forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlasKernel.cpp
251 lines (228 loc) · 7.5 KB
/
BlasKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/native/CPUBlas.h>
#include <c10/util/irange.h>
#include <c10/util/Unroll.h>
namespace at {
namespace native {
namespace cpublas {
namespace {
template <typename scalar_t, typename opmath_t>
void scale_(int64_t m, int64_t n, opmath_t alpha, scalar_t *a, int64_t lda) {
if (alpha == opmath_t(1)) {
return; // identity
}
if (alpha == opmath_t(0)) {
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
a[j * lda + i] = scalar_t(0);
}
}
return;
}
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
a[j * lda + i] *= alpha;
}
}
}
template <typename Func>
auto sum(int64_t N, Func f) {
constexpr int ilp_factor = 4;
using acc_t = decltype(f(0));
// Calculate independent partial sums then add together at the end
std::array<acc_t, ilp_factor> partial_sums{};
int64_t i = 0;
for (; i + ilp_factor <= N; i += ilp_factor) {
c10::ForcedUnroll<ilp_factor>{}([&](int k) {
partial_sums[k] += f(i + k);
});
}
for (; i < N; ++i) {
partial_sums[0] += f(i);
}
for (int k = 1; k < ilp_factor; ++k) {
partial_sums[0] += partial_sums[k];
}
return partial_sums[0];
}
template <typename scalar_t, typename opmath_t>
void gemm_notrans_(
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
// c *= beta
scale_(m, n, beta, c, ldc);
// c += alpha * (a @ b)
for (const auto l : c10::irange(k)) {
for (const auto j : c10::irange(n)) {
opmath_t val = b[l + j * ldb] * alpha;
int64_t i_m = m / 4;
for (const auto i_i : c10::irange(i_m)) {
c[j * ldc + i_i * 4 + 0] += a[i_i * 4 + 0 + l * lda] * val;
c[j * ldc + i_i * 4 + 1] += a[i_i * 4 + 1 + l * lda] * val;
c[j * ldc + i_i * 4 + 2] += a[i_i * 4 + 2 + l * lda] * val;
c[j * ldc + i_i * 4 + 3] += a[i_i * 4 + 3 + l * lda] * val;
}
int64_t i = i_m * 4;
for (; i < m; i++)
c[j * ldc + i] += a[i + l * lda] * val;
}
}
}
template <typename scalar_t, typename opmath_t>
void gemm_transa_(
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
// c = alpha * (a.T @ b) + beta * c
const scalar_t *a_ = a;
for (const auto i : c10::irange(m)) {
const scalar_t *b_ = b;
for (const auto j : c10::irange(n)) {
const auto dot = sum(k, [&](int64_t l) -> opmath_t {
return static_cast<opmath_t>(a_[l]) * static_cast<opmath_t>(b_[l]);
});
b_ += ldb;
if (beta == opmath_t(0)) {
c[j*ldc+i] = alpha*dot;
} else {
c[j*ldc+i] = beta*c[j*ldc+i]+alpha*dot;
}
}
a_ += lda;
}
}
template <typename scalar_t, typename opmath_t>
void gemm_transb_(
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
// c *= beta
scale_(m, n, beta, c, ldc);
// c += alpha * (a @ b.T)
for (const auto l : c10::irange(k)) {
for (const auto j : c10::irange(n)) {
opmath_t val = b[j + l * ldb] * alpha;
int64_t i_m = m / 4;
for (const auto i_i : c10::irange(i_m)) {
c[j * ldc + i_i * 4 + 0] += a[i_i * 4 + 0 + l * lda] * val;
c[j * ldc + i_i * 4 + 1] += a[i_i * 4 + 1 + l * lda] * val;
c[j * ldc + i_i * 4 + 2] += a[i_i * 4 + 2 + l * lda] * val;
c[j * ldc + i_i * 4 + 3] += a[i_i * 4 + 3 + l * lda] * val;
}
int64_t i = i_m * 4;
for (; i < m; i++)
c[j * ldc + i] += a[i + l * lda] * val;
}
}
}
template <typename scalar_t, typename opmath_t>
void gemm_transab_(
