-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvdcf.py
61 lines (52 loc) · 2.78 KB
/
svdcf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
import numpy as np
test_pairs=[[2048, 788],[2048, 36955],[2048, 77],[1024, 462],[1024, 393],[1024, 36955],[1024, 77],[1024, 268]]
ass_pairs = [[4035,9741],[4035,114],[4035,278],[4035,275],[4035,7443],[2836,2501],[2836,640],[2836,857],[2836,581],[2836,453],[4282,1422],[4282,8587],[4282,238],[4282,1894],[4282,788],[1222,105],[1222,854],[1222,2501],[1222,786],[1222,36657],[2624,2024],[2624,2164],[2624,36955],[2624,36658],[2624,752]]
class SvdCf:
DOC_ID = 'docId'
USER_ID = 'userId'
RATING = 'rating'
TITLE = 'title'
def __init__(self,ratings_path='data/ratings.csv',titles_path='data/movie-titles.csv',fold=None,mean_type='user'):
self.mean_type = mean_type
self.load_ratings(ratings_path,fold)
self.load_titles(titles_path)
self.model()
def load_ratings(self,path,fold):
r = pd.read_csv(path,names=[self.USER_ID,self.DOC_ID,self.RATING]) if fold is None else fold
self.ratings = r.pivot(self.USER_ID,self.DOC_ID,self.RATING) # Users x Items
shape = self.ratings.shape
if self.mean_type == 'user':
self.baseline = self.ratings.mean(axis=1)
self.centered = (self.ratings.T - self.baseline).T # Users x Items
elif self.mean_type == 'item':
self.baseline = self.ratings.mean(axis=0)
self.centered = self.ratings - self.baseline
elif self.mean_type == 'global':
self.baseline = self.ratings.sum().sum() / self.ratings.count().sum()
self.centered = self.ratings - self.baseline
else:
item_mean = self.ratings.mean(axis=0)
r1 = self.ratings - item_mean
user_mean = pd.DataFrame(r1.mean(axis=1),index=self.ratings.index)
self.baseline = np.zeros(self.ratings.shape)
self.baseline += item_mean
self.baseline = (self.baseline.T + user_mean).T
self.centered.fillna(0,inplace=True)
def model(self):
U,s,V = np.linalg.svd(self.centered,full_matrices=False)
xtrans = (U[:,:10].dot(np.diag(s[:10]))).dot(V[:10,:])
offset = pd.DataFrame(xtrans,index= self.ratings.index, columns= self.ratings.columns)
if self.mean_type == 'user':
self.rpred = (self.baseline + offset.T).T
elif self.mean_type == 'item':
self.rpred = self.baseline + offset
elif self.mean_type == 'global':
self.rpred = self.baseline + offset
def predict(self,pairs):
for user, item in pairs:
s = self.rpred[item].ix[user]
print "{},{},{},{}".format(user,item,round(s,4),self.titles.ix[item][0])
def load_titles(self,path):
self.titles = pd.read_csv(path,names=[self.DOC_ID,self.TITLE],index_col=0)
#s = SvdCf(mean_type='last')