Skip to content

Latest commit

 

History

History
595 lines (497 loc) · 13.9 KB

File metadata and controls

595 lines (497 loc) · 13.9 KB

English Version

题目描述

给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是  nums[i] 右侧小于 nums[i] 的元素的数量。

 

示例 1:

输入:nums = [5,2,6,1]
输出:[2,1,1,0] 
解释:
5 的右侧有 2 个更小的元素 (2 和 1)
2 的右侧仅有 1 个更小的元素 (1)
6 的右侧有 1 个更小的元素 (1)
1 的右侧有 0 个更小的元素

示例 2:

输入:nums = [-1]
输出:[0]

示例 3:

输入:nums = [-1,-1]
输出:[0,0]

 

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

解法

方法一:树状数组

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 $O(\log n)$

树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。

比如给定数组 a[5] = {2, 5, 3, 4, 1},求 b[i] = 位置 i 左边小于等于 a[i] 的数的个数。对于此例,b[5] = {0, 1, 1, 2, 0}

解决方案是直接遍历数组,每个位置先求出 query(a[i]),然后再修改树状数组 update(a[i], 1) 即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。

方法二:线段树

线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 log(width)。更新某个元素的值,只需要更新 log(width) 个区间,并且这些区间都包含在一个包含该元素的大区间内。

  • 线段树的每个节点代表一个区间;
  • 线段树具有唯一的根节点,代表的区间是整个统计范围,如 [1, N]
  • 线段树的每个叶子节点代表一个长度为 1 的元区间 [x, x]
  • 对于每个内部节点 [l, r],它的左儿子是 [l, mid],右儿子是 [mid + 1, r], 其中 mid = ⌊(l + r) / 2⌋ (即向下取整)。

方法三:归并排序

Python3

树状数组:

class BinaryIndexedTree:
    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)

    @staticmethod
    def lowbit(x):
        return x & -x

    def update(self, x, delta):
        while x <= self.n:
            self.c[x] += delta
            x += BinaryIndexedTree.lowbit(x)

    def query(self, x):
        s = 0
        while x > 0:
            s += self.c[x]
            x -= BinaryIndexedTree.lowbit(x)
        return s


class Solution:
    def countSmaller(self, nums: List[int]) -> List[int]:
        alls = sorted(set(nums))
        m = {v: i for i, v in enumerate(alls, 1)}
        tree = BinaryIndexedTree(len(m))
        ans = []
        for v in nums[::-1]:
            x = m[v]
            tree.update(x, 1)
            ans.append(tree.query(x - 1))
        return ans[::-1]

线段树:

class Node:
    def __init__(self):
        self.l = 0
        self.r = 0
        self.v = 0

class SegmentTree:
    def __init__(self, n):
        self.tr = [Node() for _ in range(n << 2)]
        self.build(1, 1, n)

    def build(self, u, l, r):
        self.tr[u].l = l
        self.tr[u].r = r
        if l == r:
            return
        mid = (l + r) >> 1
        self.build(u << 1, l, mid)
        self.build(u << 1 | 1, mid + 1, r)

    def modify(self, u, x, v):
        if self.tr[u].l == x and self.tr[u].r == x:
            self.tr[u].v += v
            return
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        if x <= mid:
            self.modify(u << 1, x, v)
        else:
            self.modify(u << 1 | 1, x, v)
        self.pushup(u)

    def query(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            return self.tr[u].v
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        v = 0
        if l <= mid:
            v += self.query(u << 1, l, r)
        if r > mid:
            v += self.query(u << 1 | 1, l, r)
        return v

    def pushup(self, u):
        self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v

class Solution:
    def countSmaller(self, nums: List[int]) -> List[int]:
        s = sorted(set(nums))
        m = {v: i for i, v in enumerate(s, 1)}
        tree = SegmentTree(len(s))
        ans = []
        for v in nums[::-1]:
            x = m[v]
            ans.append(tree.query(1, 1, x - 1))
            tree.modify(1, x, 1)
        return ans[::-1]

