-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-edge-weight-equilibrium-queries-in-a-tree.py
203 lines (177 loc) · 6.73 KB
/
minimum-edge-weight-equilibrium-queries-in-a-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Time: O(r * (n + q)), r = max(w for _, _, w in edges)
# Space: O(r * n + q)
import collections
from functools import partial
# Template:
# https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20H/dependent_events3.py
# Tarjan's Offline LCA Algorithm
class UnionFind(object): # Time: O(n * alpha(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
self.ancestor = range(n) # added
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x, y = self.find_set(x), self.find_set(y)
if x == y:
return False
if self.rank[x] > self.rank[y]: # union by rank
x, y = y, x
self.set[x] = self.set[y]
if self.rank[x] == self.rank[y]:
self.rank[y] += 1
return True
def find_ancestor_of_set(self, x): # added
return self.ancestor[self.find_set(x)]
def update_ancestor_of_set(self, x): # added
self.ancestor[self.find_set(x)] = x
class TreeInfos(object): # Time: O(N), Space: O(N + Q), N is the number of nodes
def __init__(self, adj, pairs):
def preprocess(u, p, w): # modified
# depth of the node i
D[u] = 1 if p == -1 else D[p]+1
if w != -1: # added
cnt[w] += 1
CNT[u] = cnt[:] # added
def divide(u, p, w): # modified
stk.append(partial(postprocess, u, w)) # modified
for i in reversed(xrange(len(adj[u]))):
v, nw = adj[u][i]
if v == p:
continue
stk.append(partial(conquer, v, u))
stk.append(partial(divide, v, u, nw)) # modified
stk.append(partial(preprocess, u, p, w)) # modified
def conquer(u, p):
uf.union_set(u, p)
uf.update_ancestor_of_set(p)
def postprocess(u, w): # modified
lookup[u] = True
for v in pairs[u]:
if not lookup[v]:
continue
lca[min(u, v), max(u, v)] = uf.find_ancestor_of_set(v)
if w != -1: # added
cnt[w] -= 1
N = len(adj)
D, uf, lca = [0]*N, UnionFind(N), {}
CNT = [[0]*MAX_W for _ in xrange(N)] # added
cnt = [0]*MAX_W # added
stk, lookup = [], [False]*N
stk.append(partial(divide, 0, -1, -1)) # modified
while stk:
stk.pop()()
self.D, self.lca = D, lca
self.CNT = CNT # added
# Tarjan's Offline LCA Algorithm
MAX_W = 26
class Solution(object):
def minOperationsQueries(self, n, edges, queries):
"""
:type n: int
:type edges: List[List[int]]
:type queries: List[List[int]]
:rtype: List[int]
"""
adj = [[] for _ in xrange(n)]
for u, v, w in edges:
w -= 1
adj[u].append((v, w))
adj[v].append((u, w))
pairs = collections.defaultdict(set)
for a, b in queries:
pairs[a].add(b), pairs[b].add(a)
tree_infos = TreeInfos(adj, pairs)
result = [0]*len(queries)
for i, (a, b) in enumerate(queries):
lca = tree_infos.lca[min(a, b), max(a, b)]
result[i] = (tree_infos.D[a]+tree_infos.D[b]-2*tree_infos.D[lca])-max(tree_infos.CNT[a][w]+tree_infos.CNT[b][w]-2*tree_infos.CNT[lca][w] for w in xrange(MAX_W))
return result
# Time: O(r * (n + q) + nlogn + qlogn), r = max(w for _, _, w in edges)
# Space: O(r * n + nlogn)
import collections
from functools import partial
# Template:
# https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20H/dependent_events2.py
class TreeInfos2(object): # Time: O(NlogN), Space: O(NlogN), N is the number of nodes
def __init__(self, adj): # modified
def preprocess(u, p, w):
# depth of the node i
D[u] = 1 if p == -1 else D[p]+1
# ancestors of the node i
if p != -1:
P[u].append(p)
i = 0
while i < len(P[u]) and i < len(P[P[u][i]]):
P[u].append(P[P[u][i]][i])
i += 1
# the subtree of the node i is represented by traversal index L[i]..R[i]
C[0] += 1
L[u] = C[0]
if w != -1: # added
cnt[w] += 1
CNT[u] = cnt[:] # added
def divide(u, p, w): # modified
stk.append(partial(postprocess, u, w)) # modified
for i in reversed(xrange(len(adj[u]))):
v, nw = adj[u][i]
if v == p:
continue
stk.append(partial(divide, v, u, nw)) # modified
stk.append(partial(preprocess, u, p, w)) # modified
def postprocess(u, w): # modified
R[u] = C[0]
if w != -1: # added
cnt[w] -= 1
N = len(adj)
L, R, D, P, C = [0]*N, [0]*N, [0]*N, [[] for _ in xrange(N)], [-1]
CNT = [[0]*MAX_W for _ in xrange(N)] # added
cnt = [0]*MAX_W # added
stk = []
stk.append(partial(divide, 0, -1, -1)) # modified
while stk:
stk.pop()()
assert(C[0] == N-1)
self.L, self.R, self.D, self.P = L, R, D, P
self.CNT = CNT # added
# Template:
# https://github.com/kamyu104/FacebookHackerCup-2019/blob/master/Final%20Round/little_boat_on_the_sea.py
def is_ancestor(self, a, b): # includes itself
return self.L[a] <= self.L[b] <= self.R[b] <= self.R[a]
def lca(self, a, b):
if self.D[a] > self.D[b]:
a, b = b, a
if self.is_ancestor(a, b):
return a
for i in reversed(xrange(len(self.P[a]))): # O(logN)
if i < len(self.P[a]) and not self.is_ancestor(self.P[a][i], b):
a = self.P[a][i]
return self.P[a][0]
# binary lifting (online lca algorithm)
MAX_W = 26
class Solution2(object):
def minOperationsQueries(self, n, edges, queries):
"""
:type n: int
:type edges: List[List[int]]
:type queries: List[List[int]]
:rtype: List[int]
"""
adj = [[] for _ in xrange(n)]
for u, v, w in edges:
w -= 1
adj[u].append((v, w))
adj[v].append((u, w))
tree_infos = TreeInfos2(adj)
result = [0]*len(queries)
for i, (a, b) in enumerate(queries):
lca = tree_infos.lca(a, b)
result[i] = (tree_infos.D[a]+tree_infos.D[b]-2*tree_infos.D[lca])-max(tree_infos.CNT[a][w]+tree_infos.CNT[b][w]-2*tree_infos.CNT[lca][w] for w in xrange(MAX_W))
return result