forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_async_base.cc
629 lines (556 loc) · 18.4 KB
/
net_async_base.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#include "caffe2/core/net_async_base.h"
#include "caffe2/core/net_async_tracing.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/timer.h"
// experimental support for multiple streams per worker per GPU
C10_DEFINE_int(
caffe2_streams_per_gpu,
1,
"Number of streams per worker per GPU"
" to use in GPU thread pool (experimental)");
C10_DEFINE_bool(
caffe2_net_async_inference_mode,
false,
"If set, use one single chain containing all ops");
C10_DEFINE_bool(
caffe2_net_async_profile_operators,
false,
"If set, profile operators of the net regardless of net being prof_dag.");
C10_DEFINE_int(
caffe2_net_async_max_gpus,
16,
"Max number of GPUs allowed in net async executor");
C10_DEFINE_int(
caffe2_net_async_max_numa_nodes,
8,
"Max number of NUMA nodes allowed in net async executor");
C10_DEFINE_int(
caffe2_net_async_thread_pool_size,
0,
"Number of threads in device thread pool by default");
C10_DEFINE_bool(
caffe2_net_async_check_stream_status,
false,
"Select next non-busy stream");
C10_DEFINE_bool(
caffe2_net_async_use_single_pool,
false,
"Use single thread pool for all devices");
C10_DEFINE_bool(
caffe2_net_async_use_per_net_pools,
false,
"Use per net thread pools");
C10_DEFINE_bool(
caffe2_net_async_run_root_tasks_inline,
false,
"Run root tasks in current thread instread of scheduling to threadpool");
namespace caffe2 {
std::vector<int>& AsyncNetBase::getStreamCounters() {
static thread_local std::vector<int> stream_counters_;
return stream_counters_;
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
AsyncNetBase::AsyncNetBase(
const std::shared_ptr<const NetDef>& net_def,
Workspace* ws)
: NetBase(net_def, ws), options_(net_def), counters_(net_def) {
operator_nodes_ = dag_utils::prepareOperatorNodes(net_def, ws);
helper_ = std::make_unique<AsyncNetExecutorHelper>(this);
operators_.reserve(operator_nodes_.size());
for (const auto& node : operator_nodes_) {
auto op_ptr = node.operator_.get();
op_ptr->SetExecutorHelper(helper_.get());
operators_.push_back(op_ptr);
}
if (FLAGS_caffe2_net_async_inference_mode) {
execution_chains_ = dag_utils::computeGroups(operator_nodes_);
} else {
execution_chains_ = dag_utils::computeChains(operator_nodes_);
}
chains_.reserve(execution_chains_.size());
for (const auto& kv : execution_chains_) {
chains_.push_back(kv.second);
}
chain_nodes_ = dag_utils::prepareChainGraphNodes(operator_nodes_, chains_);
events_.reserve(chains_.size());
for (const auto& chain : chains_) {
const auto& last_op = operators_[chain.back()];
events_.push_back(&last_op->event());
// keep events for inner chain ops in case of profiling
if (!options_.report_stats_) {
for (const auto& op_id : chain) {
if (op_id == chain.back() || op_id == chain.front()) {
continue;
}
const auto& op = operators_[op_id];
op->DisableEvent();
}
}
}
num_workers_ = net_def->has_num_workers() ? net_def->num_workers() : -1;
tracer_ = tracing::create(this, net_def->name());
if (tracer_) {
LOG(INFO) << "Tracing net: " << net_def->name();
}
}
bool AsyncNetBase::handleRunError() {
#ifdef CAFFE2_USE_EXCEPTION_PTR
// Check net's events for exceptions and rethrow chronologically the first one
int first_exc_task_id = -1;
int64_t first_exc_ts = 0;
