Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

eigs throws on a basic case (apparently any defective matrix) #2879

Closed
nguyenvukhang opened this issue Jan 15, 2023 · 31 comments · Fixed by #3037
Closed

eigs throws on a basic case (apparently any defective matrix) #2879

nguyenvukhang opened this issue Jan 15, 2023 · 31 comments · Fixed by #3037

Comments

@nguyenvukhang
Copy link

Describe the bug

Trying to find the eigenvalues and eigenvectors of the matrix [[2, 1], [0, 2]] throws an error.
Expected result: eigenvector of [1, 0] with eigenvalue 2.

To Reproduce
Steps to reproduce the behavior.

import { eigs } from "mathjs";

const A = [ [5, 2.3], [2.3, 1] ];
const B = [ [2.0, 1.0], [0.0, 2.0] ];

console.log(eigs(A));
// console.log(eigs(B));

Uncommenting the only commented line should throw the Error. (Matrix A is there to make sure that it at least runs ok on some input)

@josdejong
Copy link
Owner

Thanks for reporting, I would indeed expect the second case to work too. When I execute eigs(B) it throws

Error: Dimension mismatch (1 != 2)

Anyone able to do debug what's going on here? Help would be welcome.

@SinanAkkoyun
Copy link
Contributor

They are bot symmetric, did you try bigger, asymmetric matrices?

@brunoSnoww
Copy link
Contributor

After testing some triangular matrices of different dimensions I was receiving the same error. If in [[2, 1], [0, 2]] we substitute the 0 for 0.0000001 it works, so I guess that doComplexEigs is having a hard time for triangular matrices. However for such matrices the eigenvalues are simply the entries on the diagonal and for getting the eigenvectors we could use another algorithm like SVD. Maybe we could check inside the eigs function if the matrix is triangular, and if so, handle it like that ?

@josdejong
Copy link
Owner

Thanks for debugging this issue Bruno. So your proposal is to add a special case for triangular matrices? Is this issue is really only occurring for triangular matrices you think? In that case it makes sense to implement a solution for that special case.

@bartekleon
Copy link
Contributor

bartekleon commented Aug 23, 2023

looks like math for symetric real case is broken. The values are just wrong. a revised version of #3016 should probably fix most of issues, since it is using QR algorithm which loves triangular matrices, and works for symetric as well

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 2, 2023

The observation that the difficulty seems to be with triangular matrices is an interesting one given that the algorithm currently in use begins by performing transformations to make its argument triangular. My guess is that's the part that is stumbling (maybe it's hard to transform something already triangular into triangular form because of something like a division by zero, that sort of thing) and perhaps there's a fix to be had by just testing off the bat if the matrix is triangular, and then proceeding with the rest of the algorithm. I will investigate a bit.

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 2, 2023

Well, I was wrong. The simplest case to look at is [1,1;0,1] from #2984 and I think the characterization there is closer to the mark. That is to say, the existing code does notice that the matrix is triangular, and proceeds immediately to finding the eigenvectors. It also immediately finds the eigenvector (1,0), and crashes looking for another eigenvector -- which does not in fact exist. So the problem lies in that fruitless search. Note [2,1; 0,2] also has just one eigenvector, hence that seems to be the common thread. I will investigate more.

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 2, 2023

In case it is of future interest, a fairly complete reference seems to be http://www.sml.ece.upatras.gr/images/UploadedFiles/efarmosmenes-ypologistikes-methodoi/MatrixEigenvalueProblems-DAHLQUISTch09.pdf

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 2, 2023

OK, the initial error is simply a shape mismatch at in orthogonalComplement in function/matrix/eigs/complexEigs.js. It has the expression:

subtract(v, multiply(divideScalar(dot(w, v), dot(w, w)), w))

but v is a plain vector (1-dim array/matrix of length n) while w is a column vector (i.e., n-by-1 2-dim array/matrix), so the subtraction doesn't really make sense. (It actually produces a value via broadcasting or something like that, but it is not a helpful value and then the calculation goes haywire.)

Reshaping at that point allows the algorithm to proceed further. However, it then quickly runs up against another difficulty: the current algorithm appears to belabor under the misapprehension that all nxn matrices have n independent eigenvectors. While that's almost always true (in the sense that a small random perturbation to any matrix will almost surely have a basis of eigenvectors), it is not literally true for all matrices. The ones that do not have that many eigenvectors are called "defective," and it seems the current algorithm has no chance of succeeding with such matrices. Indeed, with the reshaping fix in place, it crashes again trying to solve a singular system of linear equations; the system is singular precisely because [1,1; 0,1] is defective.

This raises the question of what do we ideally want eigs([1,1,0,0; 0,1,0,0; 0,0,0.5,0;0,0,0,0.5]) for example to return? This is a matrix with two distinct eigenvalues, 1 and 0.5. Right now, eigs calculates the eigenvalues [1, 1, 0.5, 0.5] reflecting the fact that the algebraic multiplicity of each eigenvalue is 2 (the algebraic multiplicities always add up to n when the matrix is nxn). But the geometric multiplicity of eigenvalue 1 is only one, in that there is only one independent eigenvector with eigenvalue 1, e.g. [1,0,0,0]. On the other hand, the geometric multiplicity of eigenvalue 0.5 is two, since both [0,0,1,0] and [0,0,0,1] are eigenvectors. So what should eigs return? if it returns

P1 = {values: [1,1,0.5,0.5], vectors:[1,0,0; 0,0,0; 0,1,0; 0,0,1]}

then you will know that there are just three eigenvectors, but you will not be given the information as to which vector has which eigenvalue: it's ambiguous as to whether the middle column has eigenvalue 1 or 0.5. Conversely, if it returns

P2 = {values: [1,0.5,0.5], vectors:[1,0,0; 0,0,0; 0,1,0; 0,0,1]}

then you will know the eigenvalue for each eigenvector, but you will be left in the dark as to whether 1 has algebraic multiplicity 2 or actually 0.5 has algebraic multiplicity 3 (both are possible for these eigenvalues/eigenvectors with different input matrices). So it seems that we need to extend the return value of eigs to provide more information than it does now (to make the change non-breaking, we want to return both properties (values and vectors) with the exact values they have now in the cases that work, but I don't see it as a problem to add a third property).

