-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain2.py
321 lines (268 loc) · 10.5 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import os
# from torchvision.utils import save_image
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import time
import os
import copy
from random_erasing import RandomErasing
from reid_attention import VGG_16
from image_folder_loader import ImageFolderLoader
plt.ion()
######################################################################
# Options
# python train2.py --use_dense --train_all
# --------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--model_path', default='market1501', type=str, help='output model name')
parser.add_argument('--data_dir', default='/home/paul/datasets/market1501/pytorch', type=str, help='training dir path')
parser.add_argument('--batchsize', default=24, type=int, help='batchsize')
parser.add_argument('--erasing_p', default=0, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--resume', action='store_true', help='Resume training')
opt = parser.parse_args()
data_dir = opt.data_dir
model_path = opt.model_path
use_gpu = torch.cuda.is_available()
if use_gpu:
print("Using GPU")
else:
print("Not using GPU")
exit(0)
# torch.cuda.set_device(0)
TRAIN = 'train'
VAL = 'val'
# VGG-16 Takes 224x224 images as input, so we resize all of them
data_transforms_1 = {
TRAIN: transforms.Compose([
# Data augmentation is a good practice for the train set
# Here, we randomly crop the image to 224x224 and
# randomly flip it horizontally.
# transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
transforms.Resize((224, 224), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]),
VAL: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
}
data_transforms_2 = {
TRAIN: transforms.Compose([
# Data augmentation is a good practice for the train set
# Here, we randomly crop the image to 224x224 and
# randomly flip it horizontally.
# transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
transforms.Resize((448, 448), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]),
VAL: transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
}
if opt.erasing_p > 0:
data_transforms_1[TRAIN] = data_transforms_1[TRAIN] + [
RandomErasing(probability=opt.erasing_p, mean=[0.0, 0.0, 0.0])]
data_transforms_2[TRAIN] = data_transforms_1[TRAIN] + [
RandomErasing(probability=opt.erasing_p, mean=[0.0, 0.0, 0.0])]
image_datasets = {
x: ImageFolderLoader(
os.path.join(data_dir, x),
transform_1=data_transforms_1[x],
transform_2=data_transforms_2[x]
)
for x in [TRAIN, VAL]
}
dataloaders = {
x: torch.utils.data.DataLoader(
image_datasets[x], batch_size=opt.batchsize,
shuffle=True, num_workers=16
)
for x in [TRAIN, VAL]
}
dataset_sizes = {x: len(image_datasets[x]) for x in [TRAIN, VAL]}
for x in [TRAIN, VAL]:
print("Loaded {} images under {}".format(dataset_sizes[x], x))
print("Classes: ")
class_names = image_datasets[TRAIN].classes
# print(image_datasets[TRAIN].classes)#
def train_model(vgg, criterion, optimizer, scheduler, num_epochs=10):
since = time.time()
best_model_wts = copy.deepcopy(vgg.state_dict())
best_acc = 0.0
avg_loss = 0
avg_acc = 0
avg_loss_val = 0
avg_acc_val = 0
train_batches = len(dataloaders[TRAIN])
val_batches = len(dataloaders[VAL])
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch, num_epochs))
print('-' * 10)
loss_train = 0
loss_val = 0
acc_train = 0
acc_val = 0
vgg.train(True)
scheduler.step()
for i, data in enumerate(dataloaders[TRAIN]):
# Use half training dataset
# if i >= train_batches / 2:
# break
input1, input2, labels, _ = data
if use_gpu:
input1, input2, labels = Variable(input1.cuda()), \
Variable(input2.cuda()), Variable(labels.cuda())
else:
input1, input2, labels = Variable(input1), Variable(input2), Variable(labels)
optimizer.zero_grad()
outputs = vgg(input1, input2)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_train += loss.item()
print(loss.item())
if i % 100 == 0:
print("\rTraining batch {}/{}-{}".format(i, train_batches, loss.item()))
acc_train += torch.sum(preds == labels.data)
del input1, input2, labels, outputs, preds
torch.cuda.empty_cache()
print()
# * 2 as we only used half of the dataset
avg_loss = loss_train / dataset_sizes[TRAIN]