Java

树状数组:

class Solution {
    public List<Integer> countSmaller(int[] nums) {
        Set<Integer> s = new HashSet<>();
        for (int v : nums) {
            s.add(v);
        }
        List<Integer> alls = new ArrayList<>(s);
        alls.sort(Comparator.comparingInt(a -> a));
        int n = alls.size();
        Map<Integer, Integer> m = new HashMap<>(n);
        for (int i = 0; i < n; ++i) {
            m.put(alls.get(i), i + 1);
        }
        BinaryIndexedTree tree = new BinaryIndexedTree(n);
        LinkedList<Integer> ans = new LinkedList<>();
        for (int i = nums.length - 1; i >= 0; --i) {
            int x = m.get(nums[i]);
            tree.update(x, 1);
            ans.addFirst(tree.query(x - 1));
        }
        return ans;
    }
}

class BinaryIndexedTree {
    private int n;
    private int[] c;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
    }

    public void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    public int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    public static int lowbit(int x) {
        return x & -x;
    }
}

线段树:

class Solution {
    public List<Integer> countSmaller(int[] nums) {
        Set<Integer> s = new HashSet<>();
        for (int v : nums) {
            s.add(v);
        }
        List<Integer> alls = new ArrayList<>(s);
        alls.sort(Comparator.comparingInt(a -> a));
        int n = alls.size();
        Map<Integer, Integer> m = new HashMap<>(n);
        for (int i = 0; i < n; ++i) {
            m.put(alls.get(i), i + 1);
        }
        SegmentTree tree = new SegmentTree(n);
        LinkedList<Integer> ans = new LinkedList<>();
        for (int i = nums.length - 1; i >= 0; --i) {
            int x = m.get(nums[i]);
            tree.modify(1, x, 1);
            ans.addFirst(tree.query(1, 1, x - 1));
        }
        return ans;
    }
}

class Node {
    int l;
    int r;
    int v;
}

class SegmentTree {
    private Node[] tr;

    public SegmentTree(int n) {
        tr = new Node[4 * n];
        for (int i = 0; i < tr.length; ++i) {
            tr[i] = new Node();
        }
        build(1, 1, n);
    }

    public void build(int u, int l, int r) {
        tr[u].l = l;
        tr[u].r = r;
        if (l == r) {
            return;
        }
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
    }

    public void modify(int u, int x, int v) {
        if (tr[u].l == x && tr[u].r == x) {
            tr[u].v += v;
            return;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        if (x <= mid) {
            modify(u << 1, x, v);
        } else {
            modify(u << 1 | 1, x, v);
        }
        pushup(u);
    }

    public void pushup(int u) {
        tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v;
    }

    public int query(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) {
            return tr[u].v;
        }
        int mid = (tr[u].l + tr[u].r) >> 1;
        int v = 0;
        if (l <= mid) {
            v += query(u << 1, l, r);
        }
        if (r > mid) {
            v += query(u << 1 | 1, l, r);
        }
        return v;
    }
}

C++

树状数组:

class BinaryIndexedTree {
public:
    int n;
    vector<int> c;

    BinaryIndexedTree(int _n)
        : n(_n)
        , c(_n + 1) { }

    void update(int x, int delta) {
        while (x <= n) {
            c[x] += delta;
            x += lowbit(x);
        }
    }

    int query(int x) {
        int s = 0;
        while (x > 0) {
            s += c[x];
            x -= lowbit(x);
        }
        return s;
    }

    int lowbit(int x) {
        return x & -x;
    }
};

class Solution {
public:
    vector<int> countSmaller(vector<int>& nums) {
        unordered_set<int> s(nums.begin(), nums.end());
        vector<int> alls(s.begin(), s.end());
        sort(alls.begin(), alls.end());
        unordered_map<int, int> m;
        int n = alls.size();
        for (int i = 0; i < n; ++i) m[alls[i]] = i + 1;
        BinaryIndexedTree* tree = new BinaryIndexedTree(n);
        vector<int> ans(nums.size());
        for (int i = nums.size() - 1; i >= 0; --i) {
            int x = m[nums[i]];
            tree->update(x, 1);
            ans[i] = tree->query(x - 1);
        }
        return ans;
    }
};

线段树:

class Node {
public:
    int l;
    int r;
    int v;
};

class SegmentTree {
public:
    vector<Node*> tr;