So please anyone interested in this issue suggest what values and vectors should be in defective cases and what additional property should be returned (in all cases). To my mind, the vectors property should always be all of the eigenvectors that exist. So to keep the convenient positional correspondence between values and vectors, we should list each eigenvalue with its geometric multiplicity, not algebraic. In other words, use P2 above as the base. Then the additional information needed is the algebraic multiplicity of each eigenvalue. In what format should we return that? It could be an object whose keys are the eigenvalues, e.g. in this case algebraicMultiplicities: {1: 2, 0.5: 2}. But is an object with number keys too weird? We could instead use a row vector positionally corresponding to values at the cost of some redundancy, e.g. algebraicMultiplicities: [2, 2, 2]. Or maybe there is a better format than either? Please weigh in.

When the question of what to actually return is dealt with, I believe I can reasonably easily whip up a PR to handle defective cases and produce the desired return value... Thanks for your thoughts.

@gwhitney gwhitney changed the title eigs throws on a basic case. eigs throws on a basic case (apparently any defective matrix) Sep 2, 2023
@gwhitney
Copy link
Collaborator

gwhitney commented Sep 2, 2023

Oh a decent reference about defective matrices seems to be https://web.mit.edu/18.06/www/Spring17/jordan-vectors.pdf

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 4, 2023

@m93a and I cooked up a likely better suggestion in #3014 (comment). If we went that way, we could leave the values property exactly as it is with algebraic multiplicities, leave the vectors property alone for now but mark it as deprecated, and add the new property described there (which still needs a name, maybe labeledVectors). Then in the next breaking change we could take out the confusing vectors property. Please let me know what you think, or make another proposal, and I can move forward. Thanks!

@bartekleon
Copy link
Contributor

As a side-note, if possible, we should add some tests for QR decomposition as well. The complex case (at least) uses it. And I have some feelings that QR algorithm might be failing for some of the matrices we feed it. While that might not be a case, testing it doesn't hurt.

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 5, 2023

As a side-note, if possible, we should add some tests for QR decomposition as well.

I think a PR adding tests for QR decomposition would be welcome.

@bartekleon
Copy link
Contributor

@gwhitney also what are your thoughts of using SVD to detect defective matrices / using SVD to calculate eigenvalues / vectors? (I am not very proficient in this part of mathematics so I would love to have second opinion from someone more knowledgable)

@gwhitney
Copy link
Collaborator

gwhitney commented Sep 5, 2023

I am not experienced in the numerical aspects of eigenvalue/eigenvector computation. The current algorithm appears to be operable, so I am reluctant to change it given my lack of expertise. Therefore, my plan is to add detection of defective matrices to the current algorithm, and improve the interface so that it is clear how to obtain the eigenvectors and the which eigenvalue each eigenvector is associated with. Anyone who is experienced in such numerical matters is welcome to submit a PR providing another method of producing eigenvectors and eigenvalues, along with tests that demonstrate that it behaves better/faster/more accurately/etc. than the current algorithm. But that's beyond the scope of what I am able to do.

If you have comments on the matter here, as to what exactly the eigs function should return in the case of a defective matrix, please share so that I can continue to proceed with resolving this issue. Thanks.

@bartekleon
Copy link
Contributor

bartekleon commented Sep 5, 2023

It would be nice to have some tests, especially edge cases.
From what I read, but correct me if I am wrong, these cases are including:

Defective Matrices: Some matrices are called "defective" because they cannot be diagonalized, even if they are square. This occurs when there are not enough linearly independent eigenvectors to form a complete basis for the vector space.

We should be able to detect defective matrices using SVD (tho preferably should find some less intense test)

Zero Eigenvalues: A matrix may have zero as one or more of its eigenvalues. This indicates that the matrix is singular (not invertible). The corresponding eigenvectors are then the null space (kernel) of the matrix.

Should we warn in this case?? I don't know what we should do.

Diagonalizability: A square matrix is diagonalizable if it has a complete set of linearly independent eigenvectors. Not all matrices are diagonalizable. For example, a matrix with repeated eigenvalues may not be diagonalizable.

Same as above.

Also this case, although I don't fully understand what it means : https://en.wikipedia.org/wiki/QR_algorithm#Finding_eigenvalues_versus_finding_eigenvectors

I will be reading / learning about decompositions / eigenvalues/vectors this week and hopefully will find some more information / fixes to current code. As of today I have QR algorithm working which can be ported into the project in case current one will have issues (we need some testing, especially strange / edge cases for current QR implementation).

@josdejong
Copy link
Owner

Thanks a lot for debugging this Glen. So if I understand it correctly, the solution will be to handle defective matrices in eigs. It makes sense to combine this with an improved API for eigs discussed in #3014. Thanks for your offer @gwhitney to come up with a PR to handle defective cases!

@bartekleon
Copy link
Contributor

bartekleon commented Sep 6, 2023

TLDR: Having SVD, computing EVD should be trivial

@gwhitney @josdejong It seems that algorithms like QR, LU, EVD (eigenvalue decomposition) are prone to having some cases which are not computable (as we already know). From what I have read, SVD (singular value decomposition) will always work resulting in 3 matrices - U, Σ (sigma), and V* (complex conjugate transpose of V). From there we can just look at the results in sigma, and if any of the values is zero or close to zero (precision) then the eigenvalues and eigenvectors of given matrix cannot be computed.

The small problem as of now is understanding how to write SVD algorithm. There seem to be different algorithms, one looking quite tedious and annoying to write (basically getting eigenvalues and eigenvectors of A*A and AA* - which, from what I understand, is always possible and constructing SVD from it using simple matrix multiplication), the other one making something like repeated power iteration to get SVD.

