_predict[conf_obj.key_columns + [conf_obj.date_column] + [conf_obj.pred_col]] ],axis=1 , ignore_index=True)
shaply_values_as_DF.columns = cols
assert( np.all(shaply_values_as_DF[conf_obj.pred_col]==test_data_to_predict[conf_obj.pred_col]) ) ,"Sanity for prediction assignments was failed !"
shaply_values_as_DF.loc[:,"month_name"] = test_data_to_predict[conf_obj.date_column].map(lambda x : x.strftime('%b'))#Get months name
#Verify that I have the same number of smaples to predict per each meter id & the number is EQUAL to the horizon length
assert(shaply_values_as_DF.groupby(by="meter_id")[conf_obj.date_column].count().sort_values(ascending =False).value_counts().nunique() ==1)
assert(shaply_values_as_DF.groupby(by="meter_id")[conf_obj.date_column].count().value_counts().index[0] ==conf_obj.total_future_UNITS_to_forecast)
#shaply_values_as_DF.to_csv("shaply_values_as_DF.csv",index=False)
###################################################################
#Remove day/energy_mean of month from the shap values
###################################################################
"""
Based in "feature_importance_based_on_Shaply_values" day of month (1,2,3,....31) & energy_mean of last year
have high impact on daily prediction. BUT we are aggregating by month and year
so day of month isn't intersting'
"""
#shaply_values_as_DF_bck = shaply_values_as_DF.copy()
x_columns_all_filtered = x_columns_all.copy()
cols_to_remove =["day","energy_mean"]
for col_to_drop in cols_to_remove :
if col_to_drop not in x_columns_all:
continue
print(col_to_drop , "was dropped from text explanation generator ! ")
shaply_values_as_DF.drop([col_to_drop],axis=1,inplace=True) # Remove more than one attribute
x_columns_all_filtered.remove(col_to_drop) #remove from x_columns as well
######################################################################
#Columns that can be adapted to decrease/increase energy consumptions
######################################################################
#Numeric attributes (taken from "DataDescription-FUZZ.pdf" file
# which explains each attribute in the data input)
cols_that_changing_them_may_influnce_on_energy_consumptions = ['dishwasher', 'freezer', 'fridge_freezer', 'refrigerator', 'tumble_dryer', \
'washing_machine', 'game_console', 'laptop', 'pc', 'router', 'set_top_box', 'tablet', 'tv']
cols_that_changing_them_may_influnce_on_energy_consumptions_df = pd.DataFrame(cols_that_changing_them_may_influnce_on_energy_consumptions,columns=["changeable_cols"])
######################################################################
#Generate results
######################################################################
#Get sum of energy consumption per each type of household
meta_data_cols = ["dwelling_type","num_occupants","month_name"]
sum_energy_consumption_observed_per_month_per_similar_households = all_given_data_df.groupby(by=conf_obj.key_columns + meta_data_cols)['energy_agg'].sum().reset_index() #get sum of usage
sum_energy_consumption_observed_per_month_per_similar_households = sum_energy_consumption_observed_per_month_per_similar_households.groupby(by= meta_data_cols)['energy_agg'].mean().reset_index() #get mean of all sums
sum_energy_consumption_observed_per_month_per_similar_households[:4]
# dwelling_type num_occupants month_name energy_agg
# bungalow 1.000 Aug 145.682
# bungalow 1.000 Dec 113.216
# bungalow 1.000 Jul 137.695
# bungalow 1.000 Nov 151.553
cols = ["meter_id" ,"AnnualPRED","AnnualEXP","JanPRED","JanEXP","FebPRED","FebEXP","MarPRED","MarEXP","AprPRED","AprEXP","MayPRED","MayEXP","JunPRED","JunEXP","JulPRED","JulEXP","AugPRED","AugEXP","SepPRED","SepEXP","OctPRED","OctEXP","NovPRED","NovEXP","DecPRED","DecEXP"]
#cols = cols.replace("\t",",")
#pandarallel.initialize(nb_workers= int(os.cpu_count())-1, use_memory_fs = False ,progress_bar = False) #set num of cores ; parallel_apply
ans_df = all_given_data_df.groupby(by = conf_obj.key_columns,as_index=False).apply(generate_results_per_meter_id,shaply_values_as_DF,\
cols_that_changing_them_may_influnce_on_energy_consumptions_df,
sum_energy_consumption_observed_per_month_per_similar_households, meta_data_cols,\
conf_obj=conf_obj,x_columns = x_columns_all_filtered,top_n_features =3).reset_index(drop=True)
ans_df.columns = cols
assert(all_given_data_df.meter_id.nunique() == len(ans_df))
#string_cols = [col for col in cols if "EXP" in col]
#ans_df[string_cols] = ans_df[string_cols].astype(str)
#ans_df.to_csv("results_to_submit_21.csv",index = False,quoting=csv.QUOTE_NONNUMERIC)
return(ans_df)
###################################################################
######################## Generate results per meter id ############
###################################################################
def generate_results_per_meter_id(sub_df_per_meter_id , shaply_values_as_DF ,cols_that_changing_them_may_influnce_on_energy_consumptions_df,\
sum_energy_consumption_observed_per_month_per_similar_households,meta_data_cols, conf_obj ,x_columns,top_n_features = 3) :
#Get examined meter_id
meter_id = sub_df_per_meter_id[conf_obj.item_col].unique()[0]
assert(sub_df_per_meter_id[conf_obj.item_col].nunique()==1),"Only ONE unique meter-id MUST be here !"
