-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-operations-to-make-median-of-array-equal-to-k.py
58 lines (51 loc) · 1.89 KB
/
minimum-operations-to-make-median-of-array-equal-to-k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Time: O(n)
# Space: O(1)
import random
# quick select, greedy
class Solution(object):
def minOperationsToMakeMedianK(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def nth_element(nums, n, left=0, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
right = len(nums)-1
while left <= right:
pivot_idx = random.randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
nth_element(nums, len(nums)//2)
return (sum(max(nums[i]-k, 0) for i in xrange(len(nums)//2+1))+
sum(max(k-nums[i], 0) for i in xrange(len(nums)//2, len(nums))))
# Time: O(nlogn)
# Space: O(1)
# sort, greedy
class Solution2(object):
def minOperationsToMakeMedianK(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
nums.sort()
return (sum(max(nums[i]-k, 0) for i in xrange(len(nums)//2+1))+
sum(max(k-nums[i], 0) for i in xrange(len(nums)//2, len(nums))))