Upside of it is that we will have another feature of math.js being SVD decomposition.
Downside is that we need to code it and it will hurdle the performance.

edit:
It seems in order to have SVD we still need QR/householder decomposition + finding eigenvalues and eigenvectors (yes, this is kinda cyclic)

I think everything would look like this:

_EVD - to calculate eigenvalues and vectors (this is for where we know the results exist)
SVD - calculates singular value decomposition
EVD - calculates eigenvalues and vectors / throws if i can't / returns that matrix is singular / defective

EVD algorithm:

  • run SVD and check if any of singular values is ~ 0
  • if zero - throw / return
  • else run _EVD

@bartekleon
Copy link
Contributor

bartekleon commented Sep 10, 2023

It sure took me a while, but I finally got eigenvalues and vectors working.... Now only thing left is to test it... A lot... Also found two small places that can be optimised (in other parts of code)

@bartekleon
Copy link
Contributor

bartekleon commented Sep 10, 2023

During coding found another (related) bug in the code. Schur decomposition is not working properly for some cases:
[ [0, 1], [-1, 0] ] just keeps spinning around, while the result should be:
Q = {{i,-i},{1,1}}
T = {{-i,0},{0,i}}
see:
https://www.dcode.fr/matrix-schur-decomposition

and validation

https://www.wolframalpha.com/input?i2d=true&i=%7B%7Bi%2C-i%7D%2C%7B1%2C1%7D%7D%7B%7B-i%2C0%7D%2C%7B0%2Ci%7D%7D%7B%7BDivide%5B1%2C2i%5D%2CDivide%5B1%2C2%5D%7D%2C%7B-Divide%5B1%2C2i%5D%2CDivide%5B1%2C2%5D%7D%7D

(I haven't manage to make wolframalpha calculate inverse of matrix so I calculated it beforehand)
To validate it's true:
https://www.wolframalpha.com/input?i2d=true&i=inverse+%7B%7Bi%2C-i%7D%2C%7B1%2C1%7D%7D

Edit: It seems that for some reason both of the results are not proper schur decomposition... According to wikipedia (well, hard to tell how much this is trustworthy now...)
Q should be unitary (which in our case is, in case of dcode it is not)
T (or U) should be upper triangular (in our case it is not, in case of dcode it is)

[dcode decomposition looks better though, since it has the eigenvalues on it's diagonal and works with inverse, while our/wolframlpha only works if we use complex conjugate (no eigenvalues on diagonal tho)]

edit 2: it does seem like both answers are wrong. Can be tested in python:

image

edit 3: found quite nice solution for Schur decomposition
https://gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/Eigenvalues/ComplexSchur.h?ref_type=heads

This should handle some additional cases in testing (still failing a few tests)

@gwhitney
Copy link
Collaborator

During coding found another (related) bug in the code. Schur decomposition is not working properly for some cases:
[ [0, 1], [-1, 0] ] just keeps spinning around,

Thanks. Before this issue is closed, either that should be solved or be filed as its own issue if not.

@bartekleon
Copy link
Contributor

bartekleon commented Sep 12, 2023

During coding found another (related) bug in the code. Schur decomposition is not working properly for some cases:
[ [0, 1], [-1, 0] ] just keeps spinning around,

Thanks. Before this issue is closed, either that should be solved or be filed as its own issue if not.

Well, you most likely use Schur decomposition to calculate eigenvalues, so I feel it is very much related. Or to be precise, if i had working Schur decomposition, Eigenvalue/vector decomposition should just work

Unfortunately from what I researched, we need Schur decomposition using QR decomposition with shifting, otherwise it just won't work. Normal QR decomposition using householder or even Givens rotations won't work for these rare cases.

@gwhitney You can actually read about the issue I am currently having here: https://faculty.ucmerced.edu/mhyang/course/eecs275/lectures/lecture17.pdf page 23

I feel like it should be:

I think the Eigen CPP project is the best to put reference on. The results from there are correct and code is in readable language

(I think I am almost finished rewriting this schur decomposition, though it is quite tough)

@josdejong
Copy link
Owner

So it looks like we have two possible approaches here:

  1. handle defective matrices in the current implementation
  2. replace the implementation with an SVD algorithm, and from what I understand from Bart osz this comes with it's own challenges 😅.

It sounds promising to work on SVD as a long term solution, and we can work on that in the sideline, but I prefer to focus on trying to fix the issue around defective matrices in the current implementation first. I expect that will require less effort than a complete new implementation, and fixing on short term would be nice.

@bartekleon
Copy link
Contributor

bartekleon commented Sep 13, 2023

I have almost finished fixing the current implementation:

  • fixed Schur decomposition
  • get eigenvalues correctly for ALL cases

I am still struggling with eigenvectors thought. There are so many cases...

  • technically the Q matrix of Schur decomposition (A=QUQ^T) should have eigenvectors as columns, but it is not always the case it seems...
  • then there is inverse power method / power method - they only give one pair of eigenvalue / vector
  • inverse power method with shifting - fails when determinant is 0 (which is almost always the case....)

If anyone has some iterative methods / resources to get eigenvectors when you already have eigenvalues I would be grateful

Also @josdejong it appeared that I misunderstood what SVD does. So it only helps in classifying matrices, but does not really help in finding eigenvalues/vectors (you get eigenvalues of AA* and A*A which is completely something else)

@bartekleon
Copy link
Contributor

bartekleon commented Sep 13, 2023

Small update @josdejong : It seems while my implementation of Schur does work on 2x2, it still fails for some bigger matrices - that being said, we really need to rewrite / check all tests... It appears they were smacked to "just pass" while the results are incorrect...
While the first test in Schur does hold the A = QUQ^T equation, it misses the fact that Q should be unitary matrix... So I will take a look into that a little more.

In fact I will focus on making Schur implementation work first, before working on eigenvectors (since Schur is a base algorithm for eigen decomposition)

(I will check all decompositions, especially for bigger matrices if they are behaving similar to the python scipy implementation [which uses Lapack AFAIK and is proven to give correct results])

@gwhitney
Copy link
Collaborator

Sorry I was just waiting on a decision on what the correct API for eigs should be before repairing the current algorithm. Has that been decided? Whatever algorithm is used, the API must be changed to handle all cases -- it's really inadequate for defective matrices. I think we should fix the API and the current implementation before embarking on any major internal rewrite. Jos, did you get enough feedback to select a specific API for eigs going forward? When we have a clear design, I am happy to make it so.

@bartekleon
Copy link
Contributor

bartekleon commented Sep 13, 2023

Sorry I was just waiting on a decision on what the correct API for eigs should be before repairing the current algorithm. Has that been decided? Whatever algorithm is used, the API must be changed to handle all cases -- it's really inadequate for defective matrices. I think we should fix the API and the current implementation before embarking on any major internal rewrite. Jos, did you get enough feedback to select a specific API for eigs going forward? When we have a clear design, I am happy to make it so.

As for API, whenever you decide on it I can just plug it in, this shouldn't be an issue really so don't worry. I am just working on trying to fix / workout actually working implementation. AFAIK defective matrices still have eigenvalues, so it should not fail. Eigenvectors on the other hand are not always required to exist

image
example of how scipy handles some defective matrix case.

