Skip to content

Latest commit

 

History

History
467 lines (354 loc) · 16.1 KB

ScottNumeralsPlus.lagda.md

File metadata and controls

467 lines (354 loc) · 16.1 KB
module ScottNumeralsPlus where

Imports

open import Data.List using (List; []; _∷_; _++_; length)
open import Data.List.Properties using (length-++)
open import Data.Nat using (ℕ; zero; suc; s≤s; z≤n; _+_; _<_; _≤_; _≟_)
open import Data.Nat.Properties
  using (≤∧≢⇒<; ≤-pred; <-trans; ≤-refl; +-comm; +-suc; suc-injective;
         ≤-trans; ≤-reflexive; ≤-step)
open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; proj₂)
  renaming (_,_ to ⟨_,_⟩)
open import Relation.Binary.PropositionalEquality
  using (_≡_; refl; sym; cong; cong₂; trans)
open import Relation.Nullary using (Dec; yes; no)
open import plfa.part3.Denotational
   using (Value; _↦_; _⊔_; ⊥; _⊑_; _⊢_↓_; Env; `∅; _`,_;
         ↦-intro; ↦-elim; var; sub; ⊥-intro; ⊔-intro;
         ⊑-conj-R2; ⊑-fun; ⊑-refl; ⊑-conj-R1; ⊑-trans)
open import plfa.part2.Untyped
   using (`suc_; `zero; μ_; case; plus; ★; ∅; _,_; _⊢_; `_; _·_; ƛ_; #_)

We need the following corollary of ⊑-refl. (Perhaps it should defined in the Denotational chapter.)

⊑-reflexive : ∀{v w : Value} → v ≡ w → v ⊑ w
⊑-reflexive refl = ⊑-refl

Scott Numerals

Recall that the Scott numerals are terms in the lambda calculus that represent the natural numbers:

zero = ƛ s ⇒ ƛ z ⇒ z
one  = ƛ s ⇒ ƛ z ⇒ s · zero
two  = ƛ s ⇒ ƛ z ⇒ s · one

The below scott function generates the nth Scott numeral.

scott : (n : ℕ) → ∀{Γ} → Γ ⊢ ★
scott 0 = ƛ ƛ (# 0)
scott (suc n) = ƛ ƛ (# 1) · (scott n)

The denotation of the nth Scott numeral is defined below. Like the Church numerals, the Scott numerals are more general than natural numbers. The Scott numeral for n represents taking n steps along a path. In the definition of , the function f represents the path.

Dˢ : (n : ℕ) → (f : ℕ → Value) → Value
Dˢ zero f = ⊥ ↦ (f 0) ↦ (f 0)
Dˢ (suc n) f =
  let D[n] = Dˢ n f in
  (D[n] ↦ f (suc n)) ↦ ⊥ ↦ f (suc n)
  • The Scott numeral for 0 is a function that ignores its first argument and returns its second argument, i.e., the first element of the path.

  • The Scott numeral for n + 1 is a function whose first argument is a funny kind of successor function, one that maps the Scott numeral for n to the n + 1 element of the path. The second argument is ignored, so its value is . The result is the n + 1 element of the path.

A straightforward proof by induction on n verifies that Dˢ n f is the denotation of scott n for any path f.

denot-scott : ∀{n : ℕ}{f : ℕ → Value}{Γ}{γ : Env Γ}
  → γ ⊢ scott n ↓ (Dˢ n f)
denot-scott {zero} {f} = ↦-intro (↦-intro var)
denot-scott {suc n} {f} = ↦-intro (↦-intro (↦-elim var denot-scott))

The successor function for Scott numerals does indeed produce the Scott numeral for suc n when given the Scott numeral for n.

denot-suc : ∀{Γ}{M : Γ ⊢ ★}{n}{f : ℕ → Value}{γ : Env Γ}
  → γ ⊢ M ↓ Dˢ n f
  → γ ⊢ `suc M ↓ Dˢ (suc n) f
denot-suc {n = n} {f} M↓D[n] =
    ↦-elim (↦-intro (↦-intro (↦-intro (↦-elim var var)))) M↓D[n]

