-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
383 lines (289 loc) · 12.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import math
import json
import torch
import random
import datetime
import argparse
from torch.utils.data import DataLoader, Dataset, Sampler
import torch.nn.functional as F
# class Attacker_Dataset(Dataset):
# def __init__(self, mode, pos_data_dir, neg_data_dir, tokenizer):
# with open(pos_data_dir, 'r') as f:
# pos_data = json.load(f)
# with open(neg_data_dir, 'r') as f:
# neg_data = json.load(f)
# if mode == 'train':
# self.pos_data = pos_data[:int(0.9*len(pos_data))]
# self.neg_data = neg_data[:int(0.9*len(neg_data))]
# else:
# self.pos_data = pos_data[int(0.9*len(pos_data)):]
# self.neg_data = neg_data[int(0.9*len(neg_data)):]
# self.label = [1] * len(self.pos_data) + [0] * len(self.neg_data)
# self.data = self.pos_data + self.neg_data
# # shuffle
# random.seed(42)
# random.shuffle(self.data)
# random.seed(42)
# random.shuffle(self.label)
# self.pos_length = len(self.pos_data)
# self.neg_length = len(self.neg_data)
# self.total_length = len(self.data)
# print('data length, pos length, neg length: ', self.total_length, self.pos_length, self.neg_length)
# self.tokenizer = tokenizer
# def __len__(self):
# return self.total_length
# def __getitem__(self, index):
# record = self.data[index]
# label = self.label[index]
# # 不用instruction
# source_text = record['input']
# # source_text = record['instruction'] + record['input']
# target_text = record['output']
# input_ids = self.tokenizer.encode(
# source_text, padding=True, truncation=True, max_length=512)
# target_ids = self.tokenizer.encode(
# target_text, padding=True, truncation=True, max_length=512)
# out_dict = {}
# out_dict['input_ids'] = torch.LongTensor(input_ids)
# out_dict['input_length'] = len(input_ids)
# out_dict['target_ids'] = torch.LongTensor(target_ids)
# out_dict['target_length'] = len(target_ids)
# out_dict['label'] = label
# return out_dict
# def collate_fn(self, batch):
# batch_entry = {}
# B = len(batch)
# S_W_L = max(entry['input_length'] for entry in batch)
# T_W_L = max(entry['target_length'] for entry in batch)
# input_ids = torch.ones(B, S_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
# target_ids = torch.ones(B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
# labels = torch.ones(B, dtype=torch.float)
# for i, entry in enumerate(batch):
# input_ids[i, :entry['input_length']] = entry['input_ids']
# target_ids[i, :entry['target_length']] = entry['target_ids']
# labels[i] = entry['label']
# word_mask = target_ids != self.tokenizer.pad_token_id
# target_ids[~word_mask] = -100
# batch_entry['input_ids'] = input_ids
# batch_entry['target_ids'] = target_ids
# batch_entry['labels'] = labels
# return batch_entry
# def get_attacker_loader(mode, pos_path, neg_path, tokenizer, batch_size):
# dataset = Attacker_Dataset(mode, pos_path, neg_path, tokenizer)
# if mode == 'train':
# loader = DataLoader(
# dataset, batch_size=batch_size, shuffle=True,
# num_workers=4, collate_fn=dataset.collate_fn)
# else:
# loader = DataLoader(
# dataset, batch_size=batch_size, shuffle=False,
# num_workers=4, collate_fn=dataset.collate_fn, drop_last=False)
# return loader
class Random_Dataset(Dataset):
def __init__(self, data_dir, tokenizer):
with open(data_dir, 'r') as f:
self.data = json.load(f)
self.total_length = len(self.data)
print('data length: ', self.total_length)
self.tokenizer = tokenizer
def __len__(self):
return self.total_length
def __getitem__(self, index):
record = self.data[index]
# 不用instruction
source_text = record['input']
# source_text = record['instruction'] + record['input']
if 'Yes' in record['output']:
target_text = 'No.'
elif 'No' in record['output']:
target_text = 'Yes.'