@josdejong
Copy link
Owner

Thanks for the update @bartekleon .

@gwhitney shall we discuss the details of the API further in #3014?

@bartekleon
Copy link
Contributor

Writing everything from scratch made me finally understand what is going on and what we are "sitting on".

So we do support all non defective cases. We support some defective cases to some degree.

First thing that would need to be done (to make stuff a little less confusing) is normalise the vectors - basically divide each vector by it's last element so it is 1 (seems to be done universally, and makes sense since we getting something like ax = y, instead of ax = by)

As for inverseIterate throwing error - it is happening when we find one vector via usolve and it is passed further (because it looks like [[a], [b]] instead [a, b]). It is very easily fixable, but it doesn't resolve any issue sadly

As for defective cases:
apparently if we calculate (A - eI) and get rank of it we can determine if we get linearly independent eigenvectors or not.
But as for calculation of these, still don't know universal algorithm

Side note:
it seems that our eigs algorithm does Schur decomposition, so my suggestion is to move most of the code to schur.js
Although I would need to test it a lot since with so many different cases it might have been a fluke...

@gwhitney
Copy link
Collaborator

First thing that would need to be done (to make stuff a little less confusing) is normalise the vectors - basically divide each vector by it's last element so it is 1 (seems to be done universally, and makes sense since we getting something like ax = y, instead of ax = by)

I beg to differ, that is not the first thing that should be done in response to this bug; it is a thing we might want to do at some point, there's a very reasonable argument for it, but it is a breaking change to working code. Definitely the PR that addresses this bug should not change any working test cases for eigs, only add new test cases that failed before but now pass. Then we can open a new issue about eigs normalization. For that, my advice would be a two-step process, first allowing normalization by a flag so it is non-breaking, and later removing the unnormalized version in a breaking change, but Jos is generally in favor of a more direct breaking way of moving forward, so we would probably do it that way. But that's a separate discussion to have at a separate time.

As for inverseIterate throwing error - it is happening when we find one vector via usolve and it is passed further (because it looks like [[a], [b]] instead [a, b]). It is very easily fixable, but it doesn't resolve any issue sadly

As for defective cases:
apparently if we calculate (A - eI) and get rank of it we can determine if we get linearly independent eigenvectors or not.

Agreed on both counts. And in fact we are already doing part of the rank computation (for the submatrices of the almost-triangular form of A that correspond to each eigenvalue in turn). We certainly find out when those submatrices are not full rank (well, by crashing at the moment, but still). So we know when any eigenvector has lower geometric multiplicity than algebraic. So that's why I say, once we can finally settle on a desired eigs interface, it will not be too much work to fix the current implementation.

gwhitney added a commit to gwhitney/mathjs that referenced this issue Oct 2, 2023
  Previously, attempting to take the `eigs` of any defective matrix
  was doomed to fail in an attempt to solve a singular linear system.
  This PR detects the situation (as best as it can given the
  inherent numerical instability of the current methods used) and
  handles it. Note that in such cases, it's not possible to return
  a square matrix whose columns are the eigenvectors corresponding to
  the returned eigenvalues. In light of that fact and issue josdejong#3014, this
  PR also changes the return value of `eigs` so that the eigenvectors
  are passed back in a property `eigenvectors` which is an array of
  plain objects `{value: e, vector: v}`.

  Note that this PR makes the ancillary changes of correcting the
  spelling of the filename which was "realSymetric.js," and replacing
  the now-unnecessary auxiliary function "createArray" therein with
  `Array(size).fill(element)`. The rationale for performing these
  changes not strictly related to the issues at hand is that this
  file is rarely touched and with the level of maintenance hours we have
  at hand, it's more efficient to do these small refactorings in parallel
  with the actual bugfixes, which are orthogonal and so will not be
  obfuscated by this refactor. Note `git diff` does properly track the
  file name change.

  However, it also makes a potentially more pervasive change: in order for
  the numerically-sensitive algorithm to work, it changes the condition
  on when two very close (double) numbers are "nearlyEqual" from differing by
  less than DBL_EPSILON to differing by less than or equal to DBL_EPSILON.
  Although this may change other behaviors than the ones primarily being
  addressed, I believe it is an acceptable change because

  (a) It preserves all tests.
  (b) DBL_EPSILON is well below the standard config.epsilon anyway
  (c) I believe there are extant issues noting the odd/inconsistent
      behavior of nearlyEqual near 0 anyway, so I believe this will
      be overhauled in the future in any case. If so, the eigenvector
      computation will make a good test that a future nearlyEqual
      algorithm is working well.

  To be clear, the direct motivation for the change is that there are
  multiple cases in the eigenvector computation in which a coefficient
  that is "supposed" to be zero comes out to precisely DBL_EPSILON, which
  is fairly unsurprising given that these coefficients are produced by
  subtracting an eigenvalue from a diagonal entry of a matrix, which is
  likely to be essentially equal to that eigenvalue.

  As many tests of defective matrices as I could readily find by web
  searching have been added as unit tests (and one more in the typescript
  type testing). An additional case I found still fails, but in the
  _eigenvalue_ computation rather than the _eigenvector_ search, so that
  was deemed beyond the scope of this PR and has been filed as issue josdejong#3036.

  Resolves josdejong#2879.
  Resolves josdejong#2927.
  Resolves josdejong#3014.
@josdejong
Copy link
Owner

Fixed in v12.0.0 now via #3037

gauravchawhan added a commit to gauravchawhan/mathjs that referenced this issue Oct 14, 2024
* fix: Find eigenvectors of defective matrices (josdejong#3037)

* fix: Find eigenvectors of defective matrices

  Previously, attempting to take the `eigs` of any defective matrix
  was doomed to fail in an attempt to solve a singular linear system.
  This PR detects the situation (as best as it can given the
  inherent numerical instability of the current methods used) and
  handles it. Note that in such cases, it's not possible to return
  a square matrix whose columns are the eigenvectors corresponding to
  the returned eigenvalues. In light of that fact and issue josdejong#3014, this
  PR also changes the return value of `eigs` so that the eigenvectors
  are passed back in a property `eigenvectors` which is an array of
  plain objects `{value: e, vector: v}`.

