-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsls_train.py
343 lines (284 loc) · 12.1 KB
/
sls_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from __future__ import print_function, division
import argparse
import matplotlib
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torchvision import transforms
from torchvision.datasets.folder import default_loader
matplotlib.use('agg')
import time
import os
from model import ft_net, ft_net_dense
from random_erasing import RandomErasing
import json
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from utils import get_gan_data
#######################################################n###############
# Options
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--gpu_ids', default='0', type=str, help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--name', default='plsro_dense12', type=str, help='output model name')
parser.add_argument('--data_dir', default='/home/paul/datasets/viper/pytorch', type=str,
help='training dir path')
parser.add_argument('--batchsize', default=32, type=int, help='batchsize')
parser.add_argument('--erasing_p', default=0.8, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--use_dense', action='store_true', help='use densenet121')
opt = parser.parse_args()
data_dir = opt.data_dir
name = opt.name
generated_image_size = 8000
n_clusters = 3
n_classes = 316
generated_images = get_gan_data(generated_size=generated_image_size, n_clusters=n_clusters,
generated_dir=os.path.join(data_dir, 'train_new', 'gen_0000'))
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >= 0:
gpu_ids.append(gid)
# set gpu ids
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
######################################################################
if opt.use_dense:
width = 288
height = 144
random_width_crop = 256
random_height_crop = 128
else:
width = 256
height = 256
random_width_crop = 224
random_height_crop = 224
transform_train_list = [
# transforms.RandomResizedCrop(size=128, scale=(0.75,1.0), ratio=(0.75,1.3333), interpolation=3), #Image.BICUBIC)
transforms.Resize((288, 144), interpolation=3),
transforms.RandomCrop((256, 128)),
# transforms.Resize(256,interpolation=3),
# transforms.RandomCrop(224,224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.erasing_p > 0:
transform_train_list = transform_train_list + [RandomErasing(opt.erasing_p)]
# print(transform_train_list)
transform_val_list = [
transforms.Resize(size=(256, 128), interpolation=3), # Image.BICUBIC
# transforms.Resize(256,interpolation=3),
# transforms.RandomCrop(224,224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
data_transforms = {
'train': transforms.Compose(transform_train_list),
'val': transforms.Compose(transform_val_list),
}
# read dcgan data
class dcganDataset(Dataset):
def __init__(self, root, transform=None, targte_transform=None):
super(dcganDataset, self).__init__()
self.image_dir = os.path.join(opt.data_dir, root)
self.samples = [] # train_data xxx_label_flag_yyy.jpg
self.img_label = []
self.img_flag = []
self.transform = transform
self.targte_transform = targte_transform
# self.class_num=len(os.listdir(self.image_dir)) # the number of the class
self.train_val = root # judge whether it is used for training for testing
if root == 'train_new':
for folder in os.listdir(self.image_dir):
fdir = self.image_dir + '/' + folder # folder gen_0000 means the images are generated images, so their flags are 1
if folder == 'gen_0000':
samples, img_labels, flags = generated_images
self.samples = self.samples + samples
self.img_label = self.img_label + img_labels
self.img_flag = self.img_flag + flags
else:
for files in os.listdir(fdir):
temp = folder + '_' + files
lbl = int(folder)
label_vec = np.zeros(shape=n_classes)
label_vec[lbl] = 1
self.img_label.append(label_vec)
self.img_flag.append(0)
self.samples.append(temp)
else: # val
for folder in os.listdir(self.image_dir):
fdir = self.image_dir + '/' + folder
for files in os.listdir(fdir):
temp = folder + '_' + files
lbl = int(folder)
label_vec = np.zeros(shape=n_classes)
label_vec[lbl] = 1
self.img_label.append(label_vec)
self.img_flag.append(0)
self.samples.append(temp)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
temp = self.samples[idx] # folder_files
# print(temp)
if self.img_flag[idx] == 1:
foldername = 'gen_0000'
filename = temp[9:]
