Skip to content

Latest commit

 

History

History
558 lines (519 loc) · 16.9 KB

tensors.rst

File metadata and controls

558 lines (519 loc) · 16.9 KB
.. currentmodule:: torch

torch.Tensor

A :class:`torch.Tensor` is a multi-dimensional matrix containing elements of a single data type.

Torch defines 10 tensor types with CPU and GPU variants:

Data type dtype CPU tensor GPU tensor
32-bit floating point torch.float32 or torch.float :class:`torch.FloatTensor` :class:`torch.cuda.FloatTensor`
64-bit floating point torch.float64 or torch.double :class:`torch.DoubleTensor` :class:`torch.cuda.DoubleTensor`
16-bit floating point [1] torch.float16 or torch.half :class:`torch.HalfTensor` :class:`torch.cuda.HalfTensor`
16-bit floating point [2] torch.bfloat16 :class:`torch.BFloat16Tensor` :class:`torch.cuda.BFloat16Tensor`
32-bit complex torch.complex32    
64-bit complex torch.complex64    
128-bit complex torch.complex128 or torch.cdouble    
8-bit integer (unsigned) torch.uint8 :class:`torch.ByteTensor` :class:`torch.cuda.ByteTensor`
8-bit integer (signed) torch.int8 :class:`torch.CharTensor` :class:`torch.cuda.CharTensor`
16-bit integer (signed) torch.int16 or torch.short :class:`torch.ShortTensor` :class:`torch.cuda.ShortTensor`
32-bit integer (signed) torch.int32 or torch.int :class:`torch.IntTensor` :class:`torch.cuda.IntTensor`
64-bit integer (signed) torch.int64 or torch.long :class:`torch.LongTensor` :class:`torch.cuda.LongTensor`
Boolean torch.bool :class:`torch.BoolTensor` :class:`torch.cuda.BoolTensor`
[1]Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range.
[2]Sometimes referred to as Brain Floating Point: use 1 sign, 8 exponent and 7 significand bits. Useful when range is important, since it has the same number of exponent bits as float32

:class:`torch.Tensor` is an alias for the default tensor type (:class:`torch.FloatTensor`).

A tensor can be constructed from a Python :class:`list` or sequence using the :func:`torch.tensor` constructor:

>>> torch.tensor([[1., -1.], [1., -1.]])
tensor([[ 1.0000, -1.0000],
        [ 1.0000, -1.0000]])
>>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
tensor([[ 1,  2,  3],
        [ 4,  5,  6]])

Warning

:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor :attr:`data` and just want to change its requires_grad flag, use :meth:`~torch.Tensor.requires_grad_` or :meth:`~torch.Tensor.detach` to avoid a copy. If you have a numpy array and want to avoid a copy, use :func:`torch.as_tensor`.

A tensor of specific data type can be constructed by passing a :class:`torch.dtype` and/or a :class:`torch.device` to a constructor or tensor creation op:

>>> torch.zeros([2, 4], dtype=torch.int32)
tensor([[ 0,  0,  0,  0],
        [ 0,  0,  0,  0]], dtype=torch.int32)
>>> cuda0 = torch.device('cuda:0')
>>> torch.ones([2, 4], dtype=torch.float64, device=cuda0)
tensor([[ 1.0000,  1.0000,  1.0000,  1.0000],
        [ 1.0000,  1.0000,  1.0000,  1.0000]], dtype=torch.float64, device='cuda:0')

The contents of a tensor can be accessed and modified using Python's indexing and slicing notation:

>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> print(x[1][2])
tensor(6)
>>> x[0][1] = 8
>>> print(x)
tensor([[ 1,  8,  3],
        [ 4,  5,  6]])

Use :meth:`torch.Tensor.item` to get a Python number from a tensor containing a single value:

>>> x = torch.tensor([[1]])
>>> x
tensor([[ 1]])
>>> x.item()
1
>>> x = torch.tensor(2.5)
>>> x
tensor(2.5000)
>>> x.item()
2.5

A tensor can be created with :attr:`requires_grad=True` so that :mod:`torch.autograd` records operations on them for automatic differentiation.