avg_acc = acc_train / dataset_sizes[TRAIN]
vgg.train(False)
vgg.eval()
with torch.no_grad():
for i, data in enumerate(dataloaders[VAL]):
input1, input2, labels, _ = data
if use_gpu:
input1, input2, labels = input1.cuda(), input2.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = vgg(input1, input2)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss_val += loss.item()
acc_val += torch.sum(preds == labels.data)
if i % 100 == 0:
print("\rValidation batch {}/{}-{}".format(i, val_batches, loss.item()))
del input1, input2, labels, outputs, preds
torch.cuda.empty_cache()
avg_loss_val = loss_val / dataset_sizes[VAL]
avg_acc_val = acc_val / dataset_sizes[VAL]
print()
print("Epoch {} result: ".format(epoch))
print("Avg loss (train): {:.4f}".format(avg_loss))
print("Avg acc (train): {:.4f}".format(avg_acc))
print("Avg loss (val): {:.4f}".format(avg_loss_val))
print("Avg acc (val): {:.4f}".format(avg_acc_val))
print('-' * 10)
print()
if avg_acc_val > best_acc:
best_acc = avg_acc_val
best_model_wts = copy.deepcopy(vgg.state_dict())
torch.save(vgg16.state_dict(), './model/model%s.pth' % epoch)
elapsed_time = time.time() - since
print()
print("Training completed in {:.0f}m {:.0f}s".format(elapsed_time // 60, elapsed_time % 60))
print("Best acc: {:.4f}".format(best_acc))
vgg.load_state_dict(best_model_wts)
return vgg
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
# plt.figure(figsize=(10, 10))
plt.axis('off')
plt.imshow(inp)
plt.savefig("visualize.png")
if title is not None:
plt.title(title)
plt.pause(0.001)
def show_databatch(inputs, classes):
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
def visualize_model(vgg, num_images=6):
was_training = vgg.training
# Set model for evaluation
vgg.train(False)
vgg.eval()
images_so_far = 0
for i, data in enumerate(dataloaders[VAL]):
input1, input2, labels = data
size = input1.size()[0]
if use_gpu:
input1, input2, labels = Variable(input1.cuda(), volatile=True), \
Variable(input2.cuda(), volatile=True), \
Variable(labels.cuda(), volatile=True)
else:
input1, input2, labels = Variable(input1, volatile=True), \
Variable(input2, volatile=True), Variable(labels, volatile=True)
outputs = vgg(input1, input2)
_, preds = torch.max(outputs.data, 1)
predicted_labels = [preds[j] for j in range(input1.size()[0])]
print("Ground truth:")
show_databatch(input1.data.cpu(), labels.data.cpu())
print("Prediction:")
show_databatch(input1.data.cpu(), predicted_labels)
del input1, input2, labels, outputs, preds, predicted_labels
torch.cuda.empty_cache()
images_so_far += size
if images_so_far >= num_images:
break
vgg.train(mode=was_training) # Revert model back to original training state
vgg16 = VGG_16(len(class_names))
if use_gpu:
vgg16.cuda() # .cuda() will move everything to the GPU side
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
vgg16 = nn.DataParallel(vgg16)
# vgg16.load_state_dict(torch.load("./model/model.pth"))
# print(vgg16.classifier[6].out_features) # 1000
# Freeze training for all layers
# for param in vgg16.features.parameters():
# param.require_grad = False
# Newly created modules have require_grad=True by default
# num_features = vgg16.classifier[6].in_features
# features = list(vgg16.classifier.children())[:-1] # Remove last layer
# features.extend([nn.Linear(num_features, len(class_names))]) # Add our layer with 4 outputs
# vgg16.classifier = nn.Sequential(*features) # Replace the model classifier
# print(vgg16)
resume_training = opt.resume
if resume_training:
print("Loading pretrained model..")
vgg16.load_state_dict(torch.load('./model/model.pth'))
print("Loaded!")
if __name__ == "__main__":
# Get a batch of training data
input1, input2, classes, _ = next(iter(dataloaders[TRAIN]))
print(input1.size())
print(input2.size())
# show_databatch(input1, classes)
# show_databatch(input2, classes)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(vgg16.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4, nesterov=True)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.1)
vgg16 = train_model(vgg16, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=100)
torch.save(vgg16.state_dict(), './model/model.pth')
# eval_model(vgg16, criterion)
# visualize_model(vgg16, num_images=4)