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
// c = beta * c + alpha * (a.T @ b.T)
for (const auto i : c10::irange(m)) {
for (const auto j : c10::irange(n)) {
const auto dot = sum(k, [&](int64_t l) -> opmath_t {
return static_cast<opmath_t>(a[i * lda + l]) *
static_cast<opmath_t>(b[l * ldb + j]);
});
if (beta == opmath_t(0)) {
c[j * ldc + i] = alpha * dot;
} else {
c[j * ldc + i] = beta * c[j * ldc + i] + alpha * dot;
}
}
}
}
template <typename scalar_t, typename opmath_t>
void gemm_core_(
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
opmath_t alpha,
const scalar_t *a, int64_t lda,
const scalar_t *b, int64_t ldb,
opmath_t beta,
scalar_t *c, int64_t ldc) {
if(transa == TransposeType::NoTranspose && transb == TransposeType::NoTranspose) {
return gemm_notrans_(m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
} else if(transa == TransposeType::Transpose && transb != TransposeType::Transpose) {
gemm_transa_(m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
} else if(transa == TransposeType::NoTranspose && transb == TransposeType::Transpose) {
gemm_transb_(m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
} else { // transa == TransposeType::Transpose && transb == TransposeType::Transpose
gemm_transab_(m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
}
void cpublas_gemm_impl(
at::ScalarType type,
TransposeType transa, TransposeType transb,
int64_t m, int64_t n, int64_t k,
const Scalar& alpha,
const void *a, int64_t lda,
const void *b, int64_t ldb,
const Scalar& beta,
void *c, int64_t ldc) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(at::kHalf, at::kBFloat16,
type, "cpublas_gemm_impl",
[&]{
using opmath_t = at::opmath_type<scalar_t>;
gemm_core_(
transa, transb, m, n, k,
alpha.to<opmath_t>(),
static_cast<const scalar_t *>(a), lda,
static_cast<const scalar_t *>(b), ldb,
beta.to<opmath_t>(),
static_cast<scalar_t *>(c), ldc);
});
}
void cpublas_axpy_impl(at::ScalarType type, int64_t n, const Scalar& _a, const void *_x, int64_t incx, void *_y, int64_t incy){
if (type == at::kBool) {
auto a = _a.to<bool>();
auto x = static_cast<const bool *>(_x);
auto y = static_cast<bool *>(_y);
int64_t i;
for(i = 0; i < n; i++)
y[i*incy] |= a & x[i*incx];
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(at::kHalf, at::kBFloat16, type, "cpublas_axpy_impl",
[&] {
using opmath_t = at::opmath_type<scalar_t>;
auto a = _a.to<opmath_t>();
auto x = static_cast<const scalar_t *>(_x);
auto y = static_cast<scalar_t *>(_y);
int64_t i;
for(i = 0; i < n; i++)
y[i*incy] += a*x[i*incx];
});
}
}
void cpublas_copy_impl(at::ScalarType type, int64_t n, const void *_x, int64_t incx, void *_y, int64_t incy){
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(at::kComplexHalf, at::kHalf, at::kBFloat16, at::kBool, type, "cpublas_copy_impl",
[&] {
auto x = static_cast<const scalar_t *>(_x);
auto y = static_cast<scalar_t *>(_y);
int64_t i;
for(i = 0; i < n; i++)
y[i*incy] = x[i*incx];
});
}
}} // namespace cpublas::(anonymous)
REGISTER_DISPATCH(cpublas::gemm_stub, &cpublas::cpublas_gemm_impl);
REGISTER_DISPATCH(cpublas::axpy_stub, &cpublas::cpublas_axpy_impl);
REGISTER_DISPATCH(cpublas::copy_stub, &cpublas::cpublas_copy_impl);
}} // namespace at::native