for (int task_id = 0; task_id < tasksNum(); ++task_id) {
if (event(task_id).HasException()) {
if (first_exc_task_id >= 0) {
auto exc_ts = event(task_id).ErrorTimestamp();
if (exc_ts < first_exc_ts) {
first_exc_task_id = task_id;
first_exc_ts = exc_ts;
}
} else {
first_exc_task_id = task_id;
first_exc_ts = event(task_id).ErrorTimestamp();
}
}
}
if (first_exc_task_id >= 0) {
LOG(ERROR) << "Rethrowing exception from the run of '" << Name() << "'";
event(first_exc_task_id).RethrowException();
}
#endif // CAFFE2_USE_EXCEPTION_PTR
if (!success_) {
LOG(ERROR) << "Error encountered in the run of '" << Name() << "'";
}
return success_;
}
bool AsyncNetBase::RunAsync() {
tracing::startIter(tracer_);
reset();
return DoRunAsync();
}
TaskThreadPoolBase* AsyncNetBase::poolGetter(
PoolsMap& pools,
int device_type,
int device_id,
int pool_size) {
std::unique_lock<std::mutex> pools_lock(pools_mutex_);
auto pool = pools[device_id][pool_size];
if (!pool) {
pool = c10::ThreadPoolRegistry()->Create(
DeviceTypeName(device_type),
device_id,
pool_size,
options_.use_per_net_pools_);
pools[device_id][pool_size] = pool;
}
return pool.get();
}
TaskThreadPoolBase* AsyncNetBase::pool() {
// By default using a non-pinned CPU option
DeviceOption dev;
dev.set_device_type(PROTO_CPU);
return pool(dev);
}
TaskThreadPoolBase* AsyncNetBase::pool(const DeviceOption& device_option) {
if (options_.use_single_pool_) {
return poolGetter(cpu_pools_, PROTO_CPU, -1, num_workers_);
}
const auto device_type = device_option.device_type();
if (IsCPUDeviceType(device_type)) {
auto numa_node_id = -1;
if (device_option.has_numa_node_id()) {
numa_node_id = device_option.numa_node_id();
CAFFE_ENFORCE_GE(numa_node_id, 0, "Invalid NUMA node id: ", numa_node_id);
}
CAFFE_ENFORCE_LT(
numa_node_id,
FLAGS_caffe2_net_async_max_numa_nodes,
"Invalid NUMA node id: ",
numa_node_id);
return poolGetter(cpu_pools_, device_type, numa_node_id, num_workers_);
} else if (IsGPUDeviceType(device_type)) {
auto gpu_id = device_option.device_id();
CAFFE_ENFORCE(
gpu_id >= 0 && gpu_id < FLAGS_caffe2_net_async_max_gpus,
"Invalid GPU id: " + c10::to_string(gpu_id));
return poolGetter(gpu_pools_, device_type, gpu_id, num_workers_);
} else {
CAFFE_THROW("Unsupported device type " + c10::to_string(device_type));
}
}
int AsyncNetBase::stream(int task_id) {
const auto& device_option = event(task_id).GetDeviceOption();
int stream_id = 0;
if (IsGPUDeviceType(device_option.device_type())) {
int gpu_id = device_option.device_id();
CAFFE_ENFORCE_GE(gpu_id, 0, "Invalid gpu id: " + c10::to_string(gpu_id));
if ((unsigned)gpu_id >= getStreamCounters().size()) {
getStreamCounters().resize(gpu_id + 1, 0);
}
do {
stream_id = getStreamCounters().at(gpu_id)++;
getStreamCounters().at(gpu_id) %= options_.streams_per_gpu_;
} while (options_.check_stream_status_ &&
!isStreamFree(task_id, stream_id));
}
return stream_id;
}
bool AsyncNetBase::isStreamFree(int task_id, int stream_id) const {
auto& task = chains_[task_id];
auto& last_task_op = operators_[task.back()];
return last_task_op->IsStreamFree(stream_id);
}
bool AsyncNetBase::canSchedule(
int task_id,
const std::vector<EventStatus>* status,
bool* parent_failed) {
auto first_child_op_id = chains_[task_id].front();
for (auto parent_id : parents(task_id)) {
auto last_parent_op_id = chains_[parent_id].back();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