else:
foldername = temp[:4]
filename = temp[5:]
img = default_loader(self.image_dir + '/' + foldername + '/' + filename)
if self.train_val == 'train_new':
result = {'img': data_transforms['train'](img), 'label': self.img_label[idx],
'flag': self.img_flag[idx]} # flag=0 for ture data and 0 for generated data
else:
result = {'img': data_transforms['val'](img), 'label': self.img_label[idx], 'flag': self.img_flag[idx]}
return result
class SLSloss(nn.Module):
def __init__(self):
super(SLSloss, self).__init__()
def forward(self, input, target, flg):
if input.dim() > 2:
input = input.view(input.size(0), input.size(1), -1)
input = input.transpose(1, 2)
input = input.contiguous().view(-1, input.size(2))
maxRow, _ = torch.max(input.data, 1)
maxRow = maxRow.unsqueeze(1)
input.data = input.data - maxRow
flg = flg.view(-1, 1)
flos = F.log_softmax(input)
flos = torch.sum(flos, 1) / flos.size(1)
logpt = F.log_softmax(input)
logpt = torch.mul(logpt, target)
logpt = torch.sum(logpt, 1, True)
logpt = logpt.view(-1)
flg = flg.view(-1)
flg = flg.type(torch.cuda.FloatTensor)
loss = -1 * logpt * (1 - flg) - flos * flg
return loss.mean()
dataloaders = {}
dataloaders['train'] = DataLoader(dcganDataset('train_new', data_transforms['train']), batch_size=opt.batchsize,
shuffle=True, num_workers=8)
dataloaders['val'] = DataLoader(dcganDataset('val_new', data_transforms['val']), batch_size=opt.batchsize,
shuffle=True, num_workers=8)
dataset_sizes = {}
dataset_train_dir = os.path.join(data_dir, 'train_new')
dataset_val_dir = os.path.join(data_dir, 'val_new')
dataset_sizes['val'] = sum(len(os.listdir(os.path.join(dataset_val_dir, i))) for i in os.listdir(dataset_val_dir))
dataset_sizes['train'] = 632 + generated_image_size - dataset_sizes['val']
print(dataset_sizes['train'])
print(dataset_sizes['val'])
use_gpu = torch.cuda.is_available()
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = model.state_dict()
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in dataloaders[phase]:
# get the inputs
inputs = data['img']
labels = data['label']
flags = data['flag']
labels = labels.type(torch.cuda.FloatTensor)
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
flags = Variable(flags.cuda())
else:
inputs, labels, flags = Variable(inputs), Variable(labels), Variable(flags)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1) # outputs.data return the index of the biggest value in each row
loss = criterion(outputs, labels, flags)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item()
print("Loss {} ".format(loss.item()))
for temp in range(flags.size()[0]):
if flags.data[temp] == 1:
preds[temp] = -1
indices = torch.argmax(labels, dim=1)
running_corrects += torch.sum(preds == indices.data)
# print('running_corrects: '+str(running_corrects))
epoch_loss = running_loss / dataset_sizes[phase]
if phase == 'train':
epoch_acc = running_corrects / (
dataset_sizes[phase] - generated_image_size)
else:
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
y_loss[phase].append(epoch_loss)
y_err[phase].append(1.0 - epoch_acc)
if phase == 'val':
if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
if epoch >= 40:
save_network(model, epoch)
# draw_curve(epoch)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
save_network(model, 'best')
return model
def save_network(network, epoch_label):
save_filename = 'net_%s.pth'% epoch_label
save_path = os.path.join('./model',name,save_filename)
torch.save(network.cpu().state_dict(), save_path)
if torch.cuda.is_available:
network.cuda(gpu_ids[0])
if opt.use_dense:
model = ft_net_dense(n_classes)
else:
model = ft_net(n_classes)
if use_gpu:
model = model.cuda()
criterion = SLSloss()
ignored_params = list(map(id, model.model.fc.parameters())) + list(map(id, model.classifier.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.01},
{'params': model.model.fc.parameters(), 'lr': 0.05},
{'params': model.classifier.parameters(), 'lr': 0.05}
], momentum=0.9, weight_decay=5e-4, nesterov=True)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=40, gamma=0.1)
dir_name = os.path.join('./model', name)
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
with open('%s/opts.json' % dir_name, 'w') as fp:
json.dump(vars(opt), fp, indent=1)
if __name__ == '__main__':
model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=130)