-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_generator_unet.py
190 lines (160 loc) · 10.3 KB
/
build_generator_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from keras import backend as K
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D, MaxPool2D, concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras import regularizers
import os
def build_generator():
# ---------------------
# U-Net
# ---------------------
input_size = (256, 256, 1)
""" first encoder for photopeak image """
input_ph = Input(input_size)
conv1_ph = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(input_ph)
conv1_ph = BatchNormalization()(conv1_ph)
conv1_ph = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1_ph)
conv1_ph = BatchNormalization()(conv1_ph)
pool1_ph = MaxPool2D(pool_size=(2, 2))(conv1_ph)
conv2_ph = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1_ph)
conv2_ph = BatchNormalization()(conv2_ph)
conv2_ph = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2_ph)
conv2_ph = BatchNormalization()(conv2_ph)
pool2_ph = MaxPool2D(pool_size=(2, 2))(conv2_ph)
conv3_ph = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2_ph)
conv3_ph = BatchNormalization()(conv3_ph)
conv3_ph = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3_ph)
conv3_ph = BatchNormalization()(conv3_ph)
pool3_ph = MaxPool2D(pool_size=(2, 2))(conv3_ph)
conv4_ph = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3_ph)
conv4_ph = BatchNormalization()(conv4_ph)
conv4_ph = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4_ph)
conv4_ph = BatchNormalization()(conv4_ph)
drop4_ph = Dropout(0.5)(conv4_ph)
pool4_ph = MaxPool2D(pool_size=(2, 2))(drop4_ph)
""" second encoder for scatter image """
input_sc = Input(input_size)
conv1_sc = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(input_sc)
conv1_sc = BatchNormalization()(conv1_sc)
conv1_sc = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1_sc)
conv1_sc = BatchNormalization()(conv1_sc)
pool1_sc = MaxPool2D(pool_size=(2, 2))(conv1_sc) # 192x192
conv2_sc = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1_sc)
conv2_sc = BatchNormalization()(conv2_sc)
conv2_sc = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2_sc)
conv2_sc = BatchNormalization()(conv2_sc)
pool2_sc = MaxPool2D(pool_size=(2, 2))(conv2_sc) # 96x96
conv3_sc = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2_sc)
conv3_sc = BatchNormalization()(conv3_sc)
conv3_sc = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3_sc)
conv3_sc = BatchNormalization()(conv3_sc)
pool3_sc = MaxPool2D(pool_size=(2, 2))(conv3_sc) # 48x48
conv4_sc = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3_sc)
conv4_sc = BatchNormalization()(conv4_sc)
conv4_sc = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4_sc)
conv4_sc = BatchNormalization()(conv4_sc)
drop4_sc = Dropout(0.5)(conv4_sc)
pool4_sc = MaxPool2D(pool_size=(2, 2))(drop4_sc) # 24x24
conv5_sc = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4_sc)
conv5_sc = BatchNormalization()(conv5_sc)
conv5_sc = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5_sc)
conv5_sc = BatchNormalization()(conv5_sc)
conv5_sc = Dropout(0.5)(conv5_sc)
conv5_ph = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4_ph)
conv5_ph = BatchNormalization()(conv5_ph)
conv5_ph = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5_ph)
conv5_ph = BatchNormalization()(conv5_ph)
conv5_ph = Dropout(0.5)(conv5_ph)
merge5_cm = concatenate([conv5_ph, conv5_sc], axis=3) # 12x12
up7_cm = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(merge5_cm)) # 24x24
up7_cm = BatchNormalization()(up7_cm)
merge7_cm = concatenate([drop4_sc, drop4_ph, up7_cm], axis=3) # cm: cross modality
conv7_cm = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7_cm)
conv7_cm = BatchNormalization()(conv7_cm)
conv7_cm = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7_cm)
conv7_cm = BatchNormalization()(conv7_cm)
up8_cm = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7_cm))
up8_cm = BatchNormalization()(up8_cm)
merge8_cm = concatenate([conv3_sc, conv3_ph, up8_cm], axis=3) # cm: cross modality
conv8_cm = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8_cm)
conv8_cm = BatchNormalization()(conv8_cm)
conv8_cm = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8_cm)
conv8_cm = BatchNormalization()(conv8_cm)
up9_cm = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8_cm))
up9_cm = BatchNormalization()(up9_cm)
merge9_cm = concatenate([conv2_sc, conv2_ph, up9_cm], axis=3) # cm: cross modality
conv9_cm = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9_cm)
conv9_cm = BatchNormalization()(conv9_cm)
conv9_cm = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9_cm)
conv9_cm = BatchNormalization()(conv9_cm)
up10_cm = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv9_cm))
up10_cm = BatchNormalization()(up10_cm)
merge10_cm = concatenate([conv1_sc, conv1_ph, up10_cm], axis=3) # cm: cross modality
conv10_cm = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge10_cm)
conv10_cm = BatchNormalization()(conv10_cm)
conv10_cm = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10_cm)
conv10_cm = BatchNormalization()(conv10_cm)
conv11_cm = Conv2D(filters=4, kernel_size=3, activation='relu', padding='same')(conv10_cm)
conv11_cm = Conv2D(filters=2, kernel_size=3, activation='relu', padding='same')(conv11_cm)
conv11_cm = Conv2D(filters=1, kernel_size=3, activation='relu', padding='same')(conv11_cm)
model = Model(inputs=[input_ph, input_sc], outputs=conv11_cm)
model.summary()
'''
input_size = (256, 256, 1)
input_photo = Input(input_size)
input_scatter = Input(input_size)
input_img = concatenate([input_photo, input_scatter], axis=3)
conv1 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(input_img)
conv1 = BatchNormalization()(conv1)
conv1 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPool2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = BatchNormalization()(conv2)
conv2 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPool2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = BatchNormalization()(conv3)
conv3 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = BatchNormalization()(conv3)
drop3 = Dropout(0.5)(conv3)
pool3 = MaxPool2D(pool_size=(2, 2))(drop3)
conv4 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = BatchNormalization()(conv4)
conv4 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = BatchNormalization()(conv4)
drop4 = Dropout(0.5)(conv4)
up8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(drop4))
up8 = BatchNormalization()(up8)
merge8 = concatenate([drop3, up8], axis=3)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = BatchNormalization()(conv8)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
up9 = BatchNormalization()(up9)
merge9 = concatenate([conv2, up9], axis=3)
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = BatchNormalization()(conv9)
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = BatchNormalization()(conv9)
up10 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv9))
up10 = BatchNormalization()(up10)
merge10 = concatenate([conv1, up10], axis=3)
conv10 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge10)
conv10 = BatchNormalization()(conv10)
conv10 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10)
conv10 = BatchNormalization()(conv10)
conv11 = Conv2D(filters=4, kernel_size=3, activation='relu', padding='same')(conv10)
conv11 = BatchNormalization()(conv11)
conv12 = Conv2D(filters=2, kernel_size=3, activation='relu', padding='same')(conv11)
conv12 = BatchNormalization()(conv12)
conv13 = Conv2D(filters=1, kernel_size=1, activation='relu', padding='same')(conv12)
model = Model(inputs=[input_photo, input_scatter], outputs=conv13)
model.summary()
'''
return model