  Note that this PR makes the ancillary changes of correcting the
  spelling of the filename which was "realSymetric.js," and replacing
  the now-unnecessary auxiliary function "createArray" therein with
  `Array(size).fill(element)`. The rationale for performing these
  changes not strictly related to the issues at hand is that this
  file is rarely touched and with the level of maintenance hours we have
  at hand, it's more efficient to do these small refactorings in parallel
  with the actual bugfixes, which are orthogonal and so will not be
  obfuscated by this refactor. Note `git diff` does properly track the
  file name change.

  However, it also makes a potentially more pervasive change: in order for
  the numerically-sensitive algorithm to work, it changes the condition
  on when two very close (double) numbers are "nearlyEqual" from differing by
  less than DBL_EPSILON to differing by less than or equal to DBL_EPSILON.
  Although this may change other behaviors than the ones primarily being
  addressed, I believe it is an acceptable change because

  (a) It preserves all tests.
  (b) DBL_EPSILON is well below the standard config.epsilon anyway
  (c) I believe there are extant issues noting the odd/inconsistent
      behavior of nearlyEqual near 0 anyway, so I believe this will
      be overhauled in the future in any case. If so, the eigenvector
      computation will make a good test that a future nearlyEqual
      algorithm is working well.

  To be clear, the direct motivation for the change is that there are
  multiple cases in the eigenvector computation in which a coefficient
  that is "supposed" to be zero comes out to precisely DBL_EPSILON, which
  is fairly unsurprising given that these coefficients are produced by
  subtracting an eigenvalue from a diagonal entry of a matrix, which is
  likely to be essentially equal to that eigenvalue.

  As many tests of defective matrices as I could readily find by web
  searching have been added as unit tests (and one more in the typescript
  type testing). An additional case I found still fails, but in the
  _eigenvalue_ computation rather than the _eigenvector_ search, so that
  was deemed beyond the scope of this PR and has been filed as issue josdejong#3036.

  Resolves josdejong#2879.
  Resolves josdejong#2927.
  Resolves josdejong#3014.

* refactor: remove comma that lint now doesn't like

* test: add a test for eigs with a precision argument

* feat: Use simple shifts in QR eigenvalue iterations that improve convergence

  Although we might want to use better shifts in the future, we might just
  use a library instead. But for now I think this:
  Resolves josdejong#2178.

  Also responds to the review feedback provided in PR josdejong#3037.

* docs: update history

* fix: josdejong#3074 improve error message when using function `max` in `derivative`

* fix: josdejong#3073 parsing quotes inside a string

* fix: josdejong#2027 cannot use named operators like `to` or `mod` as property name

* chore: update devDependencies

* chore: run `npm audit fix`

* chore: publish v11.11.2

* Drop official support for Node.js 14 and 16

* fix: change toTex variable and function assignment from `:=` to `=` (see josdejong#2980, josdejong#3032)

* Update history

* docs: fix typo in `p.set` example in the documentation of matrices (josdejong#3080)

* feat: Add option to eigs() to turn off eigenvector computation (josdejong#3057)

* feat: Add option to eigs() to turn off eigenvector computation

  For large matrices, the eigenvector computation can be noticeably expensive
  and so it's worthwhile to have a way to turn it off if the eigenvectors
  will not be used.
  Resolves josdejong#2180.

* fix: Add test for precision in options arg of eigs

  And also a fix for a small bug that the new test uncovered.

* test: check eigs with matrix and options

* refactor: remove dead code from complexEigs.js

* fix: add new signatures of eigs to typescript

* test: ensure eigenvectors property not present with eigenvectors: false option

* fix: correct balancing code in complexEigs

* Fix: josdejong#3073 escaping in strings (josdejong#3082)

* chore: refactor parsing strings to not rely on `JSON.parse`

* fix: josdejong#3073 function `format` not escaping control characters and double quotes in strings

* chore: add more unit tests

* feat: implement subtractScalar (josdejong#3081, josdejong#2643)

* added subtractScaler

* added subtractScaler missing entries

* added test cases for 2 or more parameters, test for subtractScalar instead fo subtract

* replaced subtract with subtractScalar whereever possible

---------

Co-authored-by: Jos de Jong <[email protected]>

* fix: function `clone` not throwing an error in case of an unsupported type like a function

* chore: make the unit test more robust

* fix: josdejong#2960 add type definition of function `symbolicEqual` (josdejong#3035)

* chore: update devDependencies

* chore: publish v11.12.0

* fix: josdejong#2919 TypeScript types not working with NodeNext module resolution (josdejong#3079)

* docs: update deprecation messages

* chore: publish v12.0.0

* chore: update history (forgot to mention a feature in v12)

* fix: josdejong#3088 error in the description of the return type of `pickRandom`

* fix josdejong#3087: extend function `mod` with support for negative divisors in when using `BigNumber` or `Fraction`

* fix josdejong#3092: a typo in an error message when converting a string into a number

* fix josdejong#3094: function `derivative` mutates the input expression when it fails

* feat: extend function `round` with support for units (josdejong#3095)

* fix josdejong#2761: implement support for units in function `round` (WIP)

* fix josdejong#2761: extend function `round` with support for units

* docs: describe all signatures in the docs of function round

* chore: fix linting issue

* chore: remove less-useful signatures for round with units and matrices

* chore: update devDependencies

* chore: publish v12.1.0

* docs: update the release date in history.md

* fix: josdejong#3096 embedded docs of `eigs` throwing an error

* chore: update history

* fix: accidentally passing a scope as third _and_ fourth argument to raw functions

* feat: lazy evaluation of and, or, &, |  (josdejong#3101, josdejong#3090)

* If fn has rawArgs set, pass unevaluated args

* Add shared helper function for evaluating truthiness

* Add and & or transform functions for lazy evaluation

* Add lazy evaluation of bitwise & and | operators

* Add unit tests for lazy evaluation

* Add lazy evaluation note to docs

* Move documentation to Syntax page

* Replace `testCondition()` with test evaluation
of logical function itself

* Use `isCollection()` to simplify bitwise transform functions

* fix: do not copy scope in raw OperatorNode, test lazy operators scope

* fix: linting issues

---------

Co-authored-by: Brooks Smith <[email protected]>

* docs: update history

* chore: update devDependencies

* chore: publish `v12.2.0`

* fix: josdejong#3109 method `Node.toHTML` not accepting a custom `handler`

* chore: upgrade node and Github actions versions for CI

* chore: upgrade devDependencies

* chore: publish v12.2.1

* chore: oopsie, update version number in version.js

* chore: up version number, and pin fraction.js at v4.3.4

* chore: publish v12.2.1

* docs: update maintenance badge to 2024

* docs: fix the github sponsors badge

* Support new metric prefixes: Q, R, r, and q (josdejong#3113)

