forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryDivFloorKernel.cu
112 lines (102 loc) · 3.88 KB
/
BinaryDivFloorKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/BinaryInternal.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <c10/util/TypeSafeSignMath.h>
#include <ATen/native/cuda/BinaryInternal.h>
#include <ATen/native/cuda/JitLoops.cuh>
#include <ATen/native/cuda/Loops.cuh>
#include <type_traits>
namespace at {
namespace native {
namespace binary_internal {
void div_floor_kernel_cuda(TensorIteratorBase& iter) {
// See NOTE: [Floor Division in Python]
const auto dtype = iter.common_dtype();
if (dtype == kByte) {
// In the special case of unsigned integer division, floor division is
// equivalent to truncation division (since the signs of the divisor and
// dividend are always the same)
return div_trunc_kernel_cuda(iter);
} else if (isIntegralType(dtype, /*includeBool*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(dtype, "div_floor_cuda", [&]() {
gpu_kernel_with_scalars(
iter, [] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
if (c10::signs_differ(a, b)) {
// Subtracts one from the results of truncation division if the
// divisor and dividend have different sign(bit)s and the
// remainder of the division is nonzero
const auto quot = a / b;
const auto rem = a % b;
return rem ? quot - 1 : quot;
}
return a / b;
});
});
} else if (iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, dtype, "div_floor_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto b = iter.scalar_value<accscalar_t>(2);
if (C10_UNLIKELY(b == 0)) {
return div_true_kernel_cuda(iter);
}
auto inv_b = accscalar_t(1.0) / b;
iter.remove_operand(2);
gpu_kernel(iter, [b, inv_b] GPU_LAMBDA(scalar_t a) -> scalar_t {
auto mod = std::fmod(a, b);
auto div = (a - mod) * inv_b;
if ((mod != 0) && (b < 0) != (mod < 0)) {
div -= scalar_t(1);
}
scalar_t floordiv;
if (div != 0) {
floordiv = std::floor(div);
if (div - floordiv > scalar_t(0.5)) {
floordiv += scalar_t(1.0);
}
} else {
floordiv = c10::cuda::compat::copysign(scalar_t(0), a * inv_b);
}
return floordiv;
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, dtype, "div_floor_cuda", [&]() {
gpu_kernel_with_scalars(
iter, [] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
if (C10_UNLIKELY(b == 0)) {
return a / b;
}
auto mod = std::fmod(a, b);
auto div = (a - mod) / b;
if ((mod != 0) && (b < 0) != (mod < 0)) {
div -= scalar_t(1);
}
scalar_t floordiv;
if (div != 0) {
floordiv = std::floor(div);
if (div - floordiv > scalar_t(0.5)) {
floordiv += scalar_t(1.0);
}
} else {
floordiv = c10::cuda::compat::copysign(scalar_t(0), a / b);
}
return floordiv;
});
});
}
}
} // namespace binary_internal
REGISTER_DISPATCH(div_floor_stub, &binary_internal::div_floor_kernel_cuda);
} // namespace native
} // namespace at