-
Notifications
You must be signed in to change notification settings - Fork 245
/
app.py
356 lines (309 loc) · 14.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import uuid
import gradio as gr
import torch
import PIL
from PIL import Image
from pyramid_dit import PyramidDiTForVideoGeneration
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import threading
import random
# Global model cache
model_cache = {}
# Lock to ensure thread-safe access to the model cache
model_cache_lock = threading.Lock()
# Configuration
model_name = "pyramid_flux" # or pyramid_mmdit
model_repo = "rain1011/pyramid-flow-sd3" if model_name == "pyramid_mmdit" else "rain1011/pyramid-flow-miniflux"
model_dtype = "bf16" # Support bf16 and fp32
variants = {
'high': 'diffusion_transformer_768p', # For high-resolution version
'low': 'diffusion_transformer_384p' # For low-resolution version
}
required_file = 'config.json' # Ensure config.json is present
width_high = 1280
height_high = 768
width_low = 640
height_low = 384
cpu_offloading = True # enable cpu_offloading by default
# Get the current working directory and create a folder to store the model
current_directory = os.getcwd()
model_path = os.path.join(current_directory, "pyramid_flow_model") # Directory to store the model
# Download the model if not already present
def download_model_from_hf(model_repo, model_dir, variants, required_file):
need_download = False
if not os.path.exists(model_dir):
print(f"[INFO] Model directory '{model_dir}' does not exist. Initiating download...")
need_download = True
else:
# Check if all required files exist for each variant
for variant_key, variant_dir in variants.items():
variant_path = os.path.join(model_dir, variant_dir)
file_path = os.path.join(variant_path, required_file)
if not os.path.exists(file_path):
print(f"[WARNING] Required file '{required_file}' missing in '{variant_path}'.")
need_download = True
break
if need_download:
print(f"[INFO] Downloading model from '{model_repo}' to '{model_dir}'...")
try:
snapshot_download(
repo_id=model_repo,
local_dir=model_dir,
local_dir_use_symlinks=False,
repo_type='model'
)
print("[INFO] Model download complete.")
except Exception as e:
print(f"[ERROR] Failed to download the model: {e}")
raise
else:
print(f"[INFO] All required model files are present in '{model_dir}'. Skipping download.")
# Download model from Hugging Face if not present
download_model_from_hf(model_repo, model_path, variants, required_file)
# Function to initialize the model based on user options
def initialize_model(variant):
print(f"[INFO] Initializing model with variant='{variant}', using bf16 precision...")
# Determine the correct variant directory
variant_dir = variants['high'] if variant == '768p' else variants['low']
base_path = model_path # Pass the base model path
print(f"[DEBUG] Model base path: {base_path}")
# Verify that config.json exists in the variant directory
config_path = os.path.join(model_path, variant_dir, 'config.json')
if not os.path.exists(config_path):
print(f"[ERROR] config.json not found in '{os.path.join(model_path, variant_dir)}'.")
raise FileNotFoundError(f"config.json not found in '{os.path.join(model_path, variant_dir)}'.")
if model_dtype == "bf16":
torch_dtype_selected = torch.bfloat16
else:
torch_dtype_selected = torch.float32
# Initialize the model
try:
model = PyramidDiTForVideoGeneration(
base_path, # Pass the base model path
model_name=model_name, # set to pyramid_flux or pyramid_mmdit
model_dtype=model_dtype, # Use bf16
model_variant=variant_dir, # Pass the variant directory name
cpu_offloading=cpu_offloading, # Pass the CPU offloading flag
)
# Always enable tiling for the VAE
model.vae.enable_tiling()
# Remove manual device placement when using CPU offloading
# The components will be moved to the appropriate devices automatically
if torch.cuda.is_available():
torch.cuda.set_device(0)
# Manual device replacement when not using CPU offloading
if not cpu_offloading:
model.vae.to("cuda")
model.dit.to("cuda")
model.text_encoder.to("cuda")
else:
print("[WARNING] CUDA is not available. Proceeding without GPU.")
print("[INFO] Model initialized successfully.")