>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)
>>> out = x.pow(2).sum()
>>> out.backward()
>>> x.grad
tensor([[ 2.0000, -2.0000],
        [ 2.0000,  2.0000]])

Each tensor has an associated :class:`torch.Storage`, which holds its data. The tensor class also provides multi-dimensional, strided view of a storage and defines numeric operations on it.

Note

For more information on tensor views, see :ref:`tensor-view-doc`.

Note

Methods which mutate a tensor are marked with an underscore suffix. For example, :func:`torch.FloatTensor.abs_` computes the absolute value in-place and returns the modified tensor, while :func:`torch.FloatTensor.abs` computes the result in a new tensor.

Note

To change an existing tensor's :class:`torch.device` and/or :class:`torch.dtype`, consider using :meth:`~torch.Tensor.to` method on the tensor.

Warning

Current implementation of :class:`torch.Tensor` introduces memory overhead, thus it might lead to unexpectedly high memory usage in the applications with many tiny tensors. If this is your case, consider using one large structure.

There are a few main ways to create a tensor, depending on your use case.

  • To create a tensor with pre-existing data, use :func:`torch.tensor`.
  • To create a tensor with specific size, use torch.* tensor creation ops (see :ref:`tensor-creation-ops`).
  • To create a tensor with the same size (and similar types) as another tensor, use torch.*_like tensor creation ops (see :ref:`tensor-creation-ops`).
  • To create a tensor with similar type but different size as another tensor, use tensor.new_* creation ops.
.. automethod:: new_tensor
.. automethod:: new_full
.. automethod:: new_empty
.. automethod:: new_ones
.. automethod:: new_zeros

.. autoattribute:: is_cuda
.. autoattribute:: is_quantized
.. autoattribute:: is_meta
.. autoattribute:: device
.. autoattribute:: grad
   :noindex:
.. autoattribute:: ndim
.. autoattribute:: T
.. autoattribute:: real
.. autoattribute:: imag

