-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsisa_evaluate.py
152 lines (114 loc) · 5.95 KB
/
sisa_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import torch
import argparse
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration
from accelerate import Accelerator
from utils import now_time, str2bool, get_loader
from sklearn.metrics import roc_auc_score, log_loss, accuracy_score
import numpy as np
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
def main(args):
accelerator = Accelerator()
print(now_time() + 'Loading data')
device = accelerator.device
# 这里要相应修改
model_path_0 = args.checkpoint + 'ml-1m-base-0-0.2-0.0005/model.pt'
model_path_1 = args.checkpoint + 'ml-1m-base-1-0.2-0.0005/model.pt'
model_path_2 = args.checkpoint + 'ml-1m-base-2-0.2-0.0005/model.pt'
model_path_3 = args.checkpoint + 'ml-1m-base-3-0.2-0.0005/model.pt'
print(model_path_0)
with open(model_path_0, 'rb') as f:
model_0 = torch.load(f)
with open(model_path_1, 'rb') as f:
model_1 = torch.load(f)
with open(model_path_2, 'rb') as f:
model_2 = torch.load(f)
with open(model_path_3, 'rb') as f:
model_3 = torch.load(f)
with open(args.teacher_path, 'rb') as f:
teacher_model = torch.load(f)
tokenizer = T5Tokenizer.from_pretrained(args.model_dir)
test_loader = get_loader('test', args.data_dir+'test/test_10_simple.json', tokenizer, args.batch_size)
forget_loader = get_loader('test', args.data_dir + args.forget_data, tokenizer, args.batch_size)
teacher_model, model_0, model_1, model_2, model_3, test_loader, forget_loader = accelerator.prepare(
teacher_model, model_0, model_1, model_2, model_3, test_loader, forget_loader)
print(now_time() + 'test')
evaluate(teacher_model, model_0, model_1, model_2, model_3, test_loader, device, accelerator)
print(now_time() + 'forget')
evaluate(teacher_model, model_0, model_1, model_2, model_3, forget_loader, device, accelerator)
def evaluate(teacher_model, model_0, model_1, model_2, model_3, loader, device, accelerator):
teacher_model.eval()
model_0.eval()
model_1.eval()
model_2.eval()
model_3.eval()
pred_list, label_list = [], []
loss_list = []
l2_list = []
with torch.no_grad():
for batch in loader:
input_ids = batch['input_ids']
lm_labels = batch["target_ids"]
p_outputs = teacher_model(input_ids=input_ids, labels=lm_labels).logits
logits_0 = model_0(input_ids=input_ids, labels=lm_labels).logits
logits_1 = model_1(input_ids=input_ids, labels=lm_labels).logits
logits_2 = model_2(input_ids=input_ids, labels=lm_labels).logits
logits_3 = model_3(input_ids=input_ids, labels=lm_labels).logits
q_outputs = (logits_0+logits_1+logits_2+logits_3)/4
prob_p = torch.nn.functional.softmax(p_outputs[:, 0, :], -1)
prob_q = torch.nn.functional.softmax(q_outputs[:, 0, :], -1)
# m = (prob_p + prob_q) /2
# loss =0.5* (prob_p * torch.log( (prob_p + 1e-12) / (m + 1e-12))).sum(-1) + 0.5* (prob_q * torch.log( (prob_q + 1e-12) / (m + 1e-12))).sum(-1)
loss =0.5* (prob_p * torch.log( (prob_p + 1e-12) / (prob_q + 1e-12))).sum(-1) + 0.5* (prob_q * torch.log( (prob_q + 1e-12) / (prob_p + 1e-12))).sum(-1)
loss = loss.contiguous()
loss_list.append( accelerator.gather_for_metrics(loss).cpu().numpy())
l2_norm = torch.norm(prob_p-prob_q, p=2, dim=-1)
# l2_norm = torch.norm(p_outputs[:, 0, :]-q_outputs[:, 0, :], 2)
l2_norm = l2_norm.contiguous()
l2_list.append(accelerator.gather_for_metrics(l2_norm).cpu().numpy())
logits = q_outputs
labels_index = torch.argwhere(torch.bitwise_or(lm_labels == 2163, lm_labels == 465))
gold = torch.where(lm_labels[labels_index[:, 0], labels_index[:, 1]] == 465, 0, 1)
logits = logits[labels_index[:, 0], labels_index[:, 1]][:, [465, 2163]]
prob = torch.softmax(logits, dim=-1)
pred = prob[:, 1]
pred = pred.contiguous()
gold = gold.contiguous()
pred_list.append( accelerator.gather_for_metrics(pred).cpu().numpy())
label_list.append( accelerator.gather_for_metrics(gold).cpu().numpy())
pred = np.concatenate(pred_list)
gold = np.concatenate(label_list)
confi = [ data if gold[idx] > 0.5 else (1-data) for idx, data in enumerate(pred) ]
confi = np.array(confi).mean()
auc = roc_auc_score(gold, pred)
ll = log_loss(gold, pred)
acc = accuracy_score(gold, pred > 0.5)
jsd = np.mean(np.concatenate(loss_list))
l2_dis = np.mean(np.concatenate(l2_list))
print("AUC,LL,ACC,Confi,JSD,L2: ", auc,ll,acc, confi,jsd,l2_dis)
return auc, ll ,acc
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--model_dir', type=str, default='pretrained_models/t5-base')
parser.add_argument('--data_dir', type=str, default='datasets/ml-1m/benchmark_proc_data/data/')
parser.add_argument('--forget_data', type=str, default='train/forget_0.05_user_10_simple.json')
parser.add_argument('--epochs', type=int, default=100,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=32,
help='batch size')
parser.add_argument('--log_interval', type=int, default=200,
help='report interval')
parser.add_argument('--checkpoint', type=str, default='sisa_models/',
help='directory to save the final model')
parser.add_argument('--teacher_path', type=str, default='sisa_models/',
help='directory to save the final model')
args = parser.parse_args()
print('-' * 40 + 'ARGUMENTS' + '-' * 40)
for arg in vars(args):
print('{:40} {}'.format(arg, getattr(args, arg)))
print('-' * 40 + 'ARGUMENTS' + '-' * 40)
main(args)