Addition of Scott Numerals via the Y Combinator

Recall that in the Untyped chapter, addition of Scott numerals is defined as a recursive function using the Y combinator. (Shown here with variable names instead of de Bruijn indices.)

plus = Y · (ƛ r ⇒ ƛ m ⇒ ƛ n ⇒ case m n (ƛ m' ⇒ `suc (r · m' · n)))

We shall prove that the denotation of plus applied to the Scott numerals for m and n is Dˢ (m + n) g for any path g.

plus[m,n] : ∀{m n : ℕ}{g : ℕ → Value}
   → `∅ ⊢ (plus · scott m) · (scott n) ↓ Dˢ (m + n) g

In the plus function, the recursion is on m, i.e., the base case is when m is zero and the recursion is on m' = m - 1. So let's think about the denotation of plus when m is 0 and then 1 on the way to identifying its denotation for arbitrary m.

When m is 0, the denotation of plus looks like

(⊥ ↦ Dˢ n g ↦ Dˢ n g)  ↦  Dˢ n g  ↦  Dˢ n g

Let's see why this works by analyzing the denotation of the term ƛ m ⇒ ƛ n ⇒ case m n .... So the parameter m and n have the following denotations.

⟦m₀⟧ = ⊥ ↦ Dˢ n g ↦ Dˢ n g
⟦n⟧ = Dˢ n g

Recall that case on a Scott numeral is defined as follows.

case L M N = L · (ƛ pˢ ⇒ N) · M

So for the plus function, the case m n ... is really

m · (ƛ m' ⇒ `suc (r · m' · n)) · n

Guided by the value for parameter m, the term (ƛ m' ⇒ ...) should have value . Indeed, any term can have value . Next, n should have value Dˢ n g, which indeed it does. The result of the application is Dˢ n g, which matches the expected result Dˢ (0 + n) g.

Next consider the meaning of plus when m is 1.

  ((⟦m₀⟧ ↦ Dˢ (1 + n) g) ↦ ⊥ ↦ Dˢ (1 + n) g)
↦ Dˢ n g
↦ Dˢ (1 + n) g

Again we analyze the term ƛ m ⇒ ƛ n ⇒ case m n .... So the parameters m and n have the following denotations.

⟦m₁⟧ = (⟦m₀⟧ ↦ Dˢ (1 + n) g) ↦ ⊥ ↦ Dˢ (1 + n) g
⟦n⟧ = Dˢ n g

Next we analyze the application of m to its two arguments. This time we must check that the argument (ƛ m' ⇒ ...) produces the value

⟦m₀⟧ ↦ Dˢ (1 + n) g

So parameter m' has the denotation ⟦m₀⟧ and we need to show that suc (r · m' · n) produces Dˢ (1 + n) g. This can be obtained from the denot-suc lemma, so long as r · m' · n produces Dˢ n g. This will be the case so long as r has the value

⟦m₀⟧  ↦  Dˢ n g  ↦  Dˢ n g

which was the denotation of plus for m at zero. Thus, we have finished analyzing the term (ƛ m' ⇒ ...).

The second argument in the application of m, which is n, must have value , which of course it does. Thus, the result of applying m to (ƛ m' ⇒ ...) and n is indeed Dˢ (1 + n) g when m is 1.

We have seen the denotation of plus for m at zero and one, and now we need to generalize to arbitrary numbers. So let us review the denotations that we obtained for parameter m:

⟦m₀⟧ = ⊥ ↦ Dˢ n g ↦ Dˢ n g
⟦m₁⟧ = (⟦m₀⟧ ↦ Dˢ (1 + n) g) ↦ ⊥ ↦ Dˢ (1 + n) g

Indeed, these are denotations of a Scott numeral, but over an interesting choice of path:

Dˢ n g, Dˢ (1 + n) g, Dˢ (2 + n) g, ..., Dˢ (m + n) g

We define the following function ms to produce this path.

ms : (n : ℕ) → (ℕ → Value) → (ℕ → Value)
ms n g i = Dˢ (i + n) g

The denotations for each mᵢ can now be expressed using and ms:

⟦mᵢ⟧ = Dˢ i (ms n g)

Now that we have a succinct way to write the denotation of the m parameter, we can write down the denotation of plus.