.. automethod:: abs
.. automethod:: abs_
.. automethod:: absolute
.. automethod:: absolute_
.. automethod:: acos
.. automethod:: acos_
.. automethod:: add
.. automethod:: add_
.. automethod:: addbmm
.. automethod:: addbmm_
.. automethod:: addcdiv
.. automethod:: addcdiv_
.. automethod:: addcmul
.. automethod:: addcmul_
.. automethod:: addmm
.. automethod:: addmm_
.. automethod:: addmv
.. automethod:: addmv_
.. automethod:: addr
.. automethod:: addr_
.. automethod:: allclose
.. automethod:: angle
.. automethod:: apply_
.. automethod:: argmax
.. automethod:: argmin
.. automethod:: argsort
.. automethod:: asin
.. automethod:: asin_
.. automethod:: as_strided
.. automethod:: atan
.. automethod:: atan2
.. automethod:: atan2_
.. automethod:: atan_
.. automethod:: backward
   :noindex:
.. automethod:: baddbmm
.. automethod:: baddbmm_
.. automethod:: bernoulli
.. automethod:: bernoulli_
.. automethod:: bfloat16
.. automethod:: bincount
.. automethod:: bitwise_not
.. automethod:: bitwise_not_
.. automethod:: bitwise_and
.. automethod:: bitwise_and_
.. automethod:: bitwise_or
.. automethod:: bitwise_or_
.. automethod:: bitwise_xor
.. automethod:: bitwise_xor_
.. automethod:: bmm
.. automethod:: bool
.. automethod:: byte
.. automethod:: cauchy_
.. automethod:: ceil
.. automethod:: ceil_
.. automethod:: char
.. automethod:: cholesky
.. automethod:: cholesky_inverse
.. automethod:: cholesky_solve
.. automethod:: chunk
.. automethod:: clamp
.. automethod:: clamp_
.. automethod:: clone
.. automethod:: contiguous
.. automethod:: copy_
.. automethod:: conj
.. automethod:: cos
.. automethod:: cos_
.. automethod:: cosh
.. automethod:: cosh_
.. automethod:: count_nonzero
.. automethod:: acosh
.. automethod:: acosh_
.. automethod:: cpu
.. automethod:: cross
.. automethod:: cuda
.. automethod:: logcumsumexp
.. automethod:: cummax
.. automethod:: cummin
.. automethod:: cumprod
.. automethod:: cumsum
.. automethod:: data_ptr
.. automethod:: deg2rad
.. automethod:: dequantize
.. automethod:: det
.. automethod:: dense_dim
.. automethod:: detach
   :noindex:
.. automethod:: detach_
   :noindex:
.. automethod:: diag
.. automethod:: diag_embed
.. automethod:: diagflat
.. automethod:: diagonal
.. automethod:: fill_diagonal_
.. automethod:: digamma
.. automethod:: digamma_
.. automethod:: dim
.. automethod:: dist
.. automethod:: div
.. automethod:: div_
.. automethod:: dot
.. automethod:: double
.. automethod:: eig
.. automethod:: element_size
.. automethod:: eq
.. automethod:: eq_
.. automethod:: equal
.. automethod:: erf
.. automethod:: erf_
.. automethod:: erfc
.. automethod:: erfc_
.. automethod:: erfinv
.. automethod:: erfinv_
.. automethod:: exp
.. automethod:: exp_
.. automethod:: expm1
.. automethod:: expm1_
.. automethod:: expand
.. automethod:: expand_as
.. automethod:: exponential_
.. automethod:: fft
.. automethod:: fill_
.. automethod:: flatten
.. automethod:: flip
.. automethod:: fliplr
.. automethod:: flipud
.. automethod:: float
.. automethod:: floor
.. automethod:: floor_
.. automethod:: floor_divide
.. automethod:: floor_divide_
.. automethod:: fmod
.. automethod:: fmod_
.. automethod:: frac
.. automethod:: frac_
.. automethod:: gather
.. automethod:: ge
.. automethod:: ge_
.. automethod:: geometric_
.. automethod:: geqrf
.. automethod:: ger
.. automethod:: get_device
.. automethod:: gt
.. automethod:: gt_
.. automethod:: half
.. automethod:: hardshrink
.. automethod:: histc
.. automethod:: ifft
.. automethod:: index_add_
.. automethod:: index_add
.. automethod:: index_copy_
.. automethod:: index_copy
.. automethod:: index_fill_
.. automethod:: index_fill
.. automethod:: index_put_
.. automethod:: index_put
.. automethod:: index_select
.. automethod:: indices
.. automethod:: int
.. automethod:: int_repr
.. automethod:: inverse
.. automethod:: irfft
.. automethod:: isclose
.. automethod:: isfinite
.. automethod:: isinf
.. automethod:: isnan
.. automethod:: is_contiguous
.. automethod:: is_complex
.. automethod:: is_floating_point
.. autoattribute:: is_leaf
   :noindex:
.. automethod:: is_pinned
.. automethod:: is_set_to
.. automethod:: is_shared
.. automethod:: is_signed
.. autoattribute:: is_sparse
.. automethod:: istft
.. automethod:: item
.. automethod:: kthvalue
.. automethod:: le
.. automethod:: le_
.. automethod:: lerp
.. automethod:: lerp_
.. automethod:: lgamma
.. automethod:: lgamma_
.. automethod:: log
.. automethod:: log_
.. automethod:: logdet
.. automethod:: log10
.. automethod:: log10_
.. automethod:: log1p
.. automethod:: log1p_
.. automethod:: log2