EventStatus parent_status;
if (status) {
parent_status = status->at(parent_id);
} else {
parent_status = operators_[last_parent_op_id]->event().Query();
}
if (parent_status == EventStatus::EVENT_FAILED) {
if (parent_failed) {
*parent_failed = true;
}
return false;
}
bool can_schedule = Event::CanSchedule(
operators_[last_parent_op_id]->event().GetType(),
parent_status,
operators_[first_child_op_id]->event().GetType(),
operators_[first_child_op_id]->SupportsAsyncScheduling());
if (!can_schedule) {
return false;
}
}
return true;
}
bool AsyncNetBase::canSchedule(int parent_id, int child_id) {
auto& parent_event = event(parent_id);
auto first_child_op_id = chains_[child_id].front();
auto* first_child_op = operators_[first_child_op_id];
return Event::CanSchedule(
parent_event.GetType(),
parent_event.Query(),
first_child_op->event().GetType(),
first_child_op->SupportsAsyncScheduling());
}
int AsyncNetBase::tasksNum() const {
return chains_.size();
}
Event& AsyncNetBase::event(int task_id) const {
auto& task = chains_[task_id];
auto& last_task_op = operators_[task.back()];
return last_task_op->event();
}
EventStatus AsyncNetBase::query(int task_id) const {
return event(task_id).Query();
}
const std::vector<int>& AsyncNetBase::children(int task_id) const {
const auto& task_node = chain_nodes_[task_id];
return task_node.children_;
}
const std::vector<int>& AsyncNetBase::parents(int task_id) const {
const auto& task_node = chain_nodes_[task_id];
return task_node.parents_;
}
int AsyncNetBase::getParentCount(int child_id) {
auto& child_ops = chains_[child_id];
auto& child_node = operator_nodes_[child_ops.front()];
return child_node.runtime_parent_count_.load();
}
int AsyncNetBase::updateParentCount(int child_id) {
auto& child_ops = chains_[child_id];
auto& child_node = operator_nodes_[child_ops.front()];
int parent_count = --child_node.runtime_parent_count_;
CAFFE_ENFORCE_GE(parent_count, 0);
return parent_count;
}
bool AsyncNetBase::testAndSetScheduled(int task_id) {
auto& task_ops = chains_[task_id];
auto& task_op_node = operator_nodes_[task_ops.front()];
return !task_op_node.scheduled_.test_and_set();
}
int AsyncNetBase::numOps(int task_id) const {
return chains_[task_id].size();
}
int AsyncNetBase::firstTaskOpId(int task_id) const {
return chains_[task_id].front();
}
int AsyncNetBase::lastTaskOpId(int task_id) const {
return chains_[task_id].back();
}
const OperatorBase* AsyncNetBase::firstTaskOp(int task_id) const {
return operator_nodes_[firstTaskOpId(task_id)].operator_.get();
}
const OperatorBase* AsyncNetBase::lastTaskOp(int task_id) const {
return operator_nodes_[lastTaskOpId(task_id)].operator_.get();
}
OperatorBase* AsyncNetBase::firstTaskOp(int task_id) {
return operator_nodes_[firstTaskOpId(task_id)].operator_.get();
}
OperatorBase* AsyncNetBase::lastTaskOp(int task_id) {
return operator_nodes_[lastTaskOpId(task_id)].operator_.get();
}
void AsyncNetBase::asyncWait(
int task_id,
int stream_id,
const std::vector<int>& wait_task_ids) const {
auto first_op_id = chains_[task_id].front();
auto& first_op = operators_[first_op_id];
std::vector<const Event*> events;
events.reserve(wait_task_ids.size());
for (auto wait_task_id : wait_task_ids) {
events.push_back(&event(wait_task_id));
}
first_op->WaitEvents(events, stream_id);
}
void AsyncNetBase::reset() {
for (auto& op : GetOperators()) {