plusᵐ : (m n : ℕ) → (ℕ → Value) → Value
plusᵐ m n g = Dˢ m (ms n g) ↦  Dˢ n g  ↦  Dˢ (m + n) g

Recall that the denotation of the r parameter needs to be the denotation of plus for the previous m. Also, when m is zero we did not use parameter r, so its denotation can be . So the following function gives the denotation for plus at m - 1.

prev-plusᵐ : (m n : ℕ) → (ℕ → Value) → Value
prev-plusᵐ 0 n g = ⊥
prev-plusᵐ (suc m) n g = plusᵐ m n g

We are now ready to formally verify the denotation of the expression

case m n (ƛ m' ⇒ `suc (r · m' · n))

which translates to de Bruijn notation as follows.

CASE : ∅ , ★ , ★ , ★ ⊢ ★
CASE = case (# 1) (# 0) (`suc (# 3 · # 0 · # 1))

We show that the denotation of CASE is Dˢ (m + n) g under the assumptions that the denotation of parameter r is prev-plusᵐ m n g, parameter m is Dˢ m (ms n g), and parameter n is Dˢ n g. We proceed by induction on m.

CASE↓ : (m n : ℕ) (g : ℕ → Value)
      → `∅ `, prev-plusᵐ m n g `, Dˢ m (ms n g) `, Dˢ n g
        ⊢ CASE ↓ Dˢ (m + n) g
CASE↓ zero n g = ↦-elim (↦-elim var ⊥-intro) var
CASE↓ (suc m') n g = ↦-elim (↦-elim var nz-branch) ⊥-intro
    where
    γ = `∅ `, prev-plusᵐ (suc m') n g `, Dˢ (suc m') (ms n g) `, Dˢ n g
    nz-branch : γ ⊢ ƛ (`suc ((# 3) · (# 0) · (# 1)))
                ↓ Dˢ m' (ms n g) ↦ Dˢ (suc m' + n) g
    nz-branch = ↦-intro (denot-suc (↦-elim (↦-elim var var) var))
  • When m ≡ 0, the denotation of m is ⊥ ↦ Dˢ n g ↦ Dˢ n g. The non-zero branch has value by ⊥-intro, and n has value Dˢ n g, so the result of the case is Dˢ n g.

  • When m ≡ suc m', the denotation of m is

      ⟦m⟧ = Dˢ (suc m') (ms n g)
         = (Dˢ m' (ms n g) ↦ Dˢ (suc m' + n) g) ↦ ⊥ ↦ Dˢ (suc m' + n) g
    

    so we need to show that the non-zero branch has the value

      Dˢ m' (ms n g) ↦ Dˢ (suc m' + n) g
    

    Going under the ƛ, we need to show that suc (r · m' · n) produces Dˢ (suc m' + n) g. Working backwards using the denot-suc lemma, it suffices to show that r · m' · n produces Dˢ (m' + n) g. The denotation of r is plusᵐ m' n g, so applying it to m' and n indeed produces Dˢ (m' + n) g.

Moving outwards, we now analyze the expression

ƛ r ⇒ ƛ m ⇒ ƛ n ⇒ case m n (ƛ m' ⇒ `suc (r · m' · n))

We shall show that is has the denotation

  (prev-plusᵐ 0 n g ↦ plusᵐ 0 n g)
⊔ (prev-plusᵐ 1 n g ↦ plusᵐ 1 n g)
⊔ (prev-plusᵐ 2 n g ↦ plusᵐ 2 n g)
  ...

which we construct with the following Pᵐ function (P for plus).

Pᵐ : (m n : ℕ) → (ℕ → Value) → Value
Pᵐ 0 n g = ⊥ ↦ plusᵐ 0 n g
Pᵐ (suc m') n g = Pᵐ m' n g ⊔ (plusᵐ m' n g ↦ plusᵐ (suc m') n g)

We proceed by induction, using the CASE↓ lemma to analyze the CASE expression and using the induction hypothesis to accumulate all of the smaller denotations for plus.

