forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmbedding.cpp
211 lines (175 loc) · 7.25 KB
/
Embedding.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/List.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <ATen/TensorOperators.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/BinaryOps.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/embedding_backward_native.h>
#include <ATen/ops/embedding_dense_backward.h>
#include <ATen/ops/embedding_dense_backward_native.h>
#include <ATen/ops/embedding_native.h>
#include <ATen/ops/embedding_renorm_native.h>
#include <ATen/ops/embedding_sparse_backward.h>
#include <ATen/ops/embedding_sparse_backward_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/zeros.h>
#endif
#include <c10/util/irange.h>
#include <cstring>
#include <memory>
#include <vector>
namespace at { namespace native {
Tensor embedding(const Tensor & weight, const Tensor & indices,
int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
TORCH_CHECK(weight.dim() == 2, "'weight' must be 2-D");
auto indices_arg = TensorArg(indices, "indices", 1);
checkScalarTypes("embedding", indices_arg, {kLong, kInt});
// TODO: use tensor.index() after improving perf
if (indices.dim() == 1) {
return weight.index_select(0, indices);
}
auto size = indices.sym_sizes().vec();
for (auto d : weight.sym_sizes().slice(1)) {
size.push_back(d);
}
return weight.index_select(0, indices.reshape(-1)).view_symint(size);
}
Tensor embedding_backward_symint(
const Tensor & grad, const Tensor & indices, SymInt num_weights,
int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
if (sparse) {
// TODO: if we teach sparse tensor how to propagate symints, the guard
// here is not strictly necessary. However, we think it is fine as is
// because num weights is derived from a parameter and therefore
// typically not varying.
return at::embedding_sparse_backward(
grad, indices, num_weights.guard_int(__FILE__, __LINE__), padding_idx, scale_grad_by_freq);
} else {
return at::embedding_dense_backward_symint(
grad, indices, num_weights, padding_idx, scale_grad_by_freq);
}
}
Tensor embedding_sparse_backward(
const Tensor & grad_, const Tensor & indices_, int64_t num_weights,
int64_t padding_idx, bool scale_grad_by_freq) {
auto indices_arg = TensorArg(indices_, "indices", 2);
checkScalarTypes("embedding_backward", indices_arg, {kLong, kInt});
// TODO: implement scale_grad_by_freq
if (scale_grad_by_freq) {
AT_ERROR(
"embedding_backward: scale_grad_by_freq not supported with sparse gradients");
}
Tensor indices = indices_;
Tensor grad = grad_;
if (padding_idx != -1) {
c10::List<c10::optional<Tensor>> c({indices != padding_idx});
indices = indices.index(c);
grad = grad.index(c);
}
auto num_features = grad_.sym_size(-1);
auto weight_size = std::array<c10::SymInt, 2>{{ num_weights, num_features }};
auto dense_options = grad.options();
// check if all our grad come from padding_idx
if (grad.sym_numel() == 0) {
return at::_sparse_coo_tensor_unsafe_symint(at::empty({1, 0}, indices_.options().dtype(kLong)),
at::empty_symint({c10::SymInt(0), num_features}, dense_options),
weight_size);
}
auto index = indices.reshape({1, -1});
auto values = grad.reshape_symint({c10::SymInt(-1), num_features});
return at::_sparse_coo_tensor_unsafe_symint(index.to(kLong), values, weight_size);
}
Tensor embedding_dense_backward_cpu(
const Tensor & grad_, const Tensor & indices, int64_t num_weights,
int64_t padding_idx, bool scale_grad_by_freq) {
auto indices_arg = TensorArg(indices, "indices", 2);
checkScalarTypes("embedding_backward", indices_arg, {kLong, kInt});
auto grad_weight = at::zeros({num_weights, grad_.size(-1)}, grad_.options());
auto indices_contig = indices.contiguous();
int64_t numel = indices.numel();
auto grad = grad_.contiguous().view({numel, grad_.size(-1)});
auto add_iter = TensorIteratorConfig()
.add_output(grad_weight)
.add_input(grad_weight)
.add_input(grad)
.resize_outputs(false)
.declare_static_shape(grad.sizes(), /*squash_dims=*/0)
.build();
const auto gW_data = reinterpret_cast<char*>(grad_weight.data_ptr());
const auto gO_data = reinterpret_cast<char*>(grad.data_ptr());
const auto gW_stride = grad_weight.strides()[0] * grad_weight.element_size();
const auto gO_stride = grad.strides()[0] * grad.element_size();
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cpu", [&] () {
auto indices_data = indices_contig.data_ptr<index_t>();
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
std::unique_ptr<index_t[]> counts;
if (scale_grad_by_freq) {
counts.reset(new index_t[num_weights]);
for (const auto i : c10::irange(numel)) {
counts[indices_data[i]] = 0;
}
for (const auto i : c10::irange(numel)) {
counts[indices_data[i]]++;
}
}
auto parallel_section = [&](index_t start, index_t end) {
TensorIterator iter(add_iter);
for (const auto i : c10::irange(numel)) {
if (indices_data[i] != padding_idx) {
index_t k = indices_data[i];
if (k >= start && k < end) {
double scale = 1.0;
if (scale_grad_by_freq) {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
scale /= counts[k];
}
// grad_weight[k].add_(grad[i], scale);
iter.unsafe_replace_operand(0, gW_data + k * gW_stride);
iter.unsafe_replace_operand(1, gW_data + k * gW_stride);
iter.unsafe_replace_operand(2, gO_data + i * gO_stride);
add_stub(kCPU, iter, scale);
}
}
}
};
at::parallel_for(0, num_weights, 1000, parallel_section);
});
return grad_weight;
}
Tensor & embedding_renorm_cpu_(
Tensor & self, const Tensor & indices, double max_norm, double norm_type) {
auto self_arg = TensorArg(self, "self", 1);
auto indices_arg = TensorArg(indices, "indices", 2);
checkDim("embedding_renorm_", self_arg, 2);
checkScalarTypes("embedding_renorm_", indices_arg, {kLong, kInt});
auto indices_contig = indices.contiguous();
auto num_indices = indices.numel();
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_renorm_cpu_", [&]() {
auto data_ptr = indices_contig.data_ptr<index_t>();
auto sorted_indices = std::vector<index_t>(data_ptr, data_ptr + num_indices);
std::sort(sorted_indices.begin(), sorted_indices.end());
// Note that we cannot use at::parallel_for here because we perform operations on
// Tensor inside the loop. See github.com/pytorch/pytorch/issues/28370 for more details.
for (const auto i : c10::irange(num_indices)) {
if (i > 0 && sorted_indices[i] == sorted_indices[i - 1]) {
continue;
}
auto row = self[sorted_indices[i]];
auto norm = row.norm(norm_type).item<double>();
if (norm > max_norm) {
auto scale = max_norm / (norm + 1e-7);
row *= scale;
}
}
});
return self;
}
}} // namespace at::native