op->ResetEvent();
}
for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
auto& task_ops = chains_[task_id];
auto& task_op_node = operator_nodes_[task_ops.front()];
task_op_node.runtime_parent_count_ = parents(task_id).size();
task_op_node.scheduled_.clear();
}
success_ = true;
}
void AsyncNetBase::handleChainError(
int task_id,
OperatorBase* op,
const char* err_str,
bool save_exception) noexcept {
std::string err_msg = err_str;
if (op) {
err_msg += ", op " + (op->has_debug_def() ? op->type() : " unknown");
}
LOG(ERROR) << err_msg;
// mark end of chain with an error
if (query(task_id) == EventStatus::EVENT_INITIALIZED) {
if (save_exception) {
event(task_id).SetFinishedWithException(err_msg.c_str());
} else {
event(task_id).SetFinished(err_msg.c_str());
}
}
}
bool AsyncNetBase::run(int task_id, int stream_id) noexcept {
OperatorBase* op = nullptr;
try {
// Optionally insert async wait ops,
// skip when finish_chain_ is set -
// all parents are guaranteed to be finished
if (!options_.finish_chain_) {
asyncWait(task_id, stream_id, parents(task_id));
}
int iter_id = -1;
if (tracer_) {
iter_id = tracer_->getIter();
}
for (auto& op_id : chains_[task_id]) {
op = operators_[op_id];
bool success = false;
if (!options_.report_stats_) {
TRACE_EVENT(
tracing::TRACE_OP,
op_id,
tracing::TRACE_TASK,
task_id,
tracing::TRACE_STREAM,
stream_id,
tracing::TRACE_ITER,
iter_id);
success = op->RunAsync(stream_id);
} else {
counters_.AddPerOpStartTime(op_id);
success = op->RunAsync(stream_id);
if (success && op->device_option().device_type() != PROTO_CPU) {
op->Finish();
}
counters_.AddPerOpEndTime(op_id);
}
if (!success) {
handleChainError(task_id, op, "Failed to execute an op");
return false;
}
}
op = nullptr;
if (options_.finish_chain_) {
operators_[chains_[task_id].back()]->event().Finish();
}
} catch (const std::exception& e) {
handleChainError(task_id, op, e.what(), /* save_exception */ true);
return false;
} catch (...) {
handleChainError(
task_id,
op,
"Failed to execute task: unknown error",
/* save_exception */ true);
return false;
}
return true;
}
void AsyncNetBase::finishTasks(const std::unordered_set<int>& task_ids) {
for (const auto& task_id : task_ids) {
event(task_id).Finish();
}
}
void AsyncNetBase::finalizeEvents() {
std::vector<OperatorBase*> pending_ops;
for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
auto status = query(task_id);
if (status == EventStatus::EVENT_SCHEDULED) {
// async cpu ops need to be handled separately,
// as they may potentially never finish
auto* op = lastTaskOp(task_id);
if (op->HasAsyncPart() &&
op->device_option().device_type() == PROTO_CPU) {
pending_ops.push_back(op);
} else {
event(task_id).Finish();
}
} else if (status == EventStatus::EVENT_INITIALIZED) {
event(task_id).SetFinished();
}
}
// avoid events cancelling each other and causing
// a deadlock
std::atomic_flag error_happened = ATOMIC_FLAG_INIT;
for (auto* pending_op : pending_ops) {
pending_op->event().SetCallback(
[pending_op, &pending_ops, &error_happened]() {
// if one of the async cpu ops failed,
// we have to terminate other pending async cpu ops
auto status = pending_op->event().Query();
TORCH_CHECK(
status == EventStatus::EVENT_SUCCESS ||
status == EventStatus::EVENT_FAILED);
if (status == EventStatus::EVENT_FAILED) {
// go through all the ops and terminate them,
// we may get an exception in case of multiple