* added Q, R, r, q metrix prefixes

* tests added for new prefixes

* removed duplicate tests

* maybe square and cubic tests will bump code cov into the positive

* Check numeric value

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* docs: change 2023 to 2024

* Unitless quantity conversion bug (josdejong#3117)

* Add test for conversion to unitless quantity

* Avoid access to missing array index

* Also check that other.units is not empty

* Add test for abs of dimensionless unit

* Fix: avoid access to missing units array index

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* fix `toSI()` wrongly converting `degC` (josdejong#3118)

* Add new test for degC toSI

* Convert value using to() if needed

* Only set ret.value = null when it is not already null

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: update devDependencies

* chore: publish v12.3.0

* chore: run `npm audit fix`

* Infer types of arguments more precisely (josdejong#3123)

* Prefer inferring types of nodes as tuples

* Implement for IndexNode

* Test for types

* Use tuple type for array node

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* CodeEditorExample (josdejong#3027)

* broadcasting

* Simplified broadcasting

* Updated for broadcasting

* Changed to camel case

* Camel case and auto formating

* Added comments

* Skip if matrices have the same size

* Fixed issue with undefined variable

missing dot  in `A._size`

* Implemented broadcasting in all functions

* Added helper functions

* Added function to check for broadcasting rules

* Tests for broadcasted arithmetic

* Fixed issue with matrix the size of a vector

* Documented and updated broadcasting

* Included broadcast.test

* Included math to syntax when missing

* Add code editor example

* Vite mini project

* Initial example

* added alpine debounce

* Fixed display

* Added parser.clear

* Added mathjs-language

* Made module to get expressions

* Added custom events

* Issue with help formatting

* Simplified help format

* Restored package.json

* removed unneded icons

* Added readme file

* Fixed versions

* Commented getExpressions

* Documented main.js

* Fixed title

* Fixed alpine version

* Removed AlpineJS

* Added documentation and renamed variables for clarity

* Fixed naming errors

---------

Co-authored-by: David Contreras <[email protected]>
Co-authored-by: Jos de Jong <[email protected]>

* chore: minor refinement in the `code editor` example

* chore: update HISTORY.md

* fix: josdejong#3114 build warnings related to a number of wrong `/* #__PURE__ */` annotations

* chore: do not output documentation warnings unless running with a `--debug-docs` flag

* docs: update authors

* Fixed issue with long lines in Code Editor Example  (josdejong#3130)

* broadcasting

* Simplified broadcasting

* Updated for broadcasting

* Changed to camel case

* Camel case and auto formating

* Added comments

* Skip if matrices have the same size

* Fixed issue with undefined variable

missing dot  in `A._size`

* Implemented broadcasting in all functions

* Added helper functions

* Added function to check for broadcasting rules

* Tests for broadcasted arithmetic

* Fixed issue with matrix the size of a vector

* Documented and updated broadcasting

* Included broadcast.test

* Included math to syntax when missing

* Add code editor example

* Vite mini project

* Initial example

* added alpine debounce

* Fixed display

* Added parser.clear

* Added mathjs-language

* Made module to get expressions

* Added custom events

* Issue with help formatting

* Simplified help format

* Restored package.json

* removed unneded icons

* Added readme file

* Fixed versions

* Commented getExpressions

* Documented main.js

* Fixed title

* Fixed alpine version

* Removed AlpineJS

* Added documentation and renamed variables for clarity

* Fixed naming errors

* Fixed issue with long lines

* Edge case where multiple expressions are on the same line not ending in ";"

---------

Co-authored-by: David Contreras <[email protected]>
Co-authored-by: Jos de Jong <[email protected]>

* docs: josdejong#3145 fix documentation about REPL, it does require a build step nowadays

* fix: josdejong#3142 support BigNumber values for the options of function `format`: `precision`, `wordSize`, `lowerExp`, `upperExp`

* Improve type definitions of function `hypot` (josdejong#3144)

* Addressed silentmissile's comment in josdejong#3125

* Added method overload to index.d.ts, have to revert commit due to changes to package-lock.json with using npm install to run the unit tests & lint tests

* chore: update HISTORY.md

* fix: josdejong#3141 `help(config)` altering the actual `config` when evaluating the examples

* chore: update devDependencies

* chore: publish `v12.3.1`

* chore: add a benchmark to get a feel for how fast scope variables are resolved

* chore: fix linting issue

* Fix not being able to use `and` and `or` inside a function definition (josdejong#3150)

* chore: write unit tests using `and` and `or` inside a function definition (WIP)

* fix: josdejong#3143 fix scope issues in rawArgs functions by implementing a `PartitionedMap`

* fix: add more unit tests for `ObjectWrappingMap`

* fix: don't let `ObjectWrappingMap` and `PartitionedMap` extend `Map` (risk of having non-overwritten methods)

* docs: update docs about `rawArgs` functions

* chore: update devDependencies

* chore: publish v12.3.2

* chore: publish v12.3.2

* fix: josdejong#3155 remove an outdated section about complex numbers from the docs

* docs: describe `getAllAsMap` in the Parser docs (josdejong#3158)

* chore: update history

* Determinant with small numbers fix (josdejong#3139)

* feat: trailing commas in matrices (josdejong#3154)

* chore: update history

* docs: fix broken example in the documentation about matrices (see josdejong#3159)

* fix: `PartitionedMap` and `ObjectWrappingMap` missing a property
  `Symbol.iterator`

* fix: linting issue

* fix: mode signature return types  (josdejong#3153)

* fix: mode type signatures

* Add ts tests for mode

* Add assertions mode type tests

* Update author Rich in AUTHORS file

---------

Co-authored-by: Rich Martinez <[email protected]>
Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* feat: improve the performance f `multiply` by adding matrix type inferencing (josdejong#3149)

* added type inference

* added back accidentally removed return statement and made it so that the explicitly defined type is returned at the end

* made sure that mixed types are ignored in the process data types check

* fixed issue with undefined _data for SparseMatrix and linting issues

* simplified syntax and added type inferencing to src/type/matrix/utils and src/function/matrix/dot.js

* shortened the final part of the type inferencing and moved it to matrix creation in multiply

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* Fix: josdejong#3100 function `round` not handling round-off errors (josdejong#3136)

* Fixing rounding bug from issue 3100

* Corrected syntax and converted if...else to logic using ternary operator

* Removing nearlyEqual comparison because a false
return value was mathematically impossible by
user input.