#print(meter_id)
##########################
#Shap get yearly values
##########################
shap_sub_df = shaply_values_as_DF[shaply_values_as_DF[conf_obj.item_col] ==meter_id].copy()
shap_importance_yearly = Aux_Energy.get_importance_per_meter_id(shap_sub_df,conf_obj, x_columns = x_columns) #Per all sub_df NOT per month
shap_importance_yearly = shap_importance_yearly.sort_values(by="importance_mean",ascending=False) # sort from high to low "importance_mean"
####################################
#Actual values yearly and monthly
####################################
sum_energy_consumption_observed_per_month = sub_df_per_meter_id.groupby(by='month_name')['energy_agg'].sum() #actual monthly total energy consumption
# month_name
# Aug 130.809
# Dec 202.446
# Jul 140.212
# Jun 144.041
# May 116.811
# Nov 268.866
# Oct 153.194
# Sep 116.803
sum_energy_consumption_observed_per_year = sum_energy_consumption_observed_per_month.values.sum()#actual yearly total energy consumption
#809
########################################
#Model's predictions yearly and monthly
########################################
sum_energy_consumption_predicted_per_month = shap_sub_df.groupby(by='month_name')[conf_obj.pred_col].sum() #predicted monthly total energy consumption
num_of_observed_unique_months = len(sum_energy_consumption_observed_per_month) #num of historical months
# month_name
# Apr 213.894
# Aug 179.024
# Dec 210.261
# Feb 246.805
# Jan 275.645
# Jul 184.403
# Jun 182.607
# Mar 241.389
# May 143.624
# Nov 240.507
# Oct 177.348
# Sep 168.336
sum_energy_consumption_predicted_per_year = sum_energy_consumption_predicted_per_month.values.sum() #predicted yearly total energy consumption
#2463.843
################################################################################
#For meter ids without full data cycle (no 12 months in the history)
#so use similar arhouseholds
################################################################################
#To get usage for the similar meta data families
sum_energy_consumption_observed_per_month_per_similar_households_selected =\
sum_energy_consumption_observed_per_month_per_similar_households.merge(sub_df_per_meter_id[meta_data_cols].drop_duplicates(), left_on = meta_data_cols, right_on = meta_data_cols, how='inner').copy()
assert(len(sum_energy_consumption_observed_per_month_per_similar_households_selected) > 0 ),"must be data after the inner join!"
#Get predictions + auto generated text for yearly aggregations
yearly_result = Aux_Energy.generate_yearly_prediction_with_auto_generated_message(sum_energy_consumption_observed_per_year,sum_energy_consumption_predicted_per_year,\
shap_importance_yearly ,cols_that_changing_them_may_influnce_on_energy_consumptions_df, top_n_features ,num_of_observed_unique_months = num_of_observed_unique_months)
#List of month names
#list_of_month_names = shaply_values_as_DF['month_name'].unique()
list_of_month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
#Get predictions + auto generated text for monthly aggregations
monthly_result = Aux_Energy.generate_monthly_prediction_with_auto_generated_message(sum_energy_consumption_observed_per_month , sum_energy_consumption_predicted_per_month,\
sum_energy_consumption_observed_per_month_per_similar_households_selected ,\
cols_that_changing_them_may_influnce_on_energy_consumptions_df.copy(),\
shap_sub_df,top_n_features,conf_obj,x_columns ,list_of_month_names )
#Combine between yearly & monthly
yearly_result.extend(monthly_result)
yearly_result = [meter_id] + yearly_result
yearly_result_df = pd.DataFrame(yearly_result).T
return(yearly_result_df)
def main():
#Set font size
rcParams['figure.figsize'] = 16, 4 #14, 5
#Set configuration object
conf_obj = set_config(is_to_plot =True ,is_to_standardize =True )
#Load the data
(X_train, X_valid, y_train, y_valid,df_combined,test_data_to_predict,x_columns,cat_features,conf_obj) = Aux_Energy.load_data(path,conf_obj)
#Train a model
CB_last_model = Aux_Energy.execute_the_modeling_process(X_train, X_valid, y_train, y_valid,test_data_to_predict,x_columns,cat_features,conf_obj)
#Shaply + explain the results
results_to_submit_df = predict_on_test(X_train,test_data_to_predict, CB_last_model, x_columns , cat_features,conf_obj)
#Store the results to csv
results_to_submit_df.to_csv("results_to_submit_ver_X.csv",index = False,quoting=csv.QUOTE_NONNUMERIC)
if __name__ == "__main__":
main()