    SegmentTree(int n) {
        tr.resize(4 * n);
        for (int i = 0; i < tr.size(); ++i) tr[i] = new Node();
        build(1, 1, n);
    }

    void build(int u, int l, int r) {
        tr[u]->l = l;
        tr[u]->r = r;
        if (l == r) return;
        int mid = (l + r) >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
    }

    void modify(int u, int x, int v) {
        if (tr[u]->l == x && tr[u]->r == x)
        {
            tr[u]->v += v;
            return;
        }
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        if (x <= mid) modify(u << 1, x, v);
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }

    void pushup(int u) {
        tr[u]->v = tr[u << 1]->v + tr[u << 1 | 1]->v;
    }

    int query(int u, int l, int r) {
        if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v;
        int mid = (tr[u]->l + tr[u]->r) >> 1;
        int v = 0;
        if (l <= mid) v += query(u << 1, l, r);
        if (r > mid) v += query(u << 1 | 1, l, r);
        return v;
    }
};

class Solution {
public:
    vector<int> countSmaller(vector<int>& nums) {
        unordered_set<int> s(nums.begin(), nums.end());
        vector<int> alls(s.begin(), s.end());
        sort(alls.begin(), alls.end());
        unordered_map<int, int> m;
        int n = alls.size();
        for (int i = 0; i < n; ++i) m[alls[i]] = i + 1;
        SegmentTree* tree = new SegmentTree(n);
        vector<int> ans(nums.size());
        for (int i = nums.size() - 1; i >= 0; --i)
        {
            int x = m[nums[i]];
            tree->modify(1, x, 1);
            ans[i] = tree->query(1, 1, x - 1);
        }
        return ans;
    }
};

Go

树状数组:

type BinaryIndexedTree struct {
	n int
	c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
	c := make([]int, n+1)
	return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
	return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
	for x <= this.n {
		this.c[x] += delta
		x += this.lowbit(x)
	}
}

func (this *BinaryIndexedTree) query(x int) int {
	s := 0
	for x > 0 {
		s += this.c[x]
		x -= this.lowbit(x)
	}
	return s
}

func countSmaller(nums []int) []int {
	s := make(map[int]bool)
	for _, v := range nums {
		s[v] = true
	}
	var alls []int
	for v := range s {
		alls = append(alls, v)
	}
	sort.Ints(alls)
	m := make(map[int]int)
	for i, v := range alls {
		m[v] = i + 1
	}
	ans := make([]int, len(nums))
	tree := newBinaryIndexedTree(len(alls))
	for i := len(nums) - 1; i >= 0; i-- {
		x := m[nums[i]]
		tree.update(x, 1)
		ans[i] = tree.query(x - 1)
	}
	return ans
}

归并排序:

type Pair struct {
	val   int
	index int
}

var (
	tmp   []Pair
	count []int
)

func countSmaller(nums []int) []int {
	tmp, count = make([]Pair, len(nums)), make([]int, len(nums))
	array := make([]Pair, len(nums))
	for i, v := range nums {
		array[i] = Pair{val: v, index: i}
	}
	sorted(array, 0, len(array)-1)
	return count
}

func sorted(arr []Pair, low, high int) {
	if low >= high {
		return
	}
	mid := low + (high-low)/2
	sorted(arr, low, mid)
	sorted(arr, mid+1, high)
	merge(arr, low, mid, high)
}

func merge(arr []Pair, low, mid, high int) {
	left, right := low, mid+1
	idx := low
	for left <= mid && right <= high {
		if arr[left].val <= arr[right].val {
			count[arr[left].index] += right - mid - 1
			tmp[idx], left = arr[left], left+1
		} else {
			tmp[idx], right = arr[right], right+1
		}
		idx++
	}
	for left <= mid {
		count[arr[left].index] += right - mid - 1
		tmp[idx] = arr[left]
		idx, left = idx+1, left+1
	}
	for right <= high {
		tmp[idx] = arr[right]
		idx, right = idx+1, right+1
	}
	// 排序
	for i := low; i <= high; i++ {
		arr[i] = tmp[i]
	}
}

...