Adding dynamic epsilon logic to cover cases when
a user requests to round a number to a higher
precision than epsilon in the config file.

Also adding tests to cover dynamic epsilon cases.

* Removing dynamic epsilon and adding test for changing config.epsilon during runtime

* Reintroducing nearly equal verification for
round function.

Adding test case for changing epsilon at runtime.

Both tests for changing epsilon at runtime also
verify the false nearlyEqual scenario.

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: update devDependencies (most notably eslint)

* chore: publish v12.4.0

* fix josdejong#3163: `toTex` wrongly returning `Infinity` for large BigNumbers

* fix josdejong#3162: add license information about CSParse (josdejong#3164)

* update history

* fix: faster startup time of the CLI and REPL by loading the bundled file

* feat: Interactive lorenz example (josdejong#3151)

* Interactive lorenz

* Separate Interactive Lorenz

* Cleanup

* Bigger graphs

* Full screen examples

---------

Co-authored-by: Jos de Jong <[email protected]>

* fix: give the inputsDiv a white background (see josdejong#3151)

* chore: update history

* chore: remove `polyfill.io` inside example (josdejong#3167)

Co-authored-by: Jos de Jong <[email protected]>

* fix josdejong#3175: expose `math.Unit.ALIASES`, update history

* chore: update history

* doc: create CODE_OF_CONDUCT.md

See josdejong#3174

* fix: josdejong#3172 simplify `"true and true"`

* fix: josdejong#3175 cannot delete units using `math.Unit.deleteUnit`

* chore: update devDependencies

* chore: run `npm audit fix`

* chore: publish v12.4.1

* docs: fix misleading documentation for expression tree traverse (josdejong#3177)

Callback function for MathNode.traverse() returns void. Documentation says callback must return a replacement for the existing node (possibly copied from transform() above).

* chore: update history

* fix: josdejong#3180 fix type definitions of function `add` and `multiply` to allow
  more than two arguments

* chore: update devDependencies (most notably `gulp@5`)

* chore: replace utility function `values` with `Object.values` (fix josdejong#3194)

* fix josdejong#3192: function `isNaN` returns `false` for `NaN` units in a matrix or   array

* Use referToSelf() to recursively check if various types are NaN in an array or matrix

* fix array test description from isNegative to isNaN

* Add test for units in a matrix

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: update devDependencies

* chore: publish `v12.4.2`

* chore: replace util functions `values` and `contains` with using native JS functions (see josdejong#3194)

* chore: replace util functions `values` and `contains` and usages of `indexOf` with using native JS functions `values` and `contains` (see josdejong#3194)

* fix: serialization of Units without a value, see josdejong#1240

* Fix: outdated, incorrect documentation about the order of precedence for
  operator modulus `%`. See josdejong#3189

* feat: nearly equal with relative and absolute tolerance (josdejong#3152)

* nearlyEqual with absolute and relative tolerances

* Format

* nearlyEqual for bigNumber

* Added skip for NaN

* Reduce diff a bit

* Issue with examples in jsdcos

* Updated all calls for nearlyEqual

* Fixed failing tests

* Changed epsilon to relTol, absTol

* Changed references to epsilon in docs and tests

* Added warning for config.epsilon

* Fix warning in zeta.test

* Added config test

* Added sinon to test console.warn

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: move `sinon` to devDependencies and fix two typos

* chore: adjust `isPositive`, `isNegative`, and `isZero` to the new `relTol` and `absTol`

* docs: document how to run tests for the type definitions

* Improve quantileSeq typings (josdejong#3198)

* Improve quantileSeq typings

* Add tests, revert comment changes

* Fix type tests

* chore: update HISTORY.md

* chore: cleanup entry files that are deprecated since `v8.0.0` (2020-11-06)

* fix: upgrade to `[email protected]`

* chore: convert CJS files to ESM (josdejong#3204)

* chore: added test cases to deepForEach (josdejong#3211)

* feat: implement support for `bigint` (josdejong#3207, josdejong#2737)

* chore: move browserslist from package.json into `.browserslistrc`

* chore: change browerslist to browsers that are not dead and fully support es6

* chore: improve browserslist to explicity require bigint support

* chore: publish v12.4.3

* chore: update package-lock.json

* chore: update devDependencies

* chore: publish v13.0.0

* docs: document dropping JS engines that do not support E6 or bigint in v13

* fix: example advanced/custom_argument_parsing.js

* chore: add unit tests for `deepMap`, `isCollection`, and `reduce`

* docs: fix example `convert_fraction_to_bignumber.js` by upgrading to `[email protected]`

* Broadcast refactor (josdejong#3220)

* chore: update history

* fix: josdejong#3227 generated bundle containing `catch` blocks without parameters

* fix: josdejong#2348 update type definitions of the `Parser` methods (josdejong#3226)

Co-authored-by: Jos de Jong <[email protected]>

* chore: update devDependencies and run `npm audit fix`

* chore: publish v13.0.1

* Further improve quantileSeq typings (josdejong#3223)

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: update devDependencies

* fix josdejong#3227: change the minimum required JS version to ES2020 in the docs

* chore: publish v13.0.2

* chore: update dependencies of the code editor example

* fix: josdejong#3232 fix type definitions of function `format` to support notations `hex`, `bin`, and `oct`

* fix: use exact values for US liquid volume units (josdejong#3229)

1 US gallon is defined as 231 cubic inches, which is exactly 3.785411784 L (since 1 inch is defined as 25.4 mm). Other units are defined against the gallon.

Co-authored-by: Jos de Jong <[email protected]>

* fix: types static methods and members for Unit class (josdejong#3230)

* fix: types static method for Unit class

Changes unit interface to declare class to enable the adding of static methods.