input_ids = self.tokenizer.encode(
source_text, padding=True, truncation=True, max_length=512)
target_ids = self.tokenizer.encode(
target_text, padding=True, truncation=True, max_length=512)
out_dict = {}
out_dict['input_ids'] = torch.LongTensor(input_ids)
out_dict['input_length'] = len(input_ids)
out_dict['target_ids'] = torch.LongTensor(target_ids)
out_dict['target_length'] = len(target_ids)
return out_dict
def collate_fn(self, batch):
batch_entry = {}
B = len(batch)
S_W_L = max(entry['input_length'] for entry in batch)
T_W_L = max(entry['target_length'] for entry in batch)
input_ids = torch.ones(B, S_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
target_ids = torch.ones(B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
for i, entry in enumerate(batch):
input_ids[i, :entry['input_length']] = entry['input_ids']
target_ids[i, :entry['target_length']] = entry['target_ids']
word_mask = target_ids != self.tokenizer.pad_token_id
target_ids[~word_mask] = -100
batch_entry['input_ids'] = input_ids
batch_entry['target_ids'] = target_ids
return batch_entry
def get_random_loader(mode, path, tokenizer, batch_size):
dataset = Random_Dataset(path, tokenizer)
if mode == 'train':
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True,
num_workers=4, collate_fn=dataset.collate_fn)
else:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=False,
num_workers=4, collate_fn=dataset.collate_fn, drop_last=False)
return loader
class My_Dataset(Dataset):
def __init__(self, data_dir, tokenizer):
with open(data_dir, 'r') as f:
self.data = json.load(f)
self.total_length = len(self.data)
print('data length: ', self.total_length)
self.tokenizer = tokenizer
def __len__(self):
return self.total_length
def __getitem__(self, index):
record = self.data[index]
# 不用instruction
source_text = record['input']
# source_text = record['instruction'] + record['input']
target_text = record['output']
input_ids = self.tokenizer.encode(
source_text, padding=True, truncation=True, max_length=512)
target_ids = self.tokenizer.encode(
target_text, padding=True, truncation=True, max_length=512)
out_dict = {}
out_dict['input_ids'] = torch.LongTensor(input_ids)
out_dict['input_length'] = len(input_ids)
out_dict['target_ids'] = torch.LongTensor(target_ids)
out_dict['target_length'] = len(target_ids)
return out_dict
def collate_fn(self, batch):
batch_entry = {}
B = len(batch)
S_W_L = max(entry['input_length'] for entry in batch)
T_W_L = max(entry['target_length'] for entry in batch)
input_ids = torch.ones(B, S_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
target_ids = torch.ones(B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
for i, entry in enumerate(batch):
input_ids[i, :entry['input_length']] = entry['input_ids']
target_ids[i, :entry['target_length']] = entry['target_ids']
word_mask = target_ids != self.tokenizer.pad_token_id
target_ids[~word_mask] = -100
batch_entry['input_ids'] = input_ids
batch_entry['target_ids'] = target_ids
return batch_entry
def get_loader(mode, path, tokenizer, batch_size):
dataset = My_Dataset(path, tokenizer)
if mode == 'train':
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True,
num_workers=4, collate_fn=dataset.collate_fn)
else:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=False,
num_workers=4, collate_fn=dataset.collate_fn, drop_last=False)
return loader
def compute_kl(pretrained_model, current_model, batch):
normal_outputs = current_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
with torch.no_grad():
pretrained_outputs = pretrained_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
pretrained_outputs = pretrained_outputs.detach()
# P: pretrained model; Q: current model.
prob_p = torch.nn.functional.softmax(pretrained_outputs, -1)
prob_q = torch.nn.functional.softmax(normal_outputs, -1)
loss = -(prob_p * torch.log(prob_q + 1e-12)).sum(-1).mean()
return loss
def compute_forced_kl(pretrained_model, forget_model, current_model, batch, alpha):
normal_outputs = current_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
with torch.no_grad():
pretrained_outputs = pretrained_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
pretrained_outputs = pretrained_outputs.detach()
forget_outputs = forget_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
forget_outputs = forget_outputs.detach()
forced_logits = pretrained_outputs - alpha * F.relu(forget_outputs - pretrained_outputs)
prob_p = torch.nn.functional.softmax(forced_logits, -1)
prob_q = torch.nn.functional.softmax(normal_outputs, -1)
loss = -(prob_p * torch.log(prob_q + 1e-12)).sum(-1).mean()
return loss
def compute_forced_kl_2(pretrained_model, forget_model, current_model, batch, alpha, T):
normal_outputs = current_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
with torch.no_grad():
pretrained_outputs = pretrained_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
pretrained_outputs = pretrained_outputs.detach()
forget_outputs = forget_model(
batch["input_ids"],
labels=batch["target_ids"],
).logits
forget_outputs = forget_outputs.detach()
forced_logits = pretrained_outputs - alpha * F.relu(forget_outputs - pretrained_outputs)
prob_p = F.log_softmax(forced_logits/T, -1)
prob_q = F.softmax(normal_outputs/T, -1)
loss = F.kl_div(prob_p, prob_q, size_average=False) * (T**2) / forced_logits.shape[0]
return loss
def get_answer_loss( batch, model):
input_ids, labels = (
batch["input_ids"],
batch["target_ids"],
)
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
return loss
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def now_time():
return '[' + datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') + ']: '
def evaluate_ndcg(user2item_test, user2items_top, top_k):
dcgs = [1 / math.log2(i + 2) for i in range(top_k)]
ndcg = 0
for u, items in user2items_top.items():
ground_truth = set(user2item_test[u])
dcg = 0
count = 0
for idx, item in enumerate(items[:top_k]):
if item in ground_truth:
dcg += dcgs[idx]
count += 1
if count > 0:
dcg = dcg / sum(dcgs[:count])
ndcg += dcg
return ndcg / len(user2item_test)
def evaluate_hr(user2item_test, user2items_top, top_k):
total = 0
for u, items in user2items_top.items():
ground_truth = set(user2item_test[u])
count = 0
for item in items[:top_k]:
if item in ground_truth:
count += 1
total += count / len(ground_truth)
return total / len(user2item_test)
def ids2tokens(ids, tokenizer):
text = tokenizer.decode(ids, skip_special_tokens=True)
return text.split()