.. automethod:: log2_
.. automethod:: log_normal_
.. automethod:: logaddexp
.. automethod:: logaddexp2
.. automethod:: logsumexp
.. automethod:: logical_and
.. automethod:: logical_and_
.. automethod:: logical_not
.. automethod:: logical_not_
.. automethod:: logical_or
.. automethod:: logical_or_
.. automethod:: logical_xor
.. automethod:: logical_xor_
.. automethod:: long
.. automethod:: lstsq
.. automethod:: lt
.. automethod:: lt_
.. automethod:: lu
.. automethod:: lu_solve
.. automethod:: as_subclass
.. automethod:: map_
.. automethod:: masked_scatter_
.. automethod:: masked_scatter
.. automethod:: masked_fill_
.. automethod:: masked_fill
.. automethod:: masked_select
.. automethod:: matmul
.. automethod:: matrix_power
.. automethod:: max
.. automethod:: mean
.. automethod:: median
.. automethod:: min
.. automethod:: mm
.. automethod:: mode
.. automethod:: mul
.. automethod:: mul_
.. automethod:: multinomial
.. automethod:: mv
.. automethod:: mvlgamma
.. automethod:: mvlgamma_
.. automethod:: narrow
.. automethod:: narrow_copy
.. automethod:: ndimension
.. automethod:: ne
.. automethod:: ne_
.. automethod:: neg
.. automethod:: neg_
.. automethod:: nelement
.. automethod:: nonzero
.. automethod:: norm
.. automethod:: normal_
.. automethod:: numel
.. automethod:: numpy
.. automethod:: orgqr
.. automethod:: ormqr
.. automethod:: permute
.. automethod:: pin_memory
.. automethod:: pinverse
.. automethod:: polygamma
.. automethod:: polygamma_
.. automethod:: pow
.. automethod:: pow_
.. automethod:: prod
.. automethod:: put_
.. automethod:: qr
.. automethod:: qscheme
.. automethod:: q_scale
.. automethod:: q_zero_point
.. automethod:: q_per_channel_scales
.. automethod:: q_per_channel_zero_points
.. automethod:: q_per_channel_axis
.. automethod:: rad2deg
.. automethod:: random_
.. automethod:: reciprocal
.. automethod:: reciprocal_
.. automethod:: record_stream
.. automethod:: register_hook
   :noindex:
.. automethod:: remainder
.. automethod:: remainder_
.. automethod:: renorm
.. automethod:: renorm_
.. automethod:: repeat
.. automethod:: repeat_interleave
.. autoattribute:: requires_grad
   :noindex:
.. automethod:: requires_grad_
.. automethod:: reshape
.. automethod:: reshape_as
.. automethod:: resize_
.. automethod:: resize_as_
.. automethod:: retain_grad
   :noindex:
.. automethod:: rfft
.. automethod:: roll
.. automethod:: rot90
.. automethod:: round
.. automethod:: round_
.. automethod:: rsqrt
.. automethod:: rsqrt_
.. automethod:: scatter
.. automethod:: scatter_
.. automethod:: scatter_add_
.. automethod:: scatter_add
.. automethod:: select
.. automethod:: set_
.. automethod:: share_memory_
.. automethod:: short
.. automethod:: sigmoid
.. automethod:: sigmoid_
.. automethod:: sign
.. automethod:: sign_
.. automethod:: sin
.. automethod:: sin_
.. automethod:: sinh
.. automethod:: sinh_
.. automethod:: asinh
.. automethod:: asinh_
.. automethod:: size
.. automethod:: slogdet
.. automethod:: solve
.. automethod:: sort
.. automethod:: split
.. automethod:: sparse_mask
.. automethod:: sparse_dim
.. automethod:: sqrt
.. automethod:: sqrt_
.. automethod:: square
.. automethod:: square_
.. automethod:: squeeze
.. automethod:: squeeze_
.. automethod:: std
.. automethod:: stft
.. automethod:: storage
.. automethod:: storage_offset
.. automethod:: storage_type
.. automethod:: stride
.. automethod:: sub
.. automethod:: sub_
.. automethod:: sum
.. automethod:: sum_to_size
.. automethod:: svd
.. automethod:: symeig
.. automethod:: t
.. automethod:: t_
.. automethod:: to
.. automethod:: to_mkldnn
.. automethod:: take
.. automethod:: tan
.. automethod:: tan_
.. automethod:: tanh
.. automethod:: tanh_
.. automethod:: atanh
.. automethod:: atanh_
.. automethod:: tolist
.. automethod:: topk
.. automethod:: to_sparse
.. automethod:: trace
.. automethod:: transpose
.. automethod:: transpose_
.. automethod:: triangular_solve
.. automethod:: tril
.. automethod:: tril_
.. automethod:: triu
.. automethod:: triu_
.. automethod:: true_divide
.. automethod:: true_divide_
.. automethod:: trunc
.. automethod:: trunc_
.. automethod:: type
.. automethod:: type_as
.. automethod:: unbind
.. automethod:: unfold
.. automethod:: uniform_
.. automethod:: unique
.. automethod:: unique_consecutive
.. automethod:: unsqueeze
.. automethod:: unsqueeze_
.. automethod:: values
.. automethod:: var
.. automethod:: view
.. automethod:: view_as
.. automethod:: where
.. automethod:: zero_

The following methods are unique to :class:`torch.BoolTensor`.

.. automethod:: all
.. automethod:: any