* refactor: change to not using declare class

* fix: adds more unit static methods and updates tests

* chore: moves test from wrong location

* fix: adds additional static methods and updates jsDocs

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: update devDependencies

* chore: publish `v13.0.3`

* chore: update package-lock.json

* chore: revert updating devDependencies

* chore: revert reverting updating devDependencies

* chore: try use `ubuntu-24.04` instead of `ubuntu-latest`

* chore: try use `ubuntu-22.04` instead of `ubuntu-24.04`

* chore: try use `ubuntu-latest` instead of `ubuntu-22.04` again

* chore: disable testing on Node 22 for now until we get mocha working again in GitHub actions

* chore: publish `v13.0.3` for real

* chore: enable testing on Node 22 again

* feat: add matrix datatypes in more cases (josdejong#3235)

* chore: update history

* docs: add a link to the documentation page about the syntax expression from the function `evaluate` (fix josdejong#3238)

* feat: export util functions for maps and improve documentation of `scope`  (josdejong#3243)

* feat: export util functions `isMap`, `isPartitionedMap`, and `isObjectWrappingMap` and improve the documentation of `scope` (see josdejong#3150)

* chore: fix broken unit tests

* docs: refine the explanation about scopes

* chore: update history

* fix: josdejong#3244 fix broken link to `ResultSet` in the docs about classes

* fix: function `map` not always working with matrices (josdejong#3242)

* Removed maxArgumentCount in favor of applyCallback

* Making a pure _recurse function

* Added cbrt tests, removed unnecesary changes in functions.

* Fixed main bottleneck

* Restored back function before unintended change

* Fix format

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: add tea.yaml file

* docs: spelling fixes in the embedded docs (josdejong#3252)

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* chore: add a benchmark testing `DenseMatrix.map(...)` and `DenseMatrix.forEach(...)` (see josdejong#3251)

* feat: support multiple inputs in function `map` (josdejong#3228)

* chore: update history

* chore: update devDependencies

* chore: publish `v13.1.0`

* fix: various security vulnerabilities (josdejong#3255)

* fix: disable parser functions in the CLI (security issue)

* fix: ensure `ObjectWrappingMap` doesn't allow deleting unsafe properties (security issue)

* fix: enable using methods and (safe) properties on plain arrays

* docs: update the "Less vulnerable expression parser" section in the docs

* chore: fix typos and linting issues

* chore: keep functions like `simplify` enabled in the CLI

* docs: update the security page

* fix: ensure `ObjectWrappingMap.keys` cannot list unsafe properties

* fix: when overwriting a rawArgs function with a non-rawArgs function it was still called with raw arguments

* docs: fix a typo

* chore: publish v13.1.1

* fix broken links in configuration.md (josdejong#3254)

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* fix: improve the type definitions of `ConstantNode` to support all data types (josdejong#3257)

* chore: update history

* chore: fix broken benchmark

* fix: josdejong#3259 function `symbolicEqual` missing in the TypeScript definitions

* chore: update AUTHORS file

* fix: josdejong#3259 revert the duplicate `symbolicEqual` definition and just export the existing definitions

* fix: josdejong#3246 add type definitions for function `leafCount`

* fix: josdejong#3253 cannot use identifiers containing special characters in function `derivative`

* chore: update history

* chore: extend the `map.js` benchmark

* chore: fix linting issue

* chore: improve performance of functions `map`, `filter` and `forEach` (josdejong#3256)

* Implement reduceCallback

* Add jsdocs

* implement simplifyCallback in other functions

* Moved recurse to array.js

* Format

* Separate transform callback

* forEach transform

* Renamed applyCallback to simplifyCallback

* Simplified index transform

* renamed to reducedCallback and simplifiedCallback to simpleCallback

* chore: fix linting issue

* Added forEach benchmark

* renamed simplifyCallback to optimizeCallback

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update history

* fix: josdejong#3267 implicit multiplication with a negative number and unit `in`

* feat: speed up the `map()` and `forEach()` functions in DenseMatrix.js (josdejong#3251)

* Optimize the map and forEach functions in DenseMatrix.js

* Changed index back to Array from Uint32Array and clone it using index.slice(0) instead of [...index]

* Fixed merge conflicts with the fast callback optimization

* Fixed the documentation for _forEach()

* Fixed _forEach comment and made it return an immutable index array

* Resolved DenseMatrix unit test suggestions

---------

Co-authored-by: Jos de Jong <[email protected]>

* chore: update HISTORY.md and AUTHORS

* chore: use `codecov/codecov-action`

* chore: try fix the codecov-action

* chore: try fix the codecov-action

* chore: try fix the codecov-action

* chore: try fix the codecov-action

* docs: document the syntax of `map` and `forEach` in the expression parser (josdejong#3272)

* chore: update docs

* chore: update devDependencies

* chore: publish `v13.2.0`

* chore: add a missing comma

* docs: fix a typo on the Syntax page (josdejong#3276)

* fix: update dependencies and devDependencies

* chore: cleanup unused imports

* chore: revert to `[email protected]` to keep the (old) eslint version happy

---------

Co-authored-by: Glen Whitney <[email protected]>
Co-authored-by: Jos de Jong <[email protected]>
Co-authored-by: Vincent Tam <[email protected]>
Co-authored-by: Vrushaket Chaudhari <[email protected]>
Co-authored-by: Juan Pablo Alvarado <[email protected]>
Co-authored-by: Brooks Smith <[email protected]>
Co-authored-by: Alex Edgcomb <[email protected]>
Co-authored-by: Carl Osterwisch <[email protected]>
Co-authored-by: S.Y. Lee <[email protected]>
Co-authored-by: David Contreras <[email protected]>
Co-authored-by: David Contreras <[email protected]>
Co-authored-by: Hudsxn <[email protected]>
Co-authored-by: Rich Martinez <[email protected]>
Co-authored-by: Rich Martinez <[email protected]>
Co-authored-by: RandomGamingDev <[email protected]>
Co-authored-by: Brian Fugate <[email protected]>
Co-authored-by: Sukka <[email protected]>
Co-authored-by: Rohil Shah <[email protected]>
Co-authored-by: Laurent Gérin <[email protected]>
Co-authored-by: Adam Jones <[email protected]>
Co-authored-by: Lucas Eng <[email protected]>
Co-authored-by: Orel Ben Neriah <[email protected]>
Co-authored-by: Vistinum <[email protected]>
Co-authored-by: Vas Sudanagunta <[email protected]>
Co-authored-by: Brooks Smith <[email protected]>
Co-authored-by: Jmar L. Pineda <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging a pull request may close this issue.

6 participants