return model, torch_dtype_selected
except Exception as e:
print(f"[ERROR] Error initializing model: {e}")
raise
# Function to get the model from cache or initialize it
def initialize_model_cached(variant, seed):
key = variant
if seed == 0:
seed = random.randint(0, 2**8 - 1)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Check if the model is already in the cache
if key not in model_cache:
with model_cache_lock:
# Double-checked locking to prevent race conditions
if key not in model_cache:
model, dtype = initialize_model(variant)
model_cache[key] = (model, dtype)
return model_cache[key]
def resize_crop_image(img: PIL.Image.Image, tgt_width, tgt_height):
ori_width, ori_height = img.width, img.height
scale = max(tgt_width / ori_width, tgt_height / ori_height)
resized_width = round(ori_width * scale)
resized_height = round(ori_height * scale)
img = img.resize((resized_width, resized_height), resample=PIL.Image.LANCZOS)
left = (resized_width - tgt_width) / 2
top = (resized_height - tgt_height) / 2
right = (resized_width + tgt_width) / 2
bottom = (resized_height + tgt_height) / 2
# Crop the center of the image
img = img.crop((left, top, right, bottom))
return img
# Function to generate text-to-video
def generate_text_to_video(prompt, temp, guidance_scale, video_guidance_scale, resolution, seed, progress=gr.Progress()):
progress(0, desc="Loading model")
print("[DEBUG] generate_text_to_video called.")
variant = '768p' if resolution == "768p" else '384p'
height = height_high if resolution == "768p" else height_low
width = width_high if resolution == "768p" else width_low
def progress_callback(i, m):
progress(i/m)
# Initialize model based on user options using cached function
try:
model, torch_dtype_selected = initialize_model_cached(variant, seed)
except Exception as e:
print(f"[ERROR] Model initialization failed: {e}")
return f"Model initialization failed: {e}"
try:
print("[INFO] Starting text-to-video generation...")
with torch.no_grad(), torch.autocast('cuda', dtype=torch_dtype_selected):
frames = model.generate(
prompt=prompt,
num_inference_steps=[20, 20, 20],
video_num_inference_steps=[10, 10, 10],
height=height,
width=width,
temp=temp,
guidance_scale=guidance_scale,
video_guidance_scale=video_guidance_scale,
output_type="pil",
cpu_offloading=cpu_offloading,
save_memory=True,
callback=progress_callback,
)
print("[INFO] Text-to-video generation completed.")
except Exception as e:
print(f"[ERROR] Error during text-to-video generation: {e}")
return f"Error during video generation: {e}"
video_path = f"{str(uuid.uuid4())}_text_to_video_sample.mp4"
try:
export_to_video(frames, video_path, fps=24)
print(f"[INFO] Video exported to {video_path}.")
except Exception as e:
print(f"[ERROR] Error exporting video: {e}")
return f"Error exporting video: {e}"
return video_path
# Function to generate image-to-video
def generate_image_to_video(image, prompt, temp, video_guidance_scale, resolution, seed, progress=gr.Progress()):
progress(0, desc="Loading model")
print("[DEBUG] generate_image_to_video called.")
variant = '768p' if resolution == "768p" else '384p'
height = height_high if resolution == "768p" else height_low
width = width_high if resolution == "768p" else width_low
try:
image = resize_crop_image(image, width, height)
print("[INFO] Image resized and cropped successfully.")
except Exception as e:
print(f"[ERROR] Error processing image: {e}")
return f"Error processing image: {e}"
def progress_callback(i, m):
progress(i/m)
# Initialize model based on user options using cached function
try:
model, torch_dtype_selected = initialize_model_cached(variant, seed)
except Exception as e:
print(f"[ERROR] Model initialization failed: {e}")
return f"Model initialization failed: {e}"
try:
print("[INFO] Starting image-to-video generation...")
with torch.no_grad(), torch.autocast('cuda', dtype=torch_dtype_selected):
frames = model.generate_i2v(
prompt=prompt,
input_image=image,
num_inference_steps=[10, 10, 10],
temp=temp,
video_guidance_scale=video_guidance_scale,
output_type="pil",
cpu_offloading=cpu_offloading,
save_memory=True,
callback=progress_callback,
)
print("[INFO] Image-to-video generation completed.")
except Exception as e:
print(f"[ERROR] Error during image-to-video generation: {e}")
return f"Error during video generation: {e}"
video_path = f"{str(uuid.uuid4())}_image_to_video_sample.mp4"
try:
export_to_video(frames, video_path, fps=24)
print(f"[INFO] Video exported to {video_path}.")
except Exception as e:
print(f"[ERROR] Error exporting video: {e}")
return f"Error exporting video: {e}"
return video_path
def update_slider(resolution):
if resolution == "768p":
return [gr.update(maximum=31), gr.update(maximum=31)]
else:
return [gr.update(maximum=16), gr.update(maximum=16)]
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Pyramid Flow Video Generation Demo
Pyramid Flow is a training-efficient **Autoregressive Video Generation** model based on **Flow Matching**. It is trained only on open-source datasets within 20.7k A100 GPU hours.
[[Paper]](https://arxiv.org/abs/2410.05954) [[Project Page]](https://pyramid-flow.github.io) [[Code]](https://github.com/jy0205/Pyramid-Flow) [[Model]](https://huggingface.co/rain1011/pyramid-flow-sd3)
"""
)
# Shared settings
with gr.Row():
resolution_dropdown = gr.Dropdown(
choices=["768p", "384p"],
value="384p",
label="Model Resolution"
)
with gr.Tab("Text-to-Video"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Prompt (Less than 128 words)", placeholder="Enter a text prompt for the video", lines=2)
temp_slider = gr.Slider(1, 16, value=16, step=1, label="Duration")
guidance_scale_slider = gr.Slider(1.0, 15.0, value=9.0, step=0.1, label="Guidance Scale")
video_guidance_scale_slider = gr.Slider(1.0, 10.0, value=5.0, step=0.1, label="Video Guidance Scale")
text_seed = gr.Number(label="Inference Seed (Enter a positive number, 0 for random)", value=0)
txt_generate = gr.Button("Generate Video")
with gr.Column():
txt_output = gr.Video(label="Generated Video")
gr.Examples(
examples=[
["A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors", 16, 7.0, 5.0, "384p"],
["Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are flying through the wind along with snowflakes", 16, 7.0, 5.0, "384p"],
# ["Extreme close-up of chicken and green pepper kebabs grilling on a barbeque with flames. Shallow focus and light smoke. vivid colours", 31, 9.0, 5.0, "768p"],
],
inputs=[text_prompt, temp_slider, guidance_scale_slider, video_guidance_scale_slider, resolution_dropdown, text_seed],
outputs=[txt_output],
fn=generate_text_to_video,
cache_examples='lazy',
)
with gr.Tab("Image-to-Video"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Input Image")
image_prompt = gr.Textbox(label="Prompt (Less than 128 words)", placeholder="Enter a text prompt for the video", lines=2)
image_temp_slider = gr.Slider(2, 16, value=16, step=1, label="Duration")
image_video_guidance_scale_slider = gr.Slider(1.0, 7.0, value=4.0, step=0.1, label="Video Guidance Scale")
image_seed = gr.Number(label="Inference Seed (Enter a positive number, 0 for random)", value=0)
img_generate = gr.Button("Generate Video")
with gr.Column():
img_output = gr.Video(label="Generated Video")
gr.Examples(
examples=[
['assets/the_great_wall.jpg', 'FPV flying over the Great Wall', 16, 4.0, "384p"]
],
inputs=[image_input, image_prompt, image_temp_slider, image_video_guidance_scale_slider, resolution_dropdown, image_seed],
outputs=[img_output],
fn=generate_image_to_video,
cache_examples='lazy',
)
# Update generate functions to include resolution options
txt_generate.click(
generate_text_to_video,
inputs=[text_prompt, temp_slider, guidance_scale_slider, video_guidance_scale_slider, resolution_dropdown, text_seed],
outputs=txt_output
)
img_generate.click(
generate_image_to_video,
inputs=[image_input, image_prompt, image_temp_slider, image_video_guidance_scale_slider, resolution_dropdown, image_seed],
outputs=img_output
)
resolution_dropdown.change(
fn=update_slider,
inputs=resolution_dropdown,
outputs=[temp_slider, image_temp_slider]
)
# Launch Gradio app
demo.launch(share=True)