// SetFinished() calls
if (!error_happened.test_and_set()) {
for (auto* op : pending_ops) {
if (op != pending_op) {
try {
op->CancelAsyncCallback();
// throw and catch exception to preserve stack trace
try {
throw AsyncNetCancelled();
} catch (const AsyncNetCancelled& e) {
op->event().SetFinishedWithException(e.what());
}
} catch (const EnforceNotMet&) {
// ignore
}
}
}
}
}
});
}
// wait for all pending ops to be finished or be terminated
for (auto* pending_op : pending_ops) {
pending_op->event().Finish();
}
for (auto task_id = 0; task_id < tasksNum(); ++task_id) {
if (event(task_id).Query() != EventStatus::EVENT_SUCCESS) {
success_ = false;
break;
}
}
}
ProfDAGProtos AsyncNetBase::GetOperatorStats() const {
return counters_.GetReport().GetOperatorStats();
}
ProfDAGProtos AsyncNetBase::GetPerOperatorCost() const {
return counters_.GetReport().GetPerOperatorCost();
}
ProfDAGReport AsyncNetBase::GetProfReport() const {
return counters_.GetReport();
}
AsyncNetBase::~AsyncNetBase() {
if (options_.report_stats_) {
counters_.GetReport().PrintStats();
}
}
ExecutionOptions::ExecutionOptions(
const std::shared_ptr<const NetDef>& net_def) {
static const std::string kDag = "dag";
static const std::string kProfDag = "prof_dag";
static const std::string kAsyncDag = "async_dag";
static const std::string kSimpleNet = "simple";
std::string net_type;
if (net_def->has_type() && !net_def->type().empty()) {
net_type = net_def->type();
} else {
net_type = kSimpleNet;
}
if (net_type == kDag || net_type == kProfDag) {
streams_per_gpu_ = 1;
finish_chain_ = true;
always_schedule_child_ = true;
check_stream_status_ = false;
use_single_pool_ = true;
use_per_net_pools_ = true;
is_blocking_ = true;
report_stats_ = (net_type == kProfDag);
} else if (net_type == kAsyncDag) {
streams_per_gpu_ = 1;
finish_chain_ = false;
always_schedule_child_ = true;
check_stream_status_ = false;
use_single_pool_ = true;
use_per_net_pools_ = true;
is_blocking_ = true;
report_stats_ = false;
} else {
streams_per_gpu_ = FLAGS_caffe2_streams_per_gpu;
finish_chain_ = false;
always_schedule_child_ = false;
check_stream_status_ = FLAGS_caffe2_net_async_check_stream_status;
use_single_pool_ = FLAGS_caffe2_net_async_use_single_pool;
use_per_net_pools_ = FLAGS_caffe2_net_async_use_per_net_pools;
is_blocking_ = false;
report_stats_ = false;
}
use_dfs_scheduling_ = false;
for (int arg_idx = 0; arg_idx < net_def->arg_size(); ++arg_idx) {
auto& arg = net_def->arg(arg_idx);
if (arg.has_name() && arg.name() == "enable_profiling") {
CAFFE_ENFORCE(arg.has_i(), "enable_profiling should be an int");
report_stats_ = arg.i() == 1;
}
if (arg.has_name() && arg.name() == "deferrable_mode") {
CAFFE_ENFORCE(arg.has_i(), "deferrable_mode should be an int");
use_dfs_scheduling_ = arg.i() == 1; // corr. to DFS scheduling
}
}
if (FLAGS_caffe2_net_async_profile_operators) {
report_stats_ = true;
}
run_root_tasks_inline_ = FLAGS_caffe2_net_async_run_root_tasks_inline;
}
} // namespace caffe2
namespace c10 {
C10_REGISTER_CREATOR(
ThreadPoolRegistry,
CPU,
caffe2::GetAsyncNetThreadPool<TaskThreadPool, caffe2::PROTO_CPU>);
C10_REGISTER_CREATOR(
ThreadPoolRegistry,
CUDA,
caffe2::GetAsyncNetThreadPool<TaskThreadPool, caffe2::PROTO_CUDA>);
C10_REGISTER_CREATOR(
ThreadPoolRegistry,
HIP,
caffe2::GetAsyncNetThreadPool<TaskThreadPool, caffe2::PROTO_HIP>);
} // namespace c10