P↓Pᵐ : ∀ m n → (g : ℕ → Value) → `∅ ⊢ ƛ (ƛ (ƛ CASE)) ↓ Pᵐ m n g
P↓Pᵐ zero n g = ↦-intro (↦-intro (↦-intro (CASE↓ 0 n g)))
P↓Pᵐ (suc m') n g =
   ⊔-intro (P↓Pᵐ m' n g)
           (↦-intro (↦-intro (↦-intro (CASE↓ (suc m') n g))))

We shall need the following lemma, which extracts a single entry from Pᵐ.

prev↦plus⊑Pᵐ : (m k n : ℕ) → (g : ℕ → Value)
    → prev-plusᵐ m n g ↦ plusᵐ m n g ⊑ Pᵐ (m + k) n g
prev↦plus⊑Pᵐ zero zero n g = ⊑-refl
prev↦plus⊑Pᵐ (suc m') zero n g =
    ⊑-conj-R2 (⊑-fun (⊑-reflexive (cong (λ □ → plusᵐ □ n g) (+-comm m' 0)))
                  (⊑-reflexive (cong (λ □ → plusᵐ (suc □) n g) (+-comm 0 m'))))
prev↦plus⊑Pᵐ m' (suc k) n g =
      let IH = prev↦plus⊑Pᵐ m' k n g in
      ⊑-trans IH (⊑-trans (⊑-conj-R1 ⊑-refl)
                    (⊑-reflexive (cong (λ □ → Pᵐ □ n g) (sym (+-suc m' k)))))

The final step of this proof is to analyze the denotation of the Y combinator:

M = ƛ x ⇒ f · (x · x)
Y = ƛ f ⇒ M · M

In de Bruijn notation, we define Y as follows.

M : ∅ , ★ ⊢ ★
M = ƛ (# 1 · (# 0 · # 0))
Y : ∅ ⊢ ★
Y = ƛ M · M

The M is short for Matryoshka dolls (aka russian doll), which are wooden dolls that nest smaller and smaller copies inside themselves. In particular, for each m, the term M is a function from all the previous denotations for M to plusᵐ m n g.

⟦M₀⟧ = ⊥
⟦M₁⟧ = (⟦M₀⟧) ↦ plusᵐ 0 n g
⟦M₂⟧ = (⟦M₀⟧ ⊔ ⟦M₁⟧) ↦ plusᵐ 1 n g
⟦M₃⟧ = (⟦M₀⟧ ⊔ ⟦M₁⟧ ⊔ ⟦M₂⟧) ↦ plusᵐ 2 n g
...

We define the function Mᵐ to compute the above denotations for M, using the auxiliary function Ms to join all the previous denotations of M.

Mᵐ : (m n : ℕ) → (ℕ → Value) → Value
Ms : (m n : ℕ) → (ℕ → Value) → Value
Mᵐ 0 n g = ⊥
Mᵐ (suc m') n g = (Ms m' n g)  ↦  plusᵐ m' n g
Ms zero n g = ⊥
Ms (suc m') n g = Ms m' n g ⊔  Mᵐ (suc m') n g

We prove by cases that the term M has the denotation Mᵐ i n g for any i from 0 to m + 1, assuming the f parameter has the denotation Pᵐ m n g.

M↓ : (i k m n : ℕ) (g : ℕ → Value) {lt : suc m ≡ i + k}
   → `∅ `, Pᵐ m n g ⊢ M ↓ Mᵐ i n g
M↓ zero k m n g = ⊥-intro
M↓ (suc i) k m n g {lt} = ↦-intro (↦-elim (sub var H) x·x↓)
  where
  H : prev-plusᵐ i n g ↦ plusᵐ i n g ⊑ Pᵐ m n g
  H = ⊑-trans (prev↦plus⊑Pᵐ i k n g)
              (⊑-reflexive (cong (λ □ → Pᵐ □ n g) (sym (suc-injective lt))))
  x·x↓ : ∀{i} → `∅ `, Pᵐ m n g `, Ms i n g ⊢ (# 0) · (# 0) ↓ prev-plusᵐ i n g
  x·x↓ {zero} = ⊥-intro
  x·x↓ {suc i} = ↦-elim (sub var (⊑-conj-R2 ⊑-refl))
                     (sub var (⊑-conj-R1 ⊑-refl))
  • The zero case is trivial: we apply ⊥-intro to show that M has the value .

  • For the non-zero case, we need to show that M has the value

      Ms i n g  ↦  plusᵐ i n g
    

    Going under the ƛ x, we need to show that f · (x · x) has the value plusᵐ i n g. The value of x · x is prev-plusᵐ i n g, which we prove by induction on i. The case for 0 is trivial because prev-plusᵐ 0 n g ≡ ⊥. In the case for suc i, we need to show that x · x produces plusᵐ i n g. Now the first x has the value Ms (suc i) n g, so by the sub rule and ⊑-conj-R2, it also has the value Mᵐ (suc m') n g, which is equivalent to

      Ms m' n g  ↦  plusᵐ m' n g
    

    The second x, of course, has the value Ms (suc i) n g, so by the sub rule and ⊑-conj-R1, is has the value

      Ms m' n g
    

    So indeed, apply x to itself produces the value plusᵐ m' n g.

With the lemma M↓ in hand, we prove that the term M also produces the value Ms i n g for each i from 0 to m + 1. We prove this by a straightforward induction on i.

M↓Ms : (i k m n : ℕ) (g : ℕ → Value) {lt : suc m ≡ i + k}
   → `∅ `, Pᵐ m n g ⊢ M ↓ Ms i n g
M↓Ms zero k m n g {lt} = ⊥-intro
M↓Ms (suc i) k m n g {lt} =
    ⊔-intro (M↓Ms i (suc k) m n g {trans lt (sym (+-suc i k))})
            (M↓ (suc i) k m n g {lt})

Now for the meaning of the Y combinator. It takes the table of the plus functions (Pᵐ m n g), the meaning of the Scott numeral for m (Dˢ m (ms n g)), and the meaning of n (Dˢ n g), and returns the meaning of the Scott numeral for m + n (Dˢ (m + n) g).

Y↓ : ∀ m n (g : ℕ → Value)
   → `∅ ⊢ Y ↓ Pᵐ m n g ↦ Dˢ m (ms n g) ↦ Dˢ n g ↦ Dˢ (m + n) g
Y↓ m n g = ↦-intro (↦-elim M↓₁ M↓₂)
    where
    M↓₁ : `∅ `, Pᵐ m n g ⊢ M
          ↓ Ms m n g ↦ Dˢ m (ms n g) ↦ Dˢ n g ↦ Dˢ (m + n) g
    M↓₁ = (M↓ (suc m) 0 m n g {cong suc (+-comm 0 m)})
    
    M↓₂ : `∅ `, Pᵐ m n g ⊢ M ↓ Ms m n g
    M↓₂ = (M↓Ms m 1 m n g {+-comm 1 m})

The proof is as follows. We first go under the ƛ f with ↦-intro, so f has the value Pᵐ m n g. We then show that M applied to itself has the value

Dˢ m (ms n g) ↦ Dˢ n g ↦ Dˢ (m + n) g

We apply the lemma M↓ as suc m to show that the first M produces

Ms m n g ↦ Dˢ m (ms n g) ↦ Dˢ n g ↦ Dˢ (m + n) g

We apply the lemma M↓Ms to show that the second M produces

Ms m n g

So putting the above two together, the application M · M produces the following, as desired.

Dˢ m (ms n g) ↦ Dˢ n g ↦ Dˢ (m + n) g

We now arrive at the finish line: the addition of two Scott numerals produces the Scott numeral of the sum.

plus[m,n] : ∀{m n : ℕ}{g : ℕ → Value}
       → `∅ ⊢ (plus · scott m) · (scott n) ↓ Dˢ (m + n) g
plus[m,n] {m}{n}{g} =
  ↦-elim (↦-elim (↦-elim (Y↓ m n g) (P↓Pᵐ m n g)) (denot-scott{m}{ms n g}))
         (denot-scott{n}{g})

The plus function is the Y combinator applied to ƛ r ⇒ ƛ m ⇒ ƛ n ..., So we obtain its meaning using ↦-elim and the lemmas Y↓ and P↓Pᵐ. We conclude by appling the result to the denotations